首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用1971-2000年东营市及所辖3个县站的资料分析了地处黄河入海口的东营市大雾天气气候特征,结果表明:每年11月到次年的1月,是一年中大雾出现最岁的月份,广饶县大雾出现得最多,平均每年大雾日有22.7天。针对2006年9月20-23日连续大雾天气,分析了其高、低空环流形势,在此基础上总结了东营秋冬季大雾的预报着眼点。对于连续性大雾的第一天预报,需要湿度条件、辐射降温条件、风力条件均有利时才易出现大雾,而对于连续性的大雾,对辐射降温条件要求不高。  相似文献   

2.
大雾对人民生活和交通有很大影响。本文对江西大面积大雾的气候概况和预报因子选取作一简单介绍。1大雾的气候概况1.1资料与大雾标准江西省有85个气象台站,在OS时区域图上,若有成片或基本成片的15个台站以上的现在天气记有雾,则定为一个大雾日,观测前一小时记为雾的也在统计之内。按照这一标准,我们统计了九年资料(1984年到1990年,1992年和1995年)1.2大雾日的月、季分布雾有明显的季节性变化,冬、春季最多,占83%,秋季很少,占17%,夏季没有。从月际变化来看,1~5月和10~12月是大雾的多发季节,九年中全省大雾日共165天,1…  相似文献   

3.
我国大雾的气候特征及变化初步解释   总被引:100,自引:9,他引:100       下载免费PDF全文
为了分析全国范围内大雾的气候特征及变化,利用1950年以来我国气象系统地面观测网679个国家基本(基准)站的大雾天气现象观测资料,分析了我国大雾空间、时间分布的基本气候特征。从整体来看,我国大雾分布呈现东南部多西北部少的特点。在月大雾的日数、月最多大雾日数、大雾季节分布中都显示出北南、西东的地区差异及局地明显的特征。分析表明,我国大部分地区大雾日数呈减少趋势。而浓雾出现的年日数变化不明显;文章对大雾日数的变化原因进行了初步解释。  相似文献   

4.
利用主成分分析方法对2012~2014年合肥市高速公路沿线交通气象站日最低能见度资料统计出的大雾观测样本进行研究,应用因子荷载点聚图将合肥市县大雾划分为2个区:中南区、北区。基于PP法统计ECMWF模式输出产品与大雾之间的相关性,全市和分片分别确定与大雾密切相关的高影响因子,利用等级分类和逐步回归建立大雾预报模型。在回归结果的判定阈值和消空指标选定的情况下,通过研发的大雾天气精细化预报系统每日定时输出合肥市大雾预报格点产品。经过前期业务化运行和预报效果检验表明:数值模式产品释用方法在有无大雾预报技巧方面较WRF模式明显占优,技巧评分大幅提升,而两类典型大雾天气过程预报效果检验则可以更直观地看出数值模式产品释用的预报方法效果要更好。  相似文献   

5.
分析石家庄生成大雾的气象条件以及不利于消散的大气层结和气象要素特征,选取与大雾消散有关的预报因子,由实况资料建立大雾消散时间的线性回归预报方程,并将数值预报结果与实况进行插值订正,做大雾消散时间的客观化预报;分析了自动气象站的气温资料与大雾消散时间的关系,用自动站资料对大雾消散时间进行订正预报。  相似文献   

6.
济青高速公路大雾天气气候特征及其影响   总被引:30,自引:3,他引:30       下载免费PDF全文
张飒  冯建设 《气象》2005,31(2):70-73
利用济青高速公路沿线13个气象站1971~2000年的地面观测资料,分析了济青高速公路沿线大雾天气的天气气候特征,发现:济青高速公路沿线大雾天气不仅具有明显的年际变化,而且具有明显季节、昼夜和地域差异,并在此基础上将不同路段大雾服务划分为特别关键期、关键期、次关键期。结合实际交通气象服务的需要,将大雾天气对于高速公路的影响划分为4个等级,并提出了未来开展高速公路大雾服务的设想。  相似文献   

7.
深圳两次大雾天气过程对比分析及预报启示   总被引:16,自引:0,他引:16  
2005年2月23-25日和2006年3月6日深圳分别出现了一次大雾天气。从天气学角度对两次大雾过程的形成原因、特点进行对比分析,分析表明:大雾天气需在一定的形势场中出现并维持,近地面层气象要素场的变化会促进大雾的形成、维持和消失,而近地面层风场或温度场的改变除了与其环境、当地气候特征有关外,与大的形势场是分不开的。通过对比,对深圳大雾天气的生消和维持机制有一定了解,对预报本地大雾天气有指示作用,也为其它地区特别是沿海地区雾的预报提供借鉴。  相似文献   

8.
威海市沿海大雾的特点及预报   总被引:5,自引:2,他引:5  
崔晶  楮昭利 《气象科技》2001,29(4):55-57
对1989-1995年557个大雾个例资料的统计分析,揭示了威海市沿海大雾的活动规律及有利天气形势,沿海大雾多见于春夏季,秋冬季较少,通常在适宜的湿度和风向、风速下形成。  相似文献   

9.
郑婧 《气象与减灾研究》2007,30(1):I0001-I0001
1大雾过程 2006年10-12月.江西出现区域性大雾的日数(全省单日15站以上大雾)达8d.主要集中在10月和12月(表1)。与常年相比属略偏少.其中10月13—14日和12月14—15日出现连续性大雾,尤以12月15日过程最强.全省共计60站大雾,其中强浓雾达8站,为2006年入冬以来范围最大、强度最强的大雾天气。  相似文献   

10.
南宁市大雾气候特征分析   总被引:11,自引:0,他引:11  
利用南宁市所管辖8个站1965-2002年的观测资料,分析了南宁市大雾天气的分布情况和气候变化特征。结果表明:南宁市大雾的平均季节分布为冬季最多,夏季最少。各月大雾总日数出现频率呈双峰型,多项式回归分析结果表明大雾日数的年际变化呈逐渐减少趋势。  相似文献   

11.
冯厚文 《广西气象》2007,28(A01):78-80
通过对东兴市47a大雾资料及2006年14d大雾个例的分析,得出该市的大雾成因及特征,并结合当地实际情况及作者的预报实践经验,总结出适合于当地的大雾短期预报方法。结果表明该方法对东兴市的大雾具有较强的预报能力,但有待改进。  相似文献   

12.
通过对莘县1957-2006年大雾观测资料的统计,得出莘县大雾日数的年变化呈逐年上升趋势。秋冬季节的大雾日数占全年的70%,大雾的出现时间主要集中在夜间到上午日出前后,其中冬季出现的大雾维持时间较长。  相似文献   

13.
桃仙机场一次大雾天气过程浅析   总被引:4,自引:0,他引:4  
通过讨论天气形势,初步分析出2001年2月22日沈阳桃仙机场大雾形成和消散的原因、特点和影响要素,试图为大雾天气提供预报思路。  相似文献   

14.
以1990-2002年共13年冬春季(11月至次年4月)发生在沿海地区(北海、钦州、合浦、防城和防港五区县)的大范围大雾个例为基础进行研究分析,得出沿海出现大范围大雾的四种天气形势,分别为锋面北退型,暖低控制型、锋前槽前型、槽后冷高型和副高边缘型,总结出这五种天气形势的特征,并分析了出现大范围大雾前地面各要素的特征,得出大范围大雾出现前24h地面场的有利条件。  相似文献   

15.
西安大雾气候特征及成因分析   总被引:2,自引:0,他引:2  
为揭示西安地区大雾气候特征及成因,分析西安地区1961-2005年大雾日数和对应的相对湿度、气温.结果表明:西安大雾最多地区是西安城区,秋冬季是大雾的高发季节;西安城区和户县大雾有明显的减少趋势,长安、蓝田大雾有明显的增加趋势,西安冬季大雾变化最明显;西安大雾具有明显的年代际变化;西安大雾变化与相对湿度和气温的变化有一定的相关性.  相似文献   

16.
2002年11月30至12月4日,北京持续4天大雾天气,空气污染物在持续的稳定层结条件下,空气质量连续3天达5级以上。文中分析了大雾天气各主要污染物的变化特征,以及此次过程中天气形势的特点及演变,并对造成大雾日空气污染天气的物理量分布特征进行分析。结果表明:高空WNW气流、稳定性持续增加、逆温层结持续存在、低空风速较小、相对湿度大,导致局地污染物不能及时随大气扩散;1000~700hPa有弱的上升气流形成和维持,与500hPa高空下沉气流之间在低空的某层高度上形成稳定层结(逆温层),导致大雾及重污染的形成;850hPa为暖区,850~500hPa为冷平流,有利于大雾的形成和加重。  相似文献   

17.
华北平原大雾分析和预报   总被引:18,自引:2,他引:18  
石林平  迟秀兰 《气象》1995,21(5):45-47
介绍华北平原大范围大雾的气候特征及大雾天气的低空风场、地面气压场等特点,并以天津为例给出了大雾部分消空指标以供参考。  相似文献   

18.
汉中大雾的天气气候特征   总被引:1,自引:0,他引:1       下载免费PDF全文
做好大雾预报为日益发展的公路交通、输变电线路等部门提供气象保障,利用汉中站1995—2000年大雾资料,统计分析了汉中市大雾的形成、消散等天气气候特征。汉中市的大雾分布为南部多北部少,东部、西部多中间相对少。以辐射雾为主。全年各月都可能发生。出现频率最高的是在10月到次年1月之间。多出现在00:00—12:00之间,持续时间为40~500min。汉中市大雾的形成同特殊的盆地地貌、充沛的水源有密切的联系。  相似文献   

19.
湖州市大雾天气的成因分析及预报研究   总被引:17,自引:1,他引:17       下载免费PDF全文
提出了一个大雾预报的天气学模型,为了建立客观预报模式,必须把相应环流背景信息进行量化处理。该模式应用多种物理量来描述大雾发生前天气形势的变化,既便于量化又很容易实现预报的客观化和自动化。给出了物理量转换、组合计算方法,定向输送量概念对背景场的动态量化十分有效。应用BP神经网络建立大雾预报模型,选取的预报因子、预报指标可以较完整地描述形成大雾的整个背景场,包含的信息量大,业务应用效果明显。用于建模的神经网络设计和参数化方案对其他预报系统建设有借鉴意义。  相似文献   

20.
鞍山地区大雾天气气候特征及成因探讨   总被引:1,自引:0,他引:1  
利用1951—2014年鞍山地区大雾天气观测资料,采用线性趋势法和多项式趋势法分析了鞍山地区大雾天气的空间及时间变化特征。结果表明:1951—2014年鞍山地区年和季大雾日数呈东南部地区多、西北部和中部地区少的空间分布特征,同时各区域大雾日数的季节变化差异显著,东南部山区夏季和秋季(6—10月)为大雾多发季,其他地区深秋和冬季(11月至翌年1月)为大雾多发季;鞍山市各区域大雾日数趋势变化的差异较大,中部地区大雾日数呈减少的趋势,西部地区大雾日数呈弱增加的趋势,东南部地区大雾日数呈增加的趋势。近64 a鞍山地区区域性大雾过程最长持续时间为7 d,全区性大雾过程较少,一致性大雾过程仅出现8次;鞍山地区大雾天气受地形影响较大,具有明显的区域特征,平原地区大雾天气少、山区大雾天气多,且山区连续性大雾过程持续时间较长。鞍山地区大雾过程持续时间多集中在1—2 h,大雾天气出现时间主要集中在05—06时、08时和20时前后,大雾过程日最长持续时间为20—21 h。在1961—2010年鞍山地区大雾日数的年代际变化中,东南部山区大雾日数呈增加的趋势,中部地区大雾日数呈减少的趋势;特别是20世纪90年代以后,中部地区大雾日数减少明显,东南部地区大雾日数增加显著,区域性差异较大。同时,人类活动对气候环境的反馈影响可能也是鞍山地区大雾天气变化的一个原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号