首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The region around Wadakkancheri, Trichur District, Kerala is known for microseismic activity, since 1989. Studies, subsequent to 2nd December 1994 (M =4.3) earthquake, identified a south dipping active fault (Desamangalam Fault) that may have influenced the course of Bharathapuzha River. The ongoing seismicity is concentrated on southeast of Wadakkancheri and the present study concentrated further south of Desamangalam Fault. The present study identifies the northwestern continuity of NW–SE trending Periyar lineament, which appears to have been segmented in the area. To identify the subtle landform modifications induced by ongoing tectonic adjustments, we focused on morphometric analysis. The NW–SE trending lineaments appear to be controlling the sinuosity of smaller rivers in the area, and most of the elongated drainage basins follow the same trend. The anomalies shown in conventional morphometric parameters, used for defining basins, are also closely associated with the NW–SE trending Periyar lineament/s. A number of brittle faults that appear to have been moved are consistent with the present stress regime and these are identified along the NW–SE trending lineaments. The current seismic activities also coincide with the zone of these lineaments as well as at the southeastern end of Periyar lineament. These observations suggest that the NW–SE trending Periyar lineaments/faults may be responding to the present N–S trending compressional stress regime and reflected as the subtle readjustments of the drainage configuration in the area.  相似文献   

2.
This paper examines the morphotectonic and structural–geological characteristics of the Quaternary Martana Fault in the Umbria–Marche Apennines fold‐and‐thrust belt. This structure is more than 30 km long and comprises two segments: a N–NNW‐trending longer segment and a 100°N‐trending segment. After developing as a normal fault in Early Pleistocene times, the N–NNW Martana Fault segment experienced a phase of dextral faulting extending from the Early to Middle Pleistocene boundary until around 0.39 Ma, the absolute age of volcanics erupted in correspondence to releasing bends. The establishment of a stress field with a NE–ENE‐trending σ3 axis and NW–NNW σ1 axis in Late Pleistocene to Holocene times resulted in a strong component of sinistral faulting along N–NNW‐trending fault segments and almost pure normal faulting on newly formed NW–SE faults. Fresh fault scarps, the interaction of faulting with drainage systems and displacement of alluvial fan apexes provide evidence of the ongoing activity of this fault. The active left‐lateral kinematic along N–NNW‐trending fault segments is also revealed by the 1.8 m horizontal offset of the E–W‐trending Decumanus road, at the Roman town of Carsulae. We interpret the present‐day kinematics of the Martana Fault as consistent with a model connecting surface structures to the inferred north‐northwest trending lithospheric shear zone marking the western boundary of the Adria Plate. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The Bentong‐Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the major structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana‐derived Sibumasu terrane in the west and Sukhothai Arc in the east. The BRSZ is genetically related to the sediment‐hosted/orogenic gold deposits associated with the major lineaments in the Central Gold Belt of Peninsular Malaysia. In this investigation, the Phased Array type L‐band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to map major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and curvilinear structures in the BRSZ, as well as their implication for sediment‐hosted/orogenic gold exploration in tropical environments. Major structural lineaments such as the Bentong‐Raub Suture Zone (BRSZ) and Lebir Fault Zone, ductile deformation related to crustal shortening, brittle disjunctive structures (faults and fractures) and collisional mountain range (Main Range granites) were detected and mapped at regional scale using PALSAR ScanSAR data. The major geological structure directions of the BRSZ were N–S, NNE–SSW, NE–SW and NW–SE, which derived from directional filtering analysis to PALSAR fine and polarimetric data. The pervasive array of N–S faults in the Central Gold Belt and surrounding terrain is mainly linked to the N–S trending of the Suture Zone. N–S striking lineaments are often cut by younger NE–SW and NW–SE‐trending lineaments. Gold mineralized trend lineaments are associated with the intersection of N–S, NE–SW, NNW–SSE and ESE–WNW faults and curvilinear features in shearing and alteration zones. Compressional tectonic structures such as the NW–SE trending thrust, ENE–WSW oriented faults in mylonite and phyllite, recumbent folds and asymmetric anticlines in argillite are high potential zones for gold prospecting in the Central Gold Belt. Three generations of folding events in Peninsular Malaysia have been recognized from remote sensing structural interpretation. Consequently, PALSAR satellite remote sensing data is a useful tool for mapping major geological structural features and detailed structural analysis of fault systems and deformation areas with high potential for sediment‐hosted/orogenic gold deposits and polymetallic vein‐type mineralization along margins of Precambrian blocks, especially for inaccessible regions in tropical environments.  相似文献   

4.
The Cotswold Hills, southwest UK, are properly described as a cuesta, with a steep, west-facing scarp slope and a plateau-like dip slope. Drainage reflects this surface morphology, with most rivers flowing southeast along topographic and stratigraphic dip. Here, we compare two superficially highly similar rivers – the Frome and Churn – whose sources are nearly coincident, but whose behaviour dramatically diverges thereafter. We examine longitudinal profiles, channel steepness, predicted discharge, and valley shapes, using digital topographic data. River discharge and water hardness/temperature values were obtained at seven sites on the Churn and nine on the Frome over a two-year sampling campaign, delineated into summer and winter phases. Nearly 100 borehole records were interrogated from the two catchments in order to assess groundwater level variations. The Frome, flowing west against regional dips, develops a steep course and has carved a deep and wide valley that exposes the full sequence of Cotswold Jurassic stratigraphy. On the other hand, discharge and channel gradients are lower for the dip-slope Churn, whose valley exposes less stratigraphy and fewer springs. Our measurements of river water hardness and temperature suggest that a greater proportion of groundwater flows into the Frome, regulating discharge and maintaining baseflow over summer. We suggest that flank uplift of the Cotswolds is at least part of the reason for the higher incision rates of the River Frome, leading to its intersecting a greater number of highly transmissive fractures that contribute to its discharge. In turn, the increased discharge could positively impact local incision rates.  相似文献   

5.
Several new active fault traces were identified along Katrol Hill Fault (KHF). A new fault (named as Bhuj Fault, BF) that extends into the Bhuj Plain was also identified. These fault traces were identified based on satellite photo interpretation and field survey. Trenches were excavated to identify the paleoseismic events, pattern of faulting and the nature of deformation. New active fault traces were recognized about 1km north of the topographic boundary between the Katrol Hill and the plain area. The fault exposure along the left bank of Khari River with 10m wide shear zone in the Mesozoic rocks and showing displacement of the overlying Quaternary deposits is indicative of continued tectonic activity along the ancient fault. The E-W trending active fault traces along the KHF in the western part changes to NE-SW or ENE-WSW near Wandhay village. Trenching survey across a low scarp near Wandhay village reveals three major fault strands F1, F2, and F3. These fault strands displaced the older terrace deposits comprising Sand, Silt and Gravel units along with overlying younger deposits from units 1 to 5 made of gravel, sand and silt. Stratigraphic relationship indicates at least three large magnitude earthquakes along KHF during Late Holocene or recent historic past.  相似文献   

6.
Two major river systems operated in southern and eastern England throughout the Pleistocene: the river Thames and the Solent river. Both rivers are axial streams of comparable size draining major basinal structures comprising similar Tertiary and Mesozoic rocks. Although the modem Thames flows broadly W-E in the London Basin, upstream of Reading it flows from the north to drain the south Midlands. It was diverted to its present course through London by glaciation in the Anglian (Elsterian) before which it flowed across East Anglia into the southem North Sea. The Solent river no longer exists since most of its course was drowned by eustatic sea-level rise during the Flandrian Stage (Holocene). Previously, it flowed eastwards across SE Dorset and S Hampshire as an extension of the modem river Frome in the Hampshire Basin. During periods of low sea-level (cold stages) it was a tributary of the 'Channel River'. Fluvial aggradations provide evidence of the former courses of these substantial rivers and their tributaries. The facies and sedimentary structures indicate that the bulk of the deposits in both systems accumulated in braided river environments under periglacial climates. Fossiliferous sediments provide biostratigraphical frameworks. During temperate periods the rivers adopted singlethread courses. Evolution of both rivers reflect their responses to climatic change, local geological structure and long-term tectonic activity. Both rivers are undoubtedly of considerable antiquity, their records potentially extend from the Early Pleistocene or Late Pliocene, but they may have originated in the early Tertiary.  相似文献   

7.
The Indosinian Orogeny in Thailand is often viewed as having developed between strongly linear terranes, which today trend approximately N–S. The terranes were subsequently disrupted by later tectonics, particularly NW–SE trending Cenozoic strike-slip faults. The ENE–WSW to NE–SW striking thrusts and folds in the Khao Khwang Platform area of the Saraburi Group on the SW margin of the Indochina Terrane are not easily explained in the context of this traditional view. Reversal of the clockwise rotation shown to have affected the block north of the Mae Ping Fault zone only enhances the E–W orientation of structures in the fold and thrust belt, and moves the belt further east towards Cambodia. One solution for the trend that fits better with regional understanding from hydrocarbon exploration of the Khorat Plateau is that the Indochina Terrane was actually a series of continental blocks, separated by Permian rifting. During the Early Triassic the early stages of collision (South China-Cathaysian Terrane collision with Vietnam Indochina) resulted in the amalgamation of disparate blocks that now form the Indochina Terrane by closure along the rifts. At the same time or following on from the collision there was closure of the back-arc area between Indochina and the Sukhothai zone. The rift basins, were thrusted and inverted during the early stages of the Indosinian orogeny, and only underwent minor reactivated when later Sibumasu collided with Sukhothai Zone-Indochina Terrane margin during the Late Triassic. The scenario described above requires the presence of a (minor) E–W trending suture in NW Cambodia. Evidence for this suture is suggested by the presence of Permo-Triassic calc-alkaline volcanism.  相似文献   

8.
The Bundelkhand massif, located in the northern part of the Indian shield, is a poly-deformed and poly-metamorphic terrain. This paper reports a new shear system developed throughout the massif in the form of N–S trending quartz veins that are sometimes quartzo-feldspathic and rarely granitic in composition. The veins are vertical and commonly occur in conjugate sets. This tectono-magmatic event appears to represent the youngest shear system of the massif as it cross-cuts all the earlier shear systems (E–W, NE–SE and NW–SE). Emplacement of this N–S vein system may have taken place due to extensional processes that developed some cracks along which siliceous magma was vertically emplaced. The complete absence of signature of the N–S event from the surrounding sedimentary cover of Vindhyan Supergroup, Bijawar and Gwalior Groups suggests that this shear system is pre-tectonic to the nearly E–W trending passive basins developed at the margins of the Bundelkhand craton. Further, several workers have considered the Bundelkhand massif as a part of the Aravalli craton. However, due to the absence of N–S, as well as the other (i.e., E–W, NW–SE and NW–SE), tectonic fabrics of the Bundelkhand massif in other cratons of the Peninsular India, and vice versa, makes the Bundelkhand block a separate and unique craton of its own and is not part of the Aravalli craton.  相似文献   

9.
The Wadi Fatira area occurs at the southern margin of the Northern Eastern Desert (NED) of Egypt and is occupied by highly sheared metavolcanics tectonically alternated with banded iron formations and intruded by Barud tonalite–granodiorite, post-tectonic gabbroic and granitic intrusions. Detailed structural investigation showed that the schists and migmatitic amphibolites are formed by shearing in metavolcanics and syntectonic Barud tonalite–granodiorite due to movement along the Wadi Fatira shear zone (WFSZ). This shear zone starts as a NW–SE striking fault along Wadi Barud Al Azraq and the Eastern part of Wadi Fatira and turns to a E–W trending fault to the north of Wadi Fatira. Microstructural shear sense indicators such as asymmetric geometry of porphyroclasts such as σ-type and asymmetric folds deforming fine-grained bands which are frequently found around porphyroclasts indicate sinistral sense of shearing along the WFSZ. This shear zone is characterized by transitions from local convergence to local extension along their E–W and NW–SE trending parts, respectively. The NW–SE part of the WFSZ is of about 200 m in width and characterized by synmagmatic extensional features such as intrusion of synkinematic tonalite, creation of NE–SE trending normal faults, and formation of migmatitic amphibolites and schlieric tonalites. This part of the shear zone is metamorphosed under synthermal peak metamorphic conditions (725°C at 2–4 kbar). The E–W compressional part of the WFSZ is up to 3 km in width and composed of hornblende, chlorite, actinolite, and biotite schists together with sheared intermediate and acidic metatuffs. Contractional and transpressional structures in this part of the WFSZ include E–W trending major asymmetrical anticline and syncline, nearly vertical foliation and steeply pitching stretching lineations, NNE dipping minor thrusts, and minor intrafolial folds with their hinges parallel to the stretching lineation. PT estimates using mineral analyses of plagioclase and hornblende from schists and foliated metavolcanics indicate prograde metamorphism under medium-grade amphibolite facies (500–600°C at 3–7 kbar) retrogressed to low-grade greenschist facies (227–317°C). The foliation in Barud tonalite–granodiorite close to the E–W part of the WFSZ runs parallel to the plane of shearing and the tonalite show numerous magmatic flow structures overprinted by folding and ductile shearing. The WFSZ is similar to structures resulted from combined simple shear and orthogonal shortening of oblique transpressive shear zones and their sense of movement is comparable with the characteristics of the Najd Fault System.  相似文献   

10.
The SW part of the Baltic Sea between Scania, Rügen, Bornholm and Mön constitutes a complex crustal transition between the Baltic Shield and the accreted Phanerozoic provinces of the West European Platform. An integrated interpretation of marine reflection seismic data sets from the BABEL AC line and two commercial surveys offshore NE Germany and S Sweden have resulted in a complete view of the structural framework in the area. The general seismic picture can best be detected by two characteristic sets of reflection phases. The lower set is dominated by slightly dipping and vertically displaced prominent reflectors corresponding to downfaulted Lower Palaeozoic strata on top of the Precambrian basement. The upper set represents Mesozoic and Cenozoic coherent reflection phases including a thick Upper Cretaceous unit. The Caledonian deformation front is identified in the southern part of the investigated area as the border against which basement rocks have been affected by Caledonian metamorphism and deformation. Major structural elements also include the N–S trending Agricola–Svedala Fault and North Rügen-Skurup Fault. Several NW–SE trending faults are also identified including the Nordadler–Kamien Fault, Jutland–Mön Fault, Carlsberg Fault, Romeleåsen Fault Zone and the Fyledalen Fault Zone. The sedimentary record from NE German offshore wells and Scanian boreholes is compared with the seismic data. The Cambro-Silurian strata are composed mainly of quartzitic sandstones, shales and biomicritic limestones. The Silurian is dominated by grey, micaceous shale and micaceous siltstone deposited in a marginal basin. Upper Palaeozoic strata are merely encountered in the southernmost part of the investigated area. These include Zechstein strata. The Mesozoic deposits are dominated by a thick Cretaceous sequence of mainly limestones with interbedded sandstones.  相似文献   

11.
We have identified a 50-km-long active fault scarp, called herewith the Lourdes Fault, between the city of Lourdes and Arette village in the French Pyrénées. This region was affected by large and moderate earthquakes in 1660 (Io = VIII–IX, MSK 64,), in 1750 (Io = VIII, MSK 64) and in 1967 (Md = 5.3, Io = VIII, MSK 64). Most earthquakes in this area are shallow and the few available focal mechanism solutions do not indicate a consistent pattern of active deformation. Field investigations in active tectonics indicate an East–West trending and up to 50-m-high fault scarp, in average, made of 3 contiguous linear fault sub-segments. To the north, the fault controls Quaternary basins and shows uplifted and tilted alluvial terraces. Deviated and abandoned stream channels of the southern block are likely due to the successive uplift of the northern block of the fault. Paleoseismic investigations coupled with geomorphic studies, georadar prospecting and trenching along the fault scarp illustrate the cumulative fault movements during the late Holocene. Trenches exhibit shear contacts with flexural slip faulting and thrust ruptures showing deformed alluvial units in buried channels. 14C dating of alluvial and colluvial units indicates a consistent age bracket from two different trenches and shows that the most recent fault movements occurred between 4221 BC and 2918 BC. Fault parameters and paleoseismic results imply that the Lourdes Fault and related sub-segments may produce a MW 6.5 to 7.1 earthquake. Fault parameters imply that the Lourdes Fault segment corresponds to a major seismic source in the western Pyrénées that may generate earthquakes possibly larger than the 1660 historical event.  相似文献   

12.
The Pliocene-early Pleistocene history of the ancestral Rio Grande and Quaternary history of the Rio Mimbres in the southern Rio Grande rift, New Mexico, illustrate how axial rivers may alternately spill into and subsequently abandon extensional basins. Three types of spillover basins are recognized, based on the angle at which the axial river enters the basin and whether it descends the hanging wall dip slope or footwall scarp to reach the basin floor. In the Mimbres basin type, the axial river enters and flows through the spillover basin nearly parallel to the footwall scarp, resulting in a narrow belt of basin-axis-parallel channel sand bodies located near the footwall scarp. In contrast, an axial river may enter a spillover basin at a high angle to its axis, either descending the hanging wall dip slope (Columbus basin type) or footwall scarp (Tularosa basin type), and construct a fluvial fan, consisting of radiating distributary channels orientated nearly perpendicular to the basin axis. Faulting exerts significant control on river spillover by creating the topographic gaps through which the axial river moves and by terminating spillover by subsequently uplifting or tilting the gap. Spillover may also be autocyclic in origin as a result of aggradation to the level of a pre-existing gap, headward erosion creating and/or intersecting a gap, or simple river avulsion upstream of a gap. Predicting facies architecture in the three types of spillover basins is critical to successful subsurface exploration for hydrocarbon reservoirs, groundwater aquifers or placer mineral deposits.  相似文献   

13.
辽宁五龙金矿为大型石英脉型矿床,主要是断裂构造控矿;其矿体主要赋存于近SN、NW向断裂组成的格子状构造中。随着开采量的增加,该矿步入危机矿山行列,如何解决五龙金矿找矿问题,已迫在眉睫。本文结合两个方向构造所控制的矿体实例,论述辽宁五龙金矿近SN向与NW向控矿构造的特征及其对成矿的控制作用;总结出近SN向构造控矿规律是平...  相似文献   

14.
Nyankanga is the largest gold deposit in the Geita Greenstone Belt of the northern Tanzania Craton. The deposit is hosted within an Archean volcano-sedimentary package dominated by ironstones and intruded by a large diorite complex, the Nyankanga Intrusive Complex. The supracrustal package is now included within the intrusive complex as roof pendants. The ironstone fragments contain evidence of multiple folding events that occurred prior to intrusion. The supracrustal package and Nyankanga Intrusive Complex are cut by a series of NE–SW trending, moderately NW dipping fault zones with a dominant reverse component of movement but showing multiple reactivation events with both oblique and normal movement components. The deposit is cut by a series of NW trending strike slip faults and ~ E–W trending late normal faults. The Nyankanga Fault Zone is a major NW dipping deformation zone developed mainly along the ironstone–diorite contacts that is mineralised over its entire length. The gold mineralization is hosted within the damage zone associated with Nyankanga Fault Zone by both diorite and ironstone with higher grades typically occurring in ironstone. Ore shoots dip more steeply than the Nyankanga Fault Zone. The mineralization is associated with sulfidation fronts and replacement textures in ironstones and is mostly contained as disseminated sulphides in diorite. The close spatial relationship between gold mineralization and the ironstone/diorite contact suggests that the reaction between the mineralising fluid and iron rich lithotypes played an important role in precipitating gold. Intense brecciation and veining, mainly in the footwall of Nyankanga Fault Zone, indicates that the fault zone increased permeability and allowed the access of mineralising fluids. The steeper dip of the ore shoots is consistent with mineralization during normal reactivation of the Nyankanga Fault Zone.  相似文献   

15.
During the Late Cretaceous, high global sea‐level meant that most of the NW European craton was flooded by the deep epeiric ‘chalk sea’. The classical paradigm for chalk deposition envisages a quiet rain of minute skeletal debris of coccolithophorid algae and other pelagic organisms deposited as horizontal, flat‐lying pelagic oozes with local redeposition by slumps, slides and debris flows along faults and other structural features. Seismic data from the Danish Basin and elsewhere necessitate a revision of this paradigm. These demonstrate that the chalk sea floor had a considerable relief, commonly of more than a hundred metres amplitude, comprising moats, drifts, mounds and channels. Seismic sections from the Kattegat sea illustrate the development in the Maastrichtian of a deep moat adjacent to a topographic ridge formed over the inverted NW–SE‐trending Sorgenfrei–Tornquist Zone. The moat was up to 120 m deeper than its SW flank which was formed by an internally complex elongate drift, up to 20 km wide with an estimated length of ca 200 km. Smaller mound‐like features, channels and clinoform beds are superimposed on the large‐scale relief. The sea floor relief is interpreted to have formed in response to persistent bottom currents, flowing parallel to bathymetric contours. The initial build‐up of the broad, gently convex‐up sheeted drift was controlled by relatively low‐velocity bottom currents. The region of highest current velocity was gradually shifted NE‐wards towards the inversion zone ridge, resulting in the formation of the deep moat flanked by the elongate drift. The current is interpreted to have flowed from the SE towards NW on the basis of the internal architecture of the elongate drift and the NW‐ward branching and decrease in moat relief. The architecture and morphology of the moat drift and other features of the chalk sea floor are in all aspects similar to contourite systems of modern continental margins. It is accordingly proposed that the fundamental physical oceanographic concept – contour currents and their resulting contourite drifts – is extended to include the deep epeiric seas which covered NW Europe during the Late Cretaceous.  相似文献   

16.
SRTM (Shuttle Radar Topographic Mission), Landsat ETM+ satellite image analysis along with earthquake data in the Jia Bhareli river catchment, an eastern Himalayan tributary of the Brahmaputra indicates neotectonic activities in the region. We have envisaged from the study that the western part of the river catchment (western tectonic domain) is highly tectonically active as indicated by earthquake data, and SRTM DEM-derived longitudinal profiles, valley profiles, valley asymmetry, hypsometric integral values. On the other hand, the eastern part of the catchment has no sign of such active tectonics (eastern tectonic domain) except the south convex fan-shaped zone further east with linear ridges paralleling the convex shape deforming the Miocene–Pleistocene Siwalik sediments and the Quaternary piedmont deposits in the Himalayan foothills. The catchment seems tilting to the east due to the ongoing tectonic activities propagating the deformational activities, generating folded structures, to the east and yielding earthquakes due to rigid deformation in the western part of the catchment. From the study, seismic risk in the south–central part of eastern Himalayas around Bomdila in the state of Arunachal Pradesh appears to be high.  相似文献   

17.
The Aravalli Range runs southwest from Delhi for a distance of about 700 km. Its western margin is well defined, but the eastern margin is diffuse. Five geomorphic provinces are recognized in the study area: the western piedmont plains; the ridge and valley province which in the Central Aravallis occurs at two different heights separated by a fault scarp; the plateau province demarcated from the former by a fault scarp, confined to the Southern Aravallis, and occurring for a short stretch at two heights across another fault scarp; the BGC rolling plains east of the Range; and the BGC uplands south of the above. The scarps coincide with Precambrian faults. A series of rapids and water-falls, together with deeply entrenched river courses across the scarps and the youthful aspects of the escarpments with no projecting spurs, or straight river courses along their feet, all point unmistakably to a recent or post-Neogene vertical uplift along pre-existing faults. Presence of knickpoints at a constant distance from the Range in all west-flowing rivers, the ubiquitous terraces, and river courses entrenched within their own flood-plain deposits of thick gritty to conglomeratic sand, are indicative of a constant disturbance with a gradual rise of the Range east of the knickpoint, wherefrom the coarse materials were carried by the fast west-flowing streams. There is a differential uplift across the plateau scarp together with a right-lateral offset.This epeirogenic tectonism is ascribed to the collision of the Eurasian and the subducting Indian plates and to a locking of their continental crusts. By early Pleistocene, with the MBT gradually dying off, continued plate movement caused a flexural bending of the plate by a moment generated at the back, and a possible delinking of the continental crust along the zone of subduction. The felexural bending ripped open the Precambrian regional faults. The differential uplift and the difference in the distances of the nodes on two sides of the major reactivated fault were possibly caused by a difference in the values of the flexural rigidity and the foundation modulus owing to a slight compositional difference of the constiuent rocks in the two sectors.  相似文献   

18.
The Lower Galilee and the Yizre'el Valley, northern Israel, are an extensional domain that has been developing since the Miocene, prior and contemporaneously to the development of the Dead Sea Fault (DSF). It is a fan-shaped region bounded in the east by the N–S trending main trace of the DSF, in the north by the Bet-Kerem Fault system, and in the south by the NW–SE trending Carmel Fault. The study area is characterized by high relief topography that follows fault-bounded blocks and flexures at a wavelength of tens of km. A synthesis of the morphologic–structural relations across the entire Galilee region suggests the following characteristics: (1) Blocks within the Lower Galilee tilt toward both the southern and northern boundaries, forming two asymmetrical half-graben structures, opposite facing, and oblique to one another. (2) The Lower Galilee's neighboring blocks, which are the Upper Galilee in the north and the Carmel block in the southwest, are topographically and structurally uplifted and tilted away from the Lower Galilee. (3) The southern half-graben, along the Carmel Fault, is topographically and structurally lower than the northern one. Combining structural and geological data with topographic analysis enables us to distinguish several stages of structural and morphological development in the region. Using a semi-quantitative evolutionary model, we explain the morpho-structural evolution of the region. Our results indicate that the Galilee developed as a set of two isostatically supported opposite facing half-grabens under varying stress fields. The southern one had started developing as early as the early Miocene prior to the formation of the DSF. The northern and younger one has been developing since the middle Pliocene as part of the extension process in the Galilee. Elevation differences between the two half-grabens and their bounding blocks are explained by differences in isostatic subsidence due to sedimentary loading and uplift of the northern half-graben due to differential influences of the regional folding.  相似文献   

19.
The Kutai Basin formed in the middle Eocene as a result of extension linked to the opening of the Makassar Straits and Philippine Sea. Seismic profiles across the northern margin of the Kutai Basin show inverted middle Eocene half-graben oriented NNE–SSW and N–S. Field observations, geophysical data and computer modelling elucidate the evolution of one such inversion fold. NW–SE and NE–SW trending fractures and vein sets in the Cretaceous basement have been reactivated during the Tertiary. Offset of middle Eocene carbonate horizons and rapid syn-tectonic thickening of Upper Oligocene sediments on seismic sections indicate Late Oligocene extension on NW–SE trending en-echelon extensional faults. Early middle Miocene (N7–N8) inversion was concentrated on east-facing half-graben and asymmetric inversion anticlines are found on both northern and southern margins of the basin. Slicken-fibre measurements indicate a shortening direction oriented 290°–310°. NE–SW faults were reactivated with a dominantly dextral transpressional sense of displacement. Faults oriented NW–SE were reactivated with both sinistral and dextral senses of movement, leading to the offset of fold axes above basement faults. The presence of dominantly WNW vergent thrusts indicates likely compression from the ESE. Initial extension during the middle Eocene was accommodated on NNE–SSW, N–S and NE–SW trending faults. Renewed extension on NW–SE trending faults during the late Oligocene occurred under a different kinematic regime, indicating a rotation of the extension direction by between 45° and 90°. Miocene collisions with the margins of northern and eastern Sundaland triggered the punctuated inversion of the basin. Inversion was concentrated in the weak continental crust underlying both the Kutai Basin and various Tertiary basins in Sulawesi whereas the stronger oceanic crust, or attenuated continental crust, underlying the Makassar Straits, acted as a passive conduit for compressional stresses.  相似文献   

20.
The Asturian Arc was produced in the Early Permian by a large E–W dextral strike–slip fault (North Iberian Megashear) which affected the Cantabrian and Palentian zones of the northeastern Iberian Massif. These two zones had previously been juxtaposed by an earlier Kasimovian NW–SE sinistral strike–slip fault (Covadonga Fault). The occurrence of multiple successive vertical fault sets in this area favoured its rotation around a vertical axis (mille-feuille effect). Along with other parallel faults, the Covadonga Fault became the western margin of a proto-Tethys marine basin, which was filled with turbidities and shallow coal-basin successions of Kasimovian and Gzhelian ages. The Covadonga Fault also displaced the West Asturian Leonese Zone to the northwest, dragging along part of the Cantabrian Zone (the Picos de Europa Unit) and emplacing a largely pelitic succession (Palentian Zone) in what would become the Asturian Arc core. The Picos de Europa Unit was later thrust over the Palentian Zone during clockwise rotation. In late Gzhelian time, two large E–W dextral strike–slip faults developed along the North Iberian Margin (North Iberian Megashear) and south of the Pyrenean Axial Zone (South Pyrenean Fault). The block south of the North Iberian Megashear and the South Pyrenean Fault was bent into a concave, E-facing shape prior to the Late Permian until both arms of the formerly NW–SE-trending Palaeozoic orogen became oriented E–W (in present-day coordinates). Arc rotation caused detachment in the upper crust of the Cantabrian Zone, and the basement Covadonga Fault was later resurrected along the original fault line as a clonic fault (the Ventaniella Fault) after the Arc was completed. Various oblique extensional NW–SE lineaments opened along the North Iberian Megashear due to dextral fault activity, during which numerous granitic bodies intruded and were later bent during arc formation. Palaeomagnetic data indicate that remagnetization episodes might be associated with thermal fluid circulation during faulting. Finally, it is concluded that the two types of late Palaeozoic–Early Permian orogenic evolution existed in the northeastern tip of the Iberian Massif: the first was a shear-and-thrust-dominated tectonic episode from the Late Devonian to the late Moscovian (Variscan Orogeny); it was followed by a fault-dominated, rotational tectonic episode from the early Kasimovian to the Middle Permian (Alleghenian Orogeny). The Alleghenian deformation was active throughout a broad E–W-directed shear zone between the North Iberian Megashear and the South Pyrenean Fault, which created the basement of the Pyrenean and Alpine belts. The southern European area may then be considered as having been built by dispersal of blocks previously separated by NW–SE sinistral megashears and faults of early Stephanian (Kasimovian) age, later cut by E–W Early Permian megashears, faults, and associated pull-apart basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号