首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessment of soil loss through Sediment Yield Index (SYI) is important for watershed planning, prioritization, and development. In the absence of measured sediment data, SYI expressing the relative sediment yield from different basins work as a basis for grading another basin to adopt erosion control measures. An attempt was made to evaluate SYI in wider scale by using cost-effective tools like remote sensing and geographical information system (GIS). SYI was calculated for Madia subwatershed, which consists of 29 microwatersheds and located in Sagar District, Madhya Pradesh (M.P.) The IRS LISS III data and Shuttle Radar Topography Mission (SRTM) digital elevation models (DEM) of 90-m resolution were used to identify land use characteristics and geomorphometric analysis. Major land use was observed as agricultural land (24.7 %), water bodies (16.7 %), forest area (10.2 %), and settlement (21.3 %). In categorization, similar overall accuracy was observed for dense forest, barren land, settlement, and water bodies. The highest SYI with a value more than 20 was observed in microwatershed Mw6, Mw7, and Mw24, which comprises 33 % of the total watershed area. It gives the information about the watershed area that requires very high priority.  相似文献   

2.
Manganese silicate rocks, interbanded with manganese oxide orebodies, constitute an important stratigraphic horizon in the Mansar formation of the Sausar Group of Precambrian age in India. The manganese silicate rocks of Gowari Wadhona occupy the westernmost flank of the manganese belt of the Sausar Group. These rocks are constituted of spessartite, calcium-rich rhodonite, quartz, manganoan diopside, blanfordite (manganese bearing member of diopside-acmite series), brown manganese pyroxene (manganese bearing aegirine-augite), winchite (manganese bearing richterite-tremolite), juddite (manganese bearing amphibole with richterite, tremolite, magnesioriebeckite and glaucophane molecules), tirodite (manganese bearing amphibole with richterite, cummingtonite and glaucophane molecules), manganophyllite, alurgite, piedmontite, braunite, hollandite (and other lower oxides of manganese) with minor apatite, plagioclase, calcite, dolomite and microcline. A complete mineralogical account of the manganese-bearing phases has been given in the text. It has been shown that the juxtaposition of manganese silicate rocks with dolomitic marble, regional metamorphism to almandine-amphibolite facies and assimilation of pegmatite veins cutting across the manganese formation, were responsible for the development of these manganese silicate rocks and the unusual chemical composition of some of the constituent minerals. It has been concluded that the manganese silicate rocks of Gowari Wadhona were originally laid down as sediments comprising manganese oxides admixed with clay, silica etc. and were later regionally metamorphosed to almandine-amphibolite facies. All evidences indicate that rhodochrosite was not present in the original sediment and the bulk composition of the sediments was rich in manganese. These rocks agree entirely to the detailed nomenclature of the gondites enunciated by Fermor (1909) and amplified by Roy and Mitra (1964) and Roy (1966).  相似文献   

3.
A concrete study combining optical microscopy, Raman spectroscopy and X-ray diffractometry, was carried out on subsurface samples of basement granite and melt breccia from Mohar (Dhala) impact structure, Shivpuri district, Madhya Pradesh, India. Optical microscopy reveals aberrations in the optical properties of quartz and feldspar in the form of planar deformation feature-like structures, lowered birefringence and mosaics in quartz, toasting, planar fractures and ladder texture in alkali feldspar and near-isotropism in bytownite. It also brings to light incidence of parisite, a radioactive rare mineral in shocked granite. Raman spectral pattern, peak positions, peak widths and multiplicity of peak groups of all minerals, suggest subtle structural/crystallographic deviations. XRD data further reveals minute deviations of unit cell parameters of quartz, alkali feldspar and plagioclase, with respect to standard \({\upalpha }\)-quartz, high- and low albite and microcline. Reduced cell volumes in these minerals indicate compression due to pressure. The \(\hbox {c}_{0}/\hbox {a}_{0}\) values indicate an inter-tetrahedral angle roughly between \(120^{\mathrm{o}}\) and \(144^{\mathrm{o}}\), further pointing to a possible pressure maxima of around 12 GPa. The observed unit cell aberration of minerals may indicate an intermediate stage between crystalline and amorphous stages, thereby, signifying possible overprinting of decompression signatures over shock compression effects, from a shock recovery process.  相似文献   

4.
A circular structure, termed as cauldron of volcanic origin, was located near Mohar village in Shivpuri district (M.P.) in the year 2000. Subsequently, the same structure was called as Dhala structure of impact origin. There may be debate over the origin and evolution of this circular structure, but it is characterized by a unique lithological set-up within the Bundelkhand craton. The circular structure is defined by annular disposition of igneous and sedimentary rocks. This includes a set of felsic volcanic rocks and associated breccias named as Mohar Formation, exposed in the outer rim of the circular structure. The inner part of the circular structure has sedimentary sequence, termed as Dhala Formation.The field relations indicate that the Mohar and Dhala foarmations are younger than Bundelkhand granitoid complex but older than Kaimur Group. This period in Indian stratigraphy corresponds to Semri Group which consists of Porcellanite Formation, the rocks of which have formed due to deposition of volcanic ash.The geochronological data and field relations between different litho-units indicate that the Mohar volcanism which generated large volume of volcanic ash was a possible source for the formation of Porcellanite Formation. The deposition of sedimentary sequence in main Vindhyan basin was continued, whereas the volcanic activity in Mohar area continued till H ≈ 1.0 Ga. Since, acid volcanic activity has been reported in different parts of the world at H ≈ 1.0 Ga., it is possible that the Mohar acid volcanic activity is not an isolated event; instead it may be a part of global volcanic activities around H ≈ 1.0 Ga.  相似文献   

5.
The present study was carried out in Singrauli area of the north India to know the water quality at selected sites. Physico-chemical parameters like pH, total dissolved solids (TDS), bicarbonate, hardness, calcium, magnesium, sodium, potassium, chloride, sulfate, copper, iron, cobalt, manganese, zinc, and chromium were analyzed in 27 water samples. Locations selected for sampling were based on the preliminary field survey carried out to understand the overall impact of mining and industrialization on the surface and groundwater resources of Singrauli. Base map, drainage map, and land use/land cover of the study area were prepared from Survey of India topographic map 63 L/12 on 1:50000 scale and satellite data of IRS P6 LISS III 4th May 2010. Land use were categorized into 15 categories out of which major area occupied by open forest covers 20.33 %, uncultivated land 20.25 %, cultivated land 12.60 %, dense forest 11.00 %, and other categories cover 35.82 %. The results obtained are compared with World Health Organisation standards for drinking water quality. The physico chemical analysis shows alkaline nature of water, soft to moderately soft, TDS and total alkalinity exceeds the desirable limit. The major ions in water like calcium, and magnesium are within desirable limits, and sulfate and potassium exceed in limit at some locations, whereas sodium and chloride show higher values. The minor ions like copper and zinc show values within desirable limits whereas iron, cobalt, and chromium show higher values than the desirable limits which deteriorate the quality of water.  相似文献   

6.
The paper presents the uranium (U) concentration and distribution pattern in the Paleoproterozoic phosphorites of Lalitpur district of Uttar Pradesh. The study of thin sections, SEM and XRD reveal that apatite is the essential phosphate mineral while quartz and feldspars are the dominant gangue in the phosphorites of the investigated area. The collophane is observed to be mostly oolitic in form and microspherulitic in texture. The major element geochemistry indicated that the phosphorite samples are rich in P2O5, CaO, SiO2 and Fe2O3 whereas depletion of MgO, MnO, K2O and Al2O3 was observed. The CaO/P2O5 ratio ranges from 1.13 to 1.46 which is slightly lower than that of cations and anions substituted francolite (1.621) and close to that of carbonate-fluorapatite (1.318). The trace element geochemistry indicates that the phosphorites of Lalitpur have the significant range of U concentration (1.67 to 129.67 μg/g) which is more than that of Th (0.69 to 0.09 μg/g) among the analysed trace elements in the phosphorite samples of the area. The positive correlation of U with P2O5, CaO and U/P2O5 indicates a close association of U with phosphate minerals like collophane (apatite), whereas negative correlation of U with SiO2 and Fe2O3 may be due to mutual replacement. The antipathetic relationship of U with Ni may be an indication of high oxidizing conditions, whereas sympathetic relationship of U with K2O points towards higher alkaline conditions of the basin of deposition during phosphatization. The variable concentration of U and its relationship with significant major and trace elements in most of the phosphorite samples lead one to believe that the deposition of these phosphorites might have taken place in highly alkaline medium during fairly oxidizing to weakly reducing environmental conditions of geosynclinal basin.  相似文献   

7.
The Elchuru alkaline igneous intrusion is an arcuate-shaped ring complex, approximately 16 km2 in area, cropping out in the Eastern Ghats high grade metamorphic series. It is part of an alkaline province composed of a number of intrusions which range from ijolite-melteigite to alkali gabbro (viz. malignite, melalusitanite, shonkinite) and then to hypersolvus nepheline syenite followed by subsolvus nepheline syenite. The complex is cut by late lamprophyric dykes. A nephelinized alkaline gneiss, within the investigated complex, is the only deformed rock type and is regarded as an older unit not related to the comagmatic series. The remainder of the complex was emplaced post-tectonically. Sovitic carbonatite is a conspicuous Iithologic unit associated with the complex. Chemical analyses of 19 selected samples for 13 major oxides and 5 trace elements (Rb, Ba, Sr, Zr and Nb) are presented to establish a geochemical model for the investigated complex. The mineralogy, petrography and geochemistry of the rocks of the Elchuru Alkaline Complex suggest that it was formed by differentiation of an initially alkali-rich ijolitic magma as reflected in the crystallization of nepheline, kaersutitic amphibole and alkali feldspar. With progressive increase in alkali feldspar content (volume percentage) the ijolite passes to malignite and then nepheline syenites. Amphibole shows sodic enrichment from a dominant calcic variety. Pyroxene, likewise, shows sodic enrichment following the scheme salite-ferrosalite to aegirine-augite. The igneous cycle closes with the intrusion of biotite lamprophyre. There is a systematic increase in total alkalies (Na2O+K2O) and decrease in CaO from the early mafic rocks to the syenitic rocks. The alkali-lime index of the complex is 48 indicating its strongly alkaline nature (Peacock 1931), and they are miaskitic in character (agpaicity index <1, Currie 1976). Such miaskitic complexes are associated with carbonatites (Heinrich 1966).  相似文献   

8.
The aim of the present study is to locate and decipher the groundwater quality,types,and hydrogeochemical reactions,which are responsible for elevated concentration of fluoride in the Chhindwara district in Madhya Pradesh,India.Groundwater samples,quality data and other ancillary information were collected for 26 villages in the Chhindwara District,M.P.India during May 2006.The saturation index was computed for the selected samples in the region,which suggest that generally most of the minerals are saturated with respect to water.The concentration of fluoride in the region varies from 0.6 to 4.74 mg/l,which is much higher as per the national and international water quality standards.The study also reveals that the fluoride bearing rock formations are the main source of the higher concentration of fluoride in groundwater along with the conjuncture of land use change.Moreover,the area is a hard rock terrain and consists of fractured granites and amygdaloidal and highly jointed compact basalt acting as good aquifer,which is probably enriching the high content of fluoride in groundwater.High concentration of fluoride is found in deeper level of groundwater and it is possible due to rock-water interaction,which requires further detailed investigation.The highly alkaline conditions indicate fluorite dissolution,which works as a major process for higher concentration of fluoride in the study area.The results of this study will ultimately help in the identification of risk areas and taking measures to mitigate negative impacts related to fluoride pollution and toxicity.  相似文献   

9.
The Sohagpur coalfield is a remnant of the Son valley basin of Gondwana deposition and can be subdivided into three major subbasins from west to east: Rungta-Amlai, Kotma and Bijuri. Thick coal seams occur in the Barakar Formation (Lower Permian) and are being worked extensively.Petrographic, reflectance, chemical and trace-elemental studies on samples of coal representative of the coal seams of the different subbasins have been carried out, and the results are presented here. Petrographically, the coals of one subbasin are different from those of another subbasin and are mainly composed of vitrinertite I, and vitrinertite V, that alternates with fusite. Vitrite increases in proportion in the coal seams towards the eastern part of the coalfield, and sclerotinite occurs in increased proportion in coal seams towards the western part. The reflectance in oil (Romax) varies from 0.50 to 0.58% in the coals of Rungta-Amlai, 0.46–0.56% in Kotma, and 0.53–1.05% in Bijuri subbasins. Chemically, the coals belong to type High Volatile Symbol B 4 of Class Bituminous. The significant trace elements are V (20–400 ppm); Cu, Ni, Co (up to 300 ppm); Mn, Ba, Sr, Zr (up to 800 ppm); and La (up to 1200 ppm). The trace elements show a tendency to increase in proportion towards the eastern part of the coalfield.To the immediate east of the coalfield lies the Chirimiri coalfield, of which the compositional characteristics are also presented. These data clearly suggest that the coals of the Son valley are different from those of the other Gondwana basins, i.e., Mahanadi, Godavari, and Damodar valley basins.  相似文献   

10.
The Precambrian phosphorites of Bijawar Group of rocks show characteristics of a epicontinental sea with restricted and very shallow marine environment of formation along some shoals, which existed during the iron-rich Precambrian times. These phosphorite deposits located in the Hirapur-Bassia areas show extensive leaching of carbonate and phosphate minerals during episodes of weathering. X-ray diffraction studies indicated that carbonate-flourapatite is the major apatitic phase in these phosphorites while crandallite developed on the surface outcrops. There is a general tendency for the depletion of CO2 in these apatites leading to formation of flourapatite. This CO2 is an indicator of hidden weathering in the rocks. Major and trace element determinations of phosphorite have been used to indicate various correlation factors responsible for the concentration of elements in these Precambrian leached phosphorites.The paper is a contribution to the aims and objectives of IGCP Project 156The paper is dedicated to Prof. Dr. R. C. Misra, who as a teacher and guide had been a source of inspiration to the senior author for the last two decades  相似文献   

11.
Major, trace and rare earth elements of phosphatic rocks around Sonrai block of Paleo-Mesoproterozoic age having phosphatic breccia, quartzite, shale, sandstone, limestone and ironstone, have been determined to evaluate their correlation, relationship with the phosphorus content, the nature of possible substitution of various elements and regional distribution pattern over the area. The study indicates that the number of elements is substituted in the apatite structures; few of them are associated with phosphate and carbonate minerals. The variable concentration of major, trace and rare earth elements in the phosphatic rocks has been influenced by various physico-chemical processes involved during weathering and leaching of the source rocks. The distribution of the major, trace and rare earth elements is controlled by the environmental variations in the sediment water interface. The majority of trace elements were mainly influenced by the principle adsorbents like the phosphate minerals in addition to clay, iron oxides and silicate minerals. The PAAS normalized REE patterns of Sonrai block of phosphorites are characterized by negative Ce anomalies and Positive Eu anomalies. It is inferred from the distribution and interrelationship of major, trace and rare earth elements that the deposition of phosphate minerals might have occurred in highly oxidizing to slightly reducing conditions in supratidal to intertidal continental margins and shallow marine environment. The deposition was controlled by marine upwelling leading to excess charge of phosphate in certain zones of phosphogenic basins, lithologic facies variations in restricted circulations of basinal waters and electrochemical factors such as negative Eh, pH and other factors, which influenced the deposition of phosphates. The replacement, precipitation in voids and fissures and diagenesis were also important mechanisms of phosphate generation in Sonrai basin. The main source for various elements may be the minerals of cratonic mass of Bundelkhand Granitic Complex, a basement of Bijawar Basin, which also provided land derived phosphorus through weathering of the terrestrial cover.  相似文献   

12.
Melt inclusions in olivine and pyroxene phenocrysts in kersantite and camptonite at Chhaktalao in Madhya Pradesh, India are mainly of the evolved type forming daughter minerals of olivine, pyroxene, plagioclase, spinel, mica, titanomagnetite and sulphides. Heating studies exhibit a temperature range from 1215° to 1245°C for the melt inclusions in olivine in camptonite and 1220–1245°C for olivine in kersantite. The temperature for melt inclusions in pyroxene ranged from 1000° to 1150°C in camptonite and 850–1100°C for pyroxene in kersantite. The bubble inside these melt inclusions is mainly CO2. The Th°C of CO2 into liquid phase occurred between 26° and 31°C in olivine and 25–30°C in pyroxene from kersantite and camptonite. The maximum density estimated is 0.72 g/cm3 and the minimum is 0.45 g/cm3. The depth of entrapment of the melt inclusion is estimated between 10–15 km. The pressure of entrapment of melt inclusion in olvine is 4.6 kbar where as that in pyroxene is 3.7 kbar. The lamprophyres in the Chhaktalao area are considered to be derived from low depth and low pressure region, possibly within spinel lherzolite zone.  相似文献   

13.
Special interest is attached to the Bhander Limestone because it is the only calcareous formation in the very thick elastic sequence of Precambrian age, designated informally as the “Upper” Vindhyan. The sedimentology of the Bhander Limestone was studied in the Mandalgarh-Singoli area of southeastern Rajasthan and adjoining Madhya Pradesh with a view to interpreting the depositional environments of the formation. This study has an important bearing on the exploration for oil in India and presents one of the few examples of Precambrian limestones of which thorough modern sedimentological analysis has been made.The Bhander Limestone comprises micritic limestones, crystalline dolostones, siltstones and shales that show desiccation structures (horizontal fenestrae, bird's-eye structures, mud cracks), very shallow small channels filled with flat-pebble breccia, algal lamination, palisade structure, and occasional ripple marks, ripple lamination and micro-cross-lamination. The major petrographic constituents are micrite, intraclasts, sparry-calcite cement, pseudospar and replacement dolomite. Seven environmentally significant microfacies have been recognized: micrite, silty micrite, graded micrite, dolomitized micrite, neomorphosed micrite, intrasparrudite and intramicrudite.The Bhander Limestone Formation has been divided vertically into four lithofacies: red argillaceous micritic limestones (lithofacies A), interlaminated blue micritic limestones and red dolomite (lithofacies B), olive calcareous shales (lithofacies C), and black micritic limestones (lithofacies D). Each lithofacies is characterized by certain megascopic sedimentary features and microfacies. The various lithofacies have been interpreted as representing deposition in the different subenvironments of a generally low-energy, marginal marine environment comprising tidal flats and lagoons. The vertical changes from one lithofacies to another are interpreted as reflecting the change from one subenvironment to another brought about by the landward shifting of the boundaries of these subenvironments in response to a transgression.  相似文献   

14.
The present study focuses on the hydrogeochemical composition of groundwater in Chhatarpur area with special focus on nitrate and fluoride contamination, considering the fact that groundwater is the only major source of drinking water here. Carbonate and silicate mineral weathering followed by ground water–surface water interactions, ion exchange and anthropogenic activities are mainly responsible for high concentrations of cations and anions in the groundwater in the region. The average concentration of nitrate and fluoride found in 27 samples is 1.08 and 61.4 mg/L, respectively. Nitrate enrichment mainly occurs in areas occupied with intense fertilizer practice in agricultural fields. Since the area is not dominated by industrialization, the possibility of anthropogenic input of fluoride is almost negligible, thus the enrichment of fluoride in groundwater is only possible due to rock–water interaction. The highly alkaline conditions, which favor the fluorite dissolution, are the main process responsible for high concentration of fluoride.  相似文献   

15.
Landslides the most common geo-hazard in hilly terrain are short lived phenomena but cause extraordinary landscape changes and destruction of life and property. The frequency and intensity of landslides occurrences along NH-21 during the rainy season not only disrupts traffic movement but also misbalance the agro-economic and developmental activities of the region frittering away thousand crores of rupees from the exchequer. An assessment of landslide susceptibility is, therefore, a prerequisite for sustainable development of the region. The present study deals with the preparation of macro-zonation maps of landslide susceptibility in an area of about 100 sq km on 1:50,000 scale across Garamaura-Swarghat section of National Highway-21. The map has been prepared by superimposing the terrain evaluation maps in a particular zone such as lithological map, structural map, slope morphometry map, relative relief map, land use and land cover map and hydrological condition map using landslide susceptibility evaluation factor rating scheme and calculating the total estimated susceptibility as per the guidelines of IS: 14496 (Part-2) 1998). Numerical weightages are assigned to the prime causative factors of slope instability such as lithology, structure, slope morphometery, relative relief, land use and groundwater conditions as per the scheme approved by Bureau of Indian Standard for the purpose of landslide susceptibility zonation. The area depicts zones of different instability. The identified susceptibility zones compared with landslide intensity in the area show some congruence with the weightages of the inputs. The incongruence in intensity and frequency of landslide occurrences and the inferred susceptibility zones of BIS scheme allow other geotechnical considerations and causative factors to be incorporated for the landslide susceptibility zonation.  相似文献   

16.
Either naturally occurring process or human activities may have a significant impact on the quality of sub-surface waters which further limit its use. Multivariate statistical techniques such as factor analysis (FA), cluster analysis (CA) were applied for the evaluation of spatial variations and the interpretation of ground water quality data around Bacheli and Kirandul area. The major anions, cations and heavy metals were determined for each of 20 samples collected in pre-monsoon seasons. Hydrochemical parameters like EC, pH, TDS, TH, TA, Na+, K+, Ca2+, Cl-, F-, SO42-, As, Sb, Se, Pb, Cd, Zn, Cu were estimated in pre monsoon and post monsoon seasons. Different geochemical controls of the investigated parameters were also assessed. Factor 1 explains 33.47% of the total variance and indicates atmospheric controls and silicate mineral weathering process. Factor 2 explains 13.83% of total variance, indicating silicate mineral weathering process resulting in elevated pH. Generally, water types tend towards magnesium-bicarbonate-chloride.  相似文献   

17.
Groundwater and surface water samples from 47 locations (28 groundwater, 10 tanks and 9 stream channel) were collected during the pre-monsoon (May–June) and post-monsoon season (November) from Chinnaeru River basin. Chinnaeru River basin is situated 30 km east of Hyderabad City and its area covers 250 km2 and falls in the Survey of India Toposheet No. 56 K/15. The extensive agricultural, industrial and urbanization activities resulted in the contamination of the aquifer. To study the contamination of groundwater, water samples were collected from an area and analyzed for major cations and anions. Various widely accepted methods such as salinity, sodium absorption ratio, Kelly’s ratio, residual sodium carbonate, soluble sodium percentage, permeability index and water quality index are used to classify groundwater and surface water (tank and stream) for drinking as well as irrigation purposes. Besides this, Piper trilinear diagram, Wilcox diagram, Doneen’s classification and Gibb’s plot were studied for geochemical controls, and hydrogeochemistry of groundwater and surface water samples were studied.  相似文献   

18.
Groundwater survey has been carried out in the area of Gummanampadu sub-basin located in Guntur District, Andhra Pradesh, India for assessing the factors that are responsible for changing of groundwater chemistry and consequent deterioration of groundwater quality, where the groundwater is a prime source for drinking and irrigation due to non-availability of surface water in time. The area is underlain by the Archaean Gneissic Complex, over which the Proterozoic Cumbhum rocks occur. The results of the plotting of Ca2+ + Mg2+ versus HCO3 ? + CO3 2?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO4 2? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3 ? + CO3 2?, Na+ versus Ca2+ and Na+: Cl? versus EC indicate that the rock–water interaction under alkaline condition is the main mechanism in activating mineral dissociation and dissolution, causing the release of Ca2+, Mg2+, Na+, K+, HCO3 ?, CO3 2?, SO4 2? and F? ions into the groundwater. The ionic relations also suggest that the higher concentrations of Na+ and Cl? ions are the results of ion exchange and evaporation. The influences of anthropogenic sources are the other cause for increasing of Mg2+, Na+, Cl?, SO4 2? and NO3 ? ions. Further, the excess alkaline condition in water accelerates more effective dissolution of F?-bearing minerals. Moreover, the chemical data plotted in the Piper’s, Gibbs’s and Langelier–Ludwig’s diagrams, computed for the chloro-alkaline and saturation indices, and analyzed in the principal component analysis, support the above hypothesis. The groundwater quality is, thus, characterized by Na+ > Ca2+ > Mg2+ > K+: HCO3 ? + CO3 2? > Cl? > SO4 2? > NO3 ? > F? facies. On the other hand, majority of groundwater samples are not suitable for drinking with reference to the concentrations of TDS, TH, Mg2+ and F?, while those are not good for irrigation with respect to USSL’s and Wilcox’s diagrams, residual sodium carbonate, and magnesium hazard, but they are safe for irrigation with respect to permeability index. Thus, the study recommends suitable management measures to improve health conditions as well as to increase agricultural output.  相似文献   

19.
Gradient profiling (GP) has been successfully utilized as a preliminary tool to identify fractured zones saturated with groundwater in hard-rock areas of Robertsganj, Sonebhadra district, Uttar Pradesh, India. Conducting geoelectrical sounding at randomly selected places may not provide fruitful results since fractures are sparsely distributed in hard rocks. In gradient profiling, current electrodes with large separation remain fixed while the potential dipole is moved between the current electrodes in the central one-third portion of the profile at a small station interval. A GP survey was conducted along seven profiles having different lengths in two small sectors of the study area. Low resistive zones have been identified which correspond to the fractured zones. A few geoelectrical soundings were carried out to investigate the depth and thickness of the fractured zones. Two test boreholes, one drilled in each sector, yielded continuous discharge of fresh water (18,000–24,000 L/h). The present study confirms the findings of previous work that the GP survey is a powerful initial technique that identifies the presence of a fractured zone, especially in a hard-rock area covered with a thin soil layer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号