首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The eastern syntaxis of the Himalaya, Namche Barwa, is dominated by a north-plunging antiform which began to decompress/grow at approximately 4 Ma. New fission-track analyses on both apatite and zircon, combined with previous geochronological ages, indicate that the Namche Barwa Dome also extended laterally while growing vertically. Zircon fission-track ages range from 17.6 to 0.2 Ma and have a strong relationship to the main faults of the region, including the Tertiary Tsangpo Suture, with the younger ages inside the fault bounds towards the syntaxis core on the Indian Plate and the older ages away from the fault. Apatite ages reveal that the dome has grown laterally and now impinges over the older faulted margin onto the Asian Plate. The dome is traversed by the Tsangpo which has followed the trace of the Suture for over 1300 km from its source to the entrance of the dome near Dania. As the Tsangpo crosses the dome it departs from the Suture but rejoins it some 60 km northeastwards. We construe that the Suture has been displaced by the growing antiform and as a consequence, the antecedent river has been “dragged” in a left-lateral sense along the exhuming north-plunging dome. Restoring the Suture to its position prior to 4 Ma reveals a path of the Tsangpo eastwards across the present southwestern position of the Namche Barwa indentation. This geometric reconstrunction implies that the Tsangpo and the Brahmaputra were always one and the same river. In addition, the Tsangpo was tectonically forced into juxtaposition with a tributary of the Jiali-Parlung which it probably then captured. The capture was due to tectonic forcing, in the last 4 Ma, rather than headward retreat of the paleo-Brahmaputra as has been previously suggested.  相似文献   

3.
董汉文  许志琴  李源  刘钊  李忠海 《岩石学报》2013,29(6):2013-2023
墨脱花岗岩带位于南迦巴瓦构造结东侧,是冈底斯岩浆带的东南延伸部分。本文报道了该地区背崩和达木2个花岗岩体的全岩地球化学、锆石U-Pb年代学及锆石Hf同位素数据。锆石U-Pb定年结果表明,背崩和达木花岗岩体的年龄分别为62Ma和64.5Ma。岩石地球化学数据显示,两个花岗岩体SiO2含量为71.09%~74.37%,K2O的含量为1.38%~5.93%,A/CNK为1.01~1.02,均属于高钾钙碱性过铝质岩石。所有样品均显示出强烈的轻、重稀土分异((La/Dy)N=13.55~31.3;(La/Yb)N=16.82~50.41),平坦的Ho到Lu稀土元素分布样式((Ho/Yb)N=0.93~1.42),δEu主要介于0.78~1.09,总体上具有正-微弱负异常,具较高Ba、Sr/Y,La/Yb和低Y,Mg#(<45),亏损HFSE元素(Nb、Ti、Zr)。墨脱高Sr/Y花岗岩具有不均一的εHf(t)值(-11.22~4.87)和相对年轻的Hf模式年龄(552~1179Ma)。锆石Hf同位素数据和锆石饱和温度(746~791℃)均显示幔源物质在墨脱花岗岩形成过程中发挥了较为重要的作用。墨脱高Sr/Y花岗岩可能是在印度-亚洲大陆碰撞阶段,由新特提斯洋俯冲过程中产生的基性岩浆底侵作用使陆壳熔融并发生壳幔岩浆混合作用所形成。  相似文献   

4.
喜马拉雅造山带东端的南迦巴瓦岩群是高喜马拉雅结晶岩系的一部分,主要由麻粒岩相和角闪岩相变质的片麻岩、斜长角闪岩、片岩和钙硅酸盐岩组成.长英质片麻岩主要由斜长石、钾长石、石英、石榴石、黑云母和褐帘石组成.片麻岩中的锆石具有核一边结构,由一个大的继承岩浆核和一个窄的变质生长边组成.锆石岩浆核具同心韵律环带.其REE配分模式以HREE富集和负Eu异常为特征,并具有高的Th/U比值.锆石U-Pb年代分析表明,这种继承岩浆锆石给出的加权平均年龄为490~500Ma.地球化学特征表明,这些片麻岩的原岩是花岗岩和花岗闪长岩,形成在俯冲带的岩浆弧构造环境.钙硅酸盐岩中的锆石具有高级变质岩中变质生长锆石的典型特征,即具有相对较低的REE含量,不明显的负Eu异常和较低的Th/U比值.变质锆石所获得的U-Pb加权平均年龄为505Ma.本文和现有的研究结果表明,喜马拉雅造山带是一个复合造山带,它经历了古生代的原始造山作用,在新生代印度与欧亚板块的碰撞过程中发生了再造山作用.喜马拉的古生代造山带作用是原特提斯洋向冈瓦纳大陆北缘俯冲和亚洲微陆块(包括拉萨和羌塘地块)增生的结果,是在冈瓦纳大陆拼合之后其边缘发生的安底斯型造山作用,因此,它并不属于在冈瓦纳超大陆聚合过程中陆-陆碰撞形成的泛非造山带.  相似文献   

5.
喜马拉雅东构造结——南迦巴瓦构造及组构运动学   总被引:17,自引:13,他引:17  
喜马拉雅东端-南迦巴瓦构造结的构造格架总体呈现由叠置构造岩片构成的复式背形构造.自NW到SE由比鲁构造岩片、直白构造岩片、南派乡构造岩片和多雄拉变质穹隆组成,它们之间的界限分别是直白-丹娘-南伊沟韧性拆离断裂、直白-丹娘韧性逆冲断裂和多雄拉韧性逆冲断裂.由高压麻粒岩相组成的直白构造岩片被直白-丹娘-南伊沟韧性拆离断裂和直白-丹娘韧性逆冲断裂所夹持,为挤出构造岩片.根据印度斯-雅鲁藏布江大拐弯缝合带西侧和北侧的变形特征及石英组构运动学的EBSD测量结果,表明大拐弯缝合带存在各段的差异,并具有逐渐演化的特征.大拐弯缝合带的北端为拉月-迫隆乡韧性逆冲剪切带;西段为鲁朗-拉月左行走滑剪切带,西南段为嘎马-米林左行伸展转换剪切带,指示南迦巴瓦变质体相对拉萨地体的运动转为水平走滑运动.根据大拐弯缝合带东侧右行走滑和西侧左行走滑特征,推测在印度-亚洲碰撞之后,南迦巴瓦变质体受制于这两条走滑断裂,而相对喜马拉雅地体向北推移,并深深插入拉萨地体之下,形成东构造结.由于南迦巴瓦变质体的强烈上隆,其上部原存的特提斯喜马拉雅的古生代-中生代盖层沉积被俯冲和被剥蚀贻尽.南迦巴瓦变质体中直白组高压麻粒岩相中石榴石辉石岩形成的温压条件(T=800~900℃,P=2.6~2.8GPa)表明,岩石经历了相当于80km~100km深度的峰期榴辉岩变质作用的条件,印度板片深俯冲于拉萨地体之下又折返挤出到由派乡组和多雄拉组角闪岩相(混合岩化)组成的南迦巴瓦变质基底之中.  相似文献   

6.
位于喜马拉雅造山带东构造结,印度-雅鲁藏布江缝合带以南的南迦巴瓦岩群经历了高压变质作用和强烈的部分熔融与混合岩化作用.本文选择广泛分布的长英质片麻岩进行了岩石学和年代学研究.除个别岩石保存了由石榴石 蓝晶石 三元长石 石英组成的高压泥质麻粒岩相变质矿物组合以外,大多数片麻岩具有角闪岩相变质矿物组合,它们的原岩包括闪长岩和花岗闪长岩,并具有岩浆弧花岗岩的化学成分特征.片麻岩中的锆石普遍具有核-边结构.SARIMP和LA-ICP-MS原位分析表明,锆石的边缘给出了古生代至新生代的多期变质和岩浆事件年龄(500~10Ma),而锆石的核部给出了前寒武纪年龄,但主要集中在~2500Ma,~1800Ma,~1600Ma和~1000Ma.所分析的锆石区域具有明显的岩浆结晶环带和高的Th/U比值,表明它们所指示的是多期岩浆活动事件年代.这些年代峰值与整个高喜马拉雅结晶杂岩及印度陆块所获得的前寒武纪构造热事件年龄及分布特征基本上可以对比.因此,我们认为南迦巴瓦岩群及高喜马拉雅结晶杂岩的原岩是由新太古代至新元古代形成的多期岩浆岩组成,并作为印度陆块的一部分经历了Columbia、Rodinia和Gondwana超大陆的形成与裂解过程,以及喜马拉雅期的区域变质与岩浆作用再造.  相似文献   

7.
The Namche Barwa Complex (NBC) in the eastern Himalayan syntaxis, south Tibet, is generally interpreted as the north-eastern extremity of the exposed Greater Himalayan Sequence, comprising Neoproterozoic to early Paleozoic sedimentary strata along the northern margin of the Indian continent. Field and petrological investigations indicate that the NBC consists mainly of orthogneiss, paragneiss, amphibolites and calc-silicate rocks. U-Pb zircon data demonstrate that the protoliths of the orthogneiss formed during late Paleoproterozoic at ca. 1610 Ma and also in early Paleozoic at ca. 490-500 Ma. The amphibolites were derived from mafic magmatic rocks formed during 1645 to 1590 Ma. Zircons in the paragneisses have highly variable inherited zircon ages ranging from the Neoarchean to early Paleozoic, with four major age populations of 2490 Ma, 1640 Ma, 990 Ma and 480 Ma. The calc-silicate rock has zircons with early Paleozoic metamorphic age of 538 Ma. Almost all the rocks of the NBC have been metamorphosed during Cenozoic with the metamorphic zircon U-Pb ages ranging from 8 to 30 Ma and a peak at 23 Ma. These, together with previous results suggest that the NBC was originally derived from an Andean-type orogeny following the Columbia supercontinent assembly, and experienced multiple reworking during the Grenvillian, Pan-African and Himalayan orogenies. We conclude that the NBC in the eastern Himalayan syntaxis was derived from different provenance and tectonic setting as compared to those of the Greater Himalayan Sequence which constitutes the high-grade metamorphic core of the western and central Himalayan orogenic belt. We thus infer that the NBC was originally part of the eastern segment of the Central Indian Tectonic Zone.  相似文献   

8.
位于喜马拉雅东构造结西北部的南迦巴瓦复合体,是构造应力最强、隆升和剥蚀最快、新生代变质和深熔作用最强的地区。为厘定该地区早期的变质岩浆作用,本文对南迦巴瓦复合体北部的花岗片麻岩和混合岩进行了岩石学和年代学研究。花岗片麻岩原岩为富钾的偏铝质花岗岩,具有岩浆弧花岗岩的成分特征。花岗片麻岩中的锆石具有岩浆锆石的环带结构,记录了487.9±1.6Ma的一期构造岩浆事件;混合岩的锆石具有明显的核-边结构,核部和边部的不协和线交点年龄分别为1559±13Ma、1154±12Ma。对比印度大陆东部的西隆高原、东高止造山带,发现三者都经历了拉布拉多期、格林威尔期以及泛非期的造山作用。因此,我们认为喜马拉雅东构造结与这两个地区密切相关,可能是他们向北的延伸,这三者可能组成统一的印度大陆东部造山带,一起经历了哥伦比亚超大陆、Rodinia和冈瓦纳超大陆的聚合与裂解过程。  相似文献   

9.
印度与欧亚板块碰撞以来东喜马拉雅构造结的演化   总被引:14,自引:0,他引:14  
丁林  钟大赉 《地质科学》2013,48(2):317-333
在野外填图,构造观察及前人研究的基础上,本文识别并描述了东喜马拉雅构造结中的推覆断裂、正断裂及走滑断裂、背斜(形)和向斜(形)等构造类型,讨论了这些构造位置及与印度板块挤入,印支地块旋转的关系,还探讨了东喜马拉雅构造结对印度板块持续向北推挤下的特殊应变调节方式。在印度大陆部分,东喜马拉雅构造结由3个向外逐渐变新的构造结组成,即北东向的南迦巴瓦峰复式背斜、北西向的桑复式向斜及北东向的阿萨母复式向斜。上述3个构造结是协调印度板块的挤入、喜马拉雅弧的扩展及印支地块的旋转的构造。在欧亚大陆内部的冈底斯岛弧,在派区及阿尼桥走滑断裂协调下,高喜马拉雅结晶岩的基底挤入冈底斯岛弧内部,在大拐弯顶端形成向上的挤出构造。在南迦巴瓦峰构造结的北西侧,由于掀斜式抬升及重力滑动,使得冈底斯盖层与结晶基底脱耦,上盘盖层沿东久向北西方向滑动。在南迦巴瓦峰构造结北东侧,由于印支地块的挤出和旋转,形成一系列的北西向走滑断裂,如实皆断裂、嘉黎—高黎贡断裂、澜沧江断裂及红河断裂等。  相似文献   

10.
东喜马拉雅构造结核部的南迦巴瓦群是经历了高压麻粒岩相峰期变质、角闪岩相退变质和强烈混合岩化作用形成的以含有高压麻粒岩透镜体或夹层为特色的变质岩组合。地质地球化学研究表明产于退变质高压麻粒岩中的含石榴石花岗岩脉具有高钾、富铝、轻稀土强烈富集、分馏程度很高、重稀土相对亏损、Eu强烈亏损、大离子亲石元素及放射性元素相对原始地幔值强烈富集、Rb/Sr1.4的特征。利用花岗岩的主要成分及锆的含量估算的岩浆初始温度为792~801℃,略低于南迦巴瓦群的峰期变质温度850℃。锆石SHRIMPU-Pb定年结果显示锆石核部年龄集中在519~525Ma之间,揭示出印度地块经历泛非期构造运动改造的痕迹。锆石边部主要存在39~44Ma、24~25Ma和7.3Ma三个年龄段,前者代表了花岗岩浆的侵位时代,第二个年龄段是对MCT和STDS构造热事件改造的反映,后者揭示出构造-浅表反馈作用的信息。说明含石榴石花岗岩脉是在南迦巴瓦群折返过程中近等温降压条件下地壳岩石发生"干"深熔作用形成的高钾过铝质钙碱性花岗岩,以及南迦巴瓦群在经历峰期变质作用后很快就开始折返,并在后碰撞过程中经历了藏南拆离系(STDS)和主中央冲断带(MCT)构造事件及后期构造-浅表反馈作用的影响。  相似文献   

11.
郝光明 《地质与勘探》2024,60(4):643-660
西藏南部南迦巴瓦地区位于喜马拉雅造山带的东端,该区保留了大量新生代变质和深熔作用记录,是研究喜马拉雅碰撞造山带演化过程的关键地区。本文在野外地质调查和室内显微岩石学观察基础上,通过锆石 U-Pb 年代学和全岩地球化学研究,分析南迦巴瓦地区变质岩和淡色花岗岩的年代学意义和地球化学特征。研究区露头可见含石榴子石淡色花岗岩平行片麻理侵入到变泥质岩中,该变泥质岩为含石榴子石的黑云斜长片麻岩,其继承锆石年龄为1617.0~565.5 Ma,还记录了28.1~16.4 Ma的新生代变质作用。含石榴子石淡色花岗岩形成于23.3±0.4 Ma,经历了18.4~8.6 Ma的岩浆事件,是南迦巴瓦地区构造减压过程中变质岩多次部分熔融的产物。该淡色花岗岩具有较高的SiO2、K2O、FeOT和铝饱和指数A/CNK,较低的Al2O3、CaO、Na2O和Na2O/K2O,为过铝质富钾花岗岩。其富集Rb、K、Pb,亏损Ba、Sr、Nb、Ta、Nd、Zr、Ti,具有强烈的Eu负异常和海鸥状稀土分布模式,较高的Rb/Sr、Nb/Ta和较低的Zr/Hf,可能与发育大量的石榴子石并经历了较高程度的斜长石、独居石分离结晶作用和熔体结构改变有关。  相似文献   

12.
东喜马拉雅构造结南迦巴瓦杂岩中存在典型的泥质、长英质和基性高压麻粒岩。但是,高压麻粒岩在南迦巴瓦杂岩中的分布范围、变质条件和变质时间是否存在空间上的变化并不明确。本文对南迦巴瓦杂岩西南部巴嘎地区的高压基性麻粒岩进行了岩石学和年代学研究。研究表明,巴嘎高压基性麻粒岩由石榴子石、单斜辉石、角闪石、斜长石、黑云母和石英组成,石榴子石变斑晶发育生长成分环带。识别出三期矿物组合:进变质矿物组合M1为石榴子石变斑晶核部及其矿物包裹体,包括石榴子石、石英、榍石和磷灰石;峰期矿物组合M2为变斑晶石榴子石边部和基质矿物,即石榴子石+单斜辉石+斜长石+角闪石+石英+金红石+熔体;退变质矿物组合M3呈冠状体或基质产出,其组合为角闪石+斜长石+单斜辉石+黑云母+石英+榍石。高压基性麻粒岩的峰期变质条件约为1. 5 GPa和915 ℃,具有顺时针P- T轨迹,退变质的早期和晚期分别为近等温降压和降温降压过程。高压基性麻粒岩在峰期条件下发生了明显的部分熔融,含~26%(体积)的熔体,其退变质和熔体结晶作用很可能发生在26~14 Ma。本文和研究区现有研究成果表明,东喜马拉雅构造结南迦巴瓦杂岩中的高压麻粒岩广泛分布,从东北部的加拉、直白和派乡延伸到西南部的巴嘎沟,形成了一条长度超过80 km的高压麻粒岩带。整个带中的高压麻粒岩具有类似的变质条件和持续时间,是印度大陆地壳平缓俯冲并经历了高温和高压变质与部分熔融的产物,构成了喜马拉雅造山带的加厚下地壳。大量高压麻粒岩强烈部分熔融产生的熔体可能为喜马拉雅淡色花岗岩提供了源区。  相似文献   

13.

南迦巴瓦地区广泛出露的中下地壳变基性岩部分熔融形成的层状混合岩和淡色花岗岩,为研究部分熔融过程中榍石的地球化学行为对熔体的微量元素组成的影响提供了良好的机会。相对于源岩或熔融残留体,淡色体亏损Ti、V、REE、Y、Nb、Ta、U等元素,与混合岩中榍石的微量元素特征互补。混合岩、淡色体和榍石微量元素特征表明南迦巴瓦角闪岩部分熔融形成的淡色体的微量元素特征主要受控于榍石的地球化学行为。角闪岩脱水部分熔融过程中,由于长英质熔体的低Ti溶解度,榍石以未熔残留体形式存在于暗色体中,导致熔体亏损Ti、REE、Nb、Ta、V、U等元素和Sr/Y比值相对升高。关键元素在榍石和熔体之间的配分系数受熔体成分影响明显。角闪岩中变质榍石DNb/Ta < 1,因此变质榍石残留导致熔体Nb/Ta相对于源岩升高;而高Si-Al花岗质熔体中榍石DNb/Ta>1,因此与高Si-Al熔体平衡的榍石的分离(转熔或结晶分异)将导致熔体Nb/Ta比值相对源岩降低。榍石在部分熔融过程中的微量元素效应为理解变基性岩部分熔融产生熔体的地球化学特征提供新的认识。

  相似文献   

14.
东喜马拉雅构造结的南迦巴瓦杂岩含有广泛分布的高压麻粒岩,但由于以前获得了许多不同的年龄,对这些麻粒岩的变质与深熔时代、持续时间和成因存在不同认识。本文对泥质高压麻粒岩(蓝晶石榴黑云片岩)中的锆石和独居石进行了系统的内部结构、U-(Th)-Pb定年和微量元素分析,以求揭示这些岩石是否具有相同的演化过程。所研究的6个蓝晶石榴黑云片岩由石榴石、蓝晶石、黑云母、石英、钾长石、斜长石、夕线石、白云母、石墨和副矿物金红石、钛铁矿、锆石和独居石组成,峰期矿物组合是石榴石+蓝晶石+斜长石+钾长石+黑云母+石英+金红石。6个样品中的锆石均由继承碎屑核+变质(深熔)幔+变质(深熔)边组成。其中3个样品中的锆石幔和边较宽,均可进行原位定年,幔部给出了类似的较老年龄范围(39.6~31.6Ma、40.8~32.0Ma和38.1~31.3Ma),而边部给出了类似的较年轻年龄范围(26.8~17.3Ma、28.3~18.6Ma和28.4~18.8Ma)。另外3个样品的锆石幔部较窄,不能进行分析,其边部给出了与前3个样品锆石边部类似的年轻年龄范围(22.0~17.0Ma、20.9~16.9Ma和22.2~16.6Ma)。一个片岩样品中的独居石给出了与其锆石幔部+边部年龄类似的较宽年龄范围(38.1~17.5Ma),而另外3个样品中的独居石获得了与其锆石边部年龄相似的年轻年龄范围(26.0~18.8Ma、22.3~16.9Ma和26.4~19.4Ma)。随着年龄的减小,锆石和独居石的Th/U比值增大,Eu/Eu*减小,独居石的HREE和Y含量减小。基于这些分析结果,笔者认为所研究的6个片岩记录了相同的、从~41Ma持续到~17Ma的进变质与深熔过程。但是,由于某些样品中的锆石和独居石在早期变质和深熔过程中形成的结晶域(锆石幔部)很窄,无法定年,导致不同的样品获得了不同的年龄范围。结合现有研究成果,笔者推测南迦巴瓦杂岩中的高压麻粒岩经历了相似的长期进变质与深熔过程。  相似文献   

15.
位于喜马拉雅东构造结的南迦巴瓦岩群经历了高压麻粒岩相、中压麻粒岩相和角闪岩相三期变质作用.在高压麻粒岩中含有复杂的流体包裹体类型,按照捕获先后顺序有:H2O-CO2±CH4包裹体(Ⅰ型);CO2±CH4±N2包裹体(Ⅱ型);高盐度多相包裹体(Ш型);中.低盐度H2O包裹体(Ⅳ型)和极低密度气体包裹体或"空"包裹体(Ⅴ型).在基性麻粒岩中,被石榴石包裹石英中孤立分布的H2O-CO2 4-CH4包裹体,以及部分沿石榴石晶内裂隙分布的H2-CO2±CH4和H2O包裹体轨迹未穿过围绕石榴石的辉石 斜长石后成合晶冠状体,表明它们有可能是在麻粒岩相变质阶段捕获的.然而,所有流体包裹体的等容线均从麻粒岩相变质峰期P-T区间下方通过,说明麻粒岩相变质峰期捕获的包裹体均受到了不同程度的改造,包括部分爆裂、渗漏和流体-矿物相互作用等.现存的富CO2流体包裹体均具有较低密度,并且往往含有明显数量CH4和N2组分,不可能是麻粒岩相变质峰期捕获的包裹体.根据富CO2包裹体与具有不同相比的H2-CO2包裹体共存推测,大部分CO2包裹体是通过H2O-CO2包裹体中H2O的选择性泄漏而形成的.Ⅲ型高盐度盐水包裹体很可能是角闪岩相退变质过程中捕获的,因其等容线与退变质轨迹近于平行,这些包裹体很可能保存了其在角闪岩相阶段捕获时的原生物理化学特征.沿矿物颗粒裂隙分布的大量Ⅳ型和Ⅴ型包裹体,应该是角闪岩相或更晚期形成的次生包裹体,代表了浅成(近地表)环境的循环流体.与世界许多地区麻粒岩相岩石普遍舍高密度纯CO2流体包裹体不同,南迦巴瓦岩群高压麻粒岩以富含H2O-CO4±CH4和H2O包裹体为特征,这可能与高压麻粒岩与高温麻粒岩产出于不同的构造环境和经历的退变质轨迹有关.  相似文献   

16.
位于东喜马拉雅构造结的南迦巴瓦岩群是研究喜马拉雅构造带基底演化的重要对象之一.在构造样式上,南迦巴瓦岩群为一个背形构造,该背形构造的核部由多雄拉混合岩和花岗片麻岩组成.本文开展了南迦巴瓦岩群多雄拉混合岩的锆石LA-ICP-MS U-Pb定年研究.结果表明.多雄拉混合岩深色体的原岩形成年龄为1759±10Ma,浅色体的形成年龄为1594±13Ma,代表发生混合岩化的年龄.另外,一个多雄拉花岗片麻岩的原岩形成年龄为1583±6Ma,该年龄在误差范围内与区域发生混合岩化作用的时代相近,表明在混合岩化过程中存在着一定程度的地壳深熔作用.区域对比表明,低喜马拉雅和高喜马拉雅构造单元内存在着明显不同的构造一岩浆事件,其中低喜马拉雅构造单元广泛存在1.6~1.8Ga的构造-岩浆事件.与之相对比,多雄拉混合岩和花岗片麻岩的锆石U-Pb年代学说明南迦巴瓦岩群核部应属于低喜马拉雅结晶岩系,而明显不同于高喜马拉雅结晶岩系,这与西喜马拉雅构造结相似,表明东喜马拉雅构造结与西喜马拉雅构造结有着相似的地质演化.  相似文献   

17.
正本文将南迦巴瓦构造结地区(经度:88~104°E、纬度:20~34°N)共400多个GPS站点的速度资料通过球面相似变换,归化到"印度板块整体固定"参考框架下,整合后的GPS站点速度矢量通过选用印度板块上相对稳定的21个IGS站点(BELP、ISRR、MABU、DHAR、IITB、UDAI、DELH、BHOP、KODI、BAN2、PLNI、IISC、CHEN、MANP、HYDE、IITK、LUCK、BHUP、BHUB、DHAN、DURG)  相似文献   

18.
东喜马拉雅构造结墨脱剪切带特征及其区域构造意义   总被引:2,自引:1,他引:2  
董汉文  许志琴  李源  刘钊 《岩石学报》2014,30(8):2229-2240
东喜马拉雅构造结东、西两侧分别为墨脱剪切带和东久-米林剪切带,本文以墨脱剪切带为研究对象,从构造变形几何学和组构运动学方面进行详细研究。结果表明:①剪切带不同部位的变形性质具有逐渐演化的特征,基于产状、变形性质及变质程度等的变化将其从南到北分为三部分:NE走向具右行兼上盘下滑性质的阿尼桥-希让段、近N-S向具右行走滑性质的旁辛-达木段及N(N)W向具右行兼逆冲性质的甘登-加拉萨段;②在墨脱剪切带内识别出两类剪切变形:高温剪切变形和低温剪切变形。除了构造变形及岩相学证据外,石英EBSD组构数据显示区内高温剪切变形以{10■-0}a滑移系为主,对应的温度为550~650℃,达到高温角闪岩相,局部(北端和中段)还出现了{10■-0}c滑移系,温度更高,大于650℃,相当于下地壳的深度;低温剪切变形以{10■-1}a和{0001}a滑移系为主,对应的温度小于550℃,即剪切变形发生在绿片岩相或绿片岩相以下的构造环境。结合西界东久-米林剪切带的构造特征,推测在印度板块和欧亚板块碰撞之后,南迦巴瓦变质体受制于这两条剪切带而相对拉萨地体向北推移,并楔入拉萨地体之下。  相似文献   

19.
Orthogneiss within the Paleoproterozoic strata of Lesser Himalayan sequence across the Himalaya has been variably linked to development in a continental arc setting, Indian basement, or a continental rift.New whole rock and trace element geochemical data and U/Pb zircon geochronology indicate that the granitoid protoliths to these rocks were derived from upper crustal sources in the Paleoproterozoic and have within-plate, A-type affinities. This is consistent with their generation in a rifted margin and is compatible with paleogeographic reconstructions that indicate an open boundary for present-day northern India in the Paleoproterozoic.  相似文献   

20.
Abstract

The multiply deformed Upper Austro-Alpine nappe pile of the Graz area is built up of low-grade metamorphosed Paleozoic rocks which are discordantly overlain by sediments of Santonian (Late Cretaceous) age (“Gosau” formation). Slices of Permo-Mesozoic rocks are absent. Analyses of structures, microfabrics, strain and shear directions were used to decipher the kinematic history; geochronological investigations to date the age of thrusting. K/Ar and Rb/Sr ages of synkinematically grown mica suggest an eo-Alpine (Early Cretaceous) age for the major deformation D1. D1 is characterized by non-coaxial rock flow which caused SW- to W directed nappe imbrication. Incremental strain measurements indicate the progressive superposition of D2 over Dl. In the higher nappe (Rannach Nappe) nappe imbrication continued during D2 changing the direction of nappe transport from SW to NW. Enhanced flattening strain in the deeper nappe (Schöckel Nappe) led to recumbent folds in all scales during D2. This study emphasized two interpretations : (1) The Alpine deformation in the Upper Austro-Alpine nappe pile of the Paleozoic of Graz started in the Earliest Cretaceous (about 125 Ma.). (2) The emplacement of nappes followed a curved translation path in the studied area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号