首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data from a transect of four cores collected in the Makepeace Cedar Swamp, near Carver, Massachusetts, record past changes in deposition, vegetation, and water level. Time series of palynological data provide a 14,000-yr record of regional and local vegetation development, a means for biostratigraphic correlation and dating, and information about changes in water level. Differences in records among cores in the basin show that water level decreased at least 1.5 m between 10,800 and 9700 cal yr B.P., after which sediment accumulation was slow and intermittent across the basin for about 1700 yr. Between 8000 and 5600 cal yr B.P., water level rose 2.0 m, after which slow peat accumulation indicates a low stand about the time of the hemlock decline at 5300 ± 200 cal yr B.P. Dry conditions may have continued after this time, but by 3200 cal yr B.P., the onset of peat accumulation in shallow cores indicates that water level had risen to close to its highest postglacial level, where it is today. Peat has accumulated across the whole basin since 3200 cal yr B.P. Data from Makepeace and the Pequot Cedar Swamp, near Ledyard, Connecticut, indicate an early Holocene dry interval in southern New England that began 11,500 yr ago near the end of the Younger Dryas interval. The dry conditions prevailed between 10,800 and 8000 cal yr B.P. and coincide with the arrival and later rise to dominance of white pine trees (Pinus strobus) both regionally and near the basins. Our results indicate a climatic cause for the “pine period” in New England.  相似文献   

2.
Sediments from Rapid Lake document glacial and vegetation history in the Temple Lake valley of the Wind River Range, Wyoming over the past 11,000 to 12,000 yr. Radiocarbon age determinations on basal detrital organic matter from Rapid Lake (11,770 ± 710 yr B.P.) and Temple Lake (11,400 ± 630 yr B.P.) bracket the age of the Temple Lake moraine, suggesting that the moraine formed in the late Pleistocene. This terminal Pleistocene readvance may be represented at lower elevations by the expansion of forest into intermontane basins 12,000 to 10,000 yr B.P. Vegetation in the Wind River Range responded to changing environmental conditions at the end of the Pleistocene. Following deglaciation, alpine tundra in the Temple Lake valley was replaced by a Pinus albicaulis parkland by about 11,300 14C yr B.P. Picea and Abies, established by 10,600 14C yr B.P., grew with Pinus albicaulis in a mixed conifer forest at and up to 100 m above Rapid Lake for most of the Holocene. Middle Holocene summer temperatures were about 1.5°C warmer than today. By about 5400 14C yr B.P. Pinus albicaulis and Abies became less prominent at upper treeline because of decreased winter snowpack and higher maximum summer temperatures. The position of the modern treeline was established by 3000 14 C yr B.P. when Picea retreated downslope in response to Neoglacial cooling.  相似文献   

3.
《Quaternary Science Reviews》2004,23(16-17):1835-1846
Colluvial aprons found along fluvial terraces of the Laramie River and Sybille Creek in southeastern Wyoming are interpreted as late Quaternary slopewash deposits. Each apron studied contained multiple buried soils, interpreted to indicate that slopewash activity was episodic and short-lived, and was followed by relatively long periods of landscape stability and soil development. Apron deposits were described and subsequently correlated based on their internal stratigraphy and their relative degree of soil development. Optical dating was used to chronologically constrain periods of slopewash deposition, and based on 17 optical ages taken from five aprons, aggradation occurred at ∼65–56, 16.0, 12.9, 11.8, 8.1, 7.3, 5.0, and 1.7 ka. Several of these events correspond with climatic transitions such as the termination of Heinrich Event 1, the onset and termination of the Younger Dryas, and the 8.2 ka event, suggesting that apron aggradation was driven by changes in climatic regime. Although either increased aridity or a change in precipitation regime could result in increased erosion of terrace scarps, apron aggradation events do not correlate with regional records of aridity. Instead, periods of increased precipitation intensity and/or frequency that occur during climatic transitions most likely drive apron aggradation events.  相似文献   

4.
The highest shoreline features of paleo-Lake Malheur are undated gravelly barrier beaches south of Harney Lake that lie ca. 3.5 m higher than the hydrographic outlet of Harney Basin at Malheur Gap (1254 m). The earliest Quaternary record for Lake Malheur consists of occurrences of water-deposited tephra dated to ca. 70,000–80,000 yr ago. The next identified lake interval is dated by shells with ages of ca. 32,000 and 29,500 yr B.P. No dates are available for the terminal-Pleistocene Lake Malheur. Lake(s) were present between ca. 9600 and 7400 yr B.P., although periodic low levels or desiccation are suggested by a paleosol dated as ca. 8000 yr B.P. The lake system probably dried further after 7400 yr B.P., although dates are lacking for the period between ca. 7400 and 5000 yr B.P. Dune deposits on the lake floor are ca. 5000 yr old and indicate generally dry conditions. Fluctuating shallow lakes have probably characterized the last 2000 years. A date of 1000 yr B.P. gives a maximum age for beach deposits at 1254 m, near the basin threshold elevation. Thus, the Malheur Lake system may have drained to the Pacific Ocean by way of Malheur Gap during the latest Holocene.  相似文献   

5.
Quantitative analysis of the kinematics of the active faults distributed around the Qinghai-Tibetan Plateau is critical to understand current tectonic processes of the plateau. Chronological analysis, based on the comparison among regional climate and geomorphology, digital photogrammetry, offset landforms, and the tectonics were adopted in this study on the Xianshuihe fault in the eastern Tibetan plateau. Two or more offset-age data were obtained for each segment of the Xianshuihe and the Yunongxi faults. The offset landforms, including river terrace, alluvial fan and glacial moraine, provide constraints for the late Quaternary slip rate of the Xianshuihe fault. The left-lateral strike slip rate of the Xianshuihe fault decreases from 17 mm/a on the northwest segment to 9.3 mm/a on the southeast segment. Regarding the Xianshuihe fault zone and its adjacent blocks as a regional tectonic system, vector analysis was used to quantitatively analyze the longitudinal kinematical transformation and transversal slip partitioning on the fault zone in terms of the kinematical parameters of the main faults within the zone. The results show that there is a distributed vertical uplift at a rate of 6.1 mm/yr caused by shortening across the Gongga Mountains region. Based on these results, we established a model of the slip partitioning for the southeastern segment of the Xianshuihe fault zone.  相似文献   

6.
7.
The Weihe Graben is not only an important Cenozoic fault basin in China but also a significant active seismic zone. The Huashan piedmont fault is an important active fault on the southeast side of the Weihe Graben and has been highly active since the Cenozoic. The well–known Great Huaxian County Earthquake of 1556 occurred on the Huashan piedmont fault. This earthquake, which claimed the lives of approximately 830000 people, is one of the few large earthquakes known to have occurred on a high–angle normal fault. The Huashan piedmont fault is a typical active normal fault that can be used to study tectonic activity and the associated hazards. In this study, the types and characteristics of late Quaternary deformation along this fault are discussed from geological investigations, historical research and comprehensive analysis. On the basis of its characteristics and activity, the fault can be divided into three sections, namely eastern, central and western. The eastern and western sections display normal slip. Intense deformation has occurred along the two sections during the Quaternary; however, no deformation has occurred during the Holocene. The central section has experienced significant high–angle normal fault activity during the Quaternary, including the Holocene. Holocene alluvial fans and loess cut by the fault have been identified at the mouths of many stream valleys of the Huashan Mountains along the central section of the Huashan piedmont fault zone. Of the three sections of the Huashan piedmont fault, the central section is the most active and was very active during the late Quaternary. The rate of normal dip–slip was 1.67–2.71±0.11 mm/a in the Holocene and 0.61±0.15 mm/a during the Mid–Late Pleistocene. As is typical of normal faults, the late Quaternary activity of the Huashan piedmont fault has produced a set of disasters, which include frequent earthquakes, collapses, landslides, mudslides and ground fissures. Ground fissures mainly occur on the hanging–wall of the Huashan piedmont fault, with landslides, collapses and mudslides occurring on the footwall.  相似文献   

8.
The floodplain along a 75-km segment of the Brazos River, traversing the Gulf Coastal Plain of Texas, has a complex late Quaternary history. From 18,000 to 8500 yr B.P., the Brazos River was a competent meandering stream that migrated from one side of the floodplain to the other, creating a thick layer of coarse-grained lateral accretion deposits. After 8500 yr B.P., the hydrologic regime of the Brazos River changed. The river became an underfit meandering stream that repeatedly became confined within narrow and unstable meander belts that would occasionally avulse. Avulsion occurred four times; first at 8100 yr B.P., then at 2500 yr B.P., again around 500 yr B.P., and finally around 300 yr B.P. The depositional regime on the floodplain also changed after 8500 yr B.P., with floodplain construction dominated by vertical accretion. Most vertical accretion occurred from 8100 to 4200 yr B.P. and from 2500 to 1250 yr B.P. Two major and three minor periods of soil formation are documented in the floodplain sequence. The two most developed soils formed from 4200 to 2500 yr B.P. and from around 1250 to 500 yr B.P. These changes on the floodplain appear to be the result not of a single factor, but of the complex interplay among changes in climate, sediment yield, and intrinsic floodplain variables over time.  相似文献   

9.
The newly obtained Sm-Nd isochron ages are 1034 Ma and 935 Ma for ophiolites from northeasternJiangxi and Fuchuan, southern Anhui respectively. There exist two unconformity surfaces under the initialLate Proterozoic volcanics as well as the Sinian rocks. The Xiuning intrusive body which was intruded into theShangxi Group in southern Anhui yields a whole-rock Rb-Sr isochron age of 963 Ma. There occurs a belt ofLate Proterozoic calc-alkali volcanic rocks extending from northeastern Jiangxi to northwestern Zhejiang. Inthe light of the above facts, the authors consider that the southeastern margin of Jiangnania is an ancient islandarc. At about 1000 Ma ago, the Huanan (South China) oceanic crust was subducted along the line linking Dex-ing and Hangzhou, thus starting the accretion of the island arc system to Jiangnania. At 800 Ma ago Cathaysiaand Jiangnania converged together along the Jiangshan-Shaoxing line, marking the end of the accretion.  相似文献   

10.
The Waratah Fault is a northeast trending, high angle, reverse fault in the Late Paleozoic Lachlan Fold Belt at Cape Liptrap on the Southeastern Australian Coast. It is susceptible to reactivation in the modern intraplate stress field in Southeast Australia and exhibits Late Pliocene to Late Pleistocene reactivation. Radiocarbon, optically stimulated luminescence (OSL), and cosmogenic radionuclide (CRN) dating of marine terraces on Cape Liptrap are used to constrain rates of displacement across the reactivated Waratah Fault. Six marine terraces, numbered Qt6–Tt1 (youngest to oldest), are well developed at Cape Liptrap with altitudes ranging from ~1.5 m to ~170 m amsl, respectively. On the lowest terrace, Qt6, barnacles in wave-cut notches ~1.5 m amsl, yielded a radiocarbon age of 6090–5880 Cal BP, and reflect the local mid-Holocene sea level highstand. Qt5 yielded four OSL ages from scattered locations around the cape ranging from ~80 ka to ~130 ka. It formed during the Last Interglacial sea level highstand (MIS 5e) at ~125 ka. Inner edge elevations (approximate paleo high tide line) for Qt5 occur at distinctly different elevations on opposite sides of the Waratah Fault. Offsets of the inner edges across the fault range from 1.3 m to 5.1 m with displacement rates ranging from 0.01 mm/a to 0.04 mm/a. The most extensive terrace, Tt4, yielded four Early Pleistocene cosmogenic radionuclide (CRN) ages: two apparent burial ages of 0.858 Ma ± 0.16 Ma and 1.25 Ma ± 0.265 Ma, and two apparent exposure ages of 1.071 Ma ± 0.071 Ma (10Be) and 0.798 Ma ± 0.066 Ma (26Al). Allowing for muonic production effects from insufficient burial depths, the depth corrected CRN burial ages are 1.8 Ma ± 0.56 Ma and 2.52 Ma ± 0.88 Ma, or Late Pliocene. A Late Pliocene age is our preferred age. Offsets of Tt4 across the Waratah Fault range from a minimum of ~20 m for terrace surface treads to a maximum of ~70 m for terrace bedrock straths. Calculated displacement rates for Tt4 range from 0.01 mm/a to 0.04 mm/a (using a Late Pliocene age, ~2 Ma), identical to the rates calculated for the Last Interglacial terrace, Qt5. This indicates that deformation at Cape Liptrap has been ongoing at similar time-averaged rates at least since the Late Pliocene. The upper terraces in the sequence, Tt3 (~110 m amsl), Tt2 (~140 m) and Tt1 (~180 m) are undated, but most likely correlate to sea level highstands in the Neogene. Terraces Tt1–Tt4 show an increasing northward tilt with age.The Waratah Fault forms a prominent structural boundary in the Lachlan Fold Belt discernible from airborne magnetic and bouger gravity anomalies. Seismicity and deformation are episodic. Episodic movement on the Waratah Fault may be coincident with sea level highstands since the Late Pliocene, possibly from increased loading and elevated pore pressure within the fault zone. This suggests that intervals between major seismic events could be on the order of 100 ka.  相似文献   

11.
Deposits beneath Mubwindi Swamp provide a partial record of vegetation history since at least 43,000 yr ago. We studied pollen from two cores and obtained nine radiocarbon ages from one of these cores and three radiocarbon ages from the other. Pollen deposited before and soon after the last glacial maximum represents vegetation very different from the modern vegetation of the Mubwindi Swamp catchment. Although species now associated with higher altitudes were dominant some elements of moist lower montane forest persisted, possibly because of favorable soils or topography. The pollen data provides evidence for a late glacial montane forest refuge near Mubwindi Swamp. Moist lower montane forest became much more widespread soon after the glacial maximum. The only irrefutably Holocene sediments from Mubwindi Swamp date to the past 2500 yr. During this time a combination of climatic and human-induced changes in vegetation can be seen in the pollen records.  相似文献   

12.
Radiocarbon‐dated sediment cores from six lakes in the Ahklun Mountains, south‐western Alaska, were used to interpolate the ages of late Quaternary tephra beds ranging in age from 25.4 to 0.4 ka. The lakes are located downwind of the Aleutian Arc and Alaska Peninsula volcanoes in the northern Bristol Bay area between 159° and 161°W at around 60°N. Sedimentation‐rate age models for each lake were based on a published spline‐fit procedure that uses Monte Carlo simulation to determine age model uncertainty. In all, 62 14C ages were used to construct the six age models, including 23 ages presented here for the first time. The age model from Lone Spruce Pond is based on 18 ages, and is currently the best‐resolved Holocene age model available from the region, with an average 2σ age uncertainty of about ± 109 years over the past 14.5 ka. The sedimentary sequence from Lone Spruce Pond contains seven tephra beds, more than previously found in any other lake in the area. Of the 26 radiocarbon‐dated tephra beds at the six lakes and from a soil pit, seven are correlated between two or more sites based on their ages. The major‐element geochemistry of glass shards from most of these tephra beds supports the age‐based correlations. The remaining tephra beds appear to be present at only one site based on their unique geochemistry or age. The 5.8 ka tephra is similar to the widespread Aniakchak tephra [3.7 ± 0.2 (1σ) ka], but can be distinguished conclusively based on its trace‐element geochemistry. The 3.1 and 0.4 ka tephras have glass major‐ and trace‐element geochemical compositions indistinguishable from prominent Aniakchak tephra, and might represent redeposited beds. Only two tephra beds are found in all lakes: the Aniakchak tephra (3.7 ± 0.2 ka) and Tephra B (6.1 ± 0.3 ka). The tephra beds can be used as chronostratigraphic markers for other sedimentary sequences in the region, including cores from Cascade and Sunday lakes, which were previously undated and were analyzed in this study to correlate with the new regional tephrostratigraphy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Isostatic response of the Earth to changes in Quaternary Times of ice and water loads is partly elastic, and partly involves viscous mantle flow. The relaxation spectrum of the Earth, critical for estimation of the mantle flow component, is estimated from published determinations of Fennoscandian and Laurentide rebound, and of the nontidal acceleration of the Earth's rotation. The spectrum is consistent with an asthenosphere viscosity around 1021P, and a viscosity around 1023P below 400 km depth. Calculation of relaxation effects is done by convoluting the load history with the response function in spherical harmonics for global effects, and in rectangular or cylindrical transforms for smaller regional effects. Broad-scale deformation of the globe, resulting from the last deglaciation and sea level rise, is calculated to have involved an average depression of ocean basins of about 8 m, and mean upward movement of continents of about 16 m, relative to the center of the Earth, in the last 7000 yr. Deflection in the ocean margin “hinge zone” varies with continental shelf geometry and rigidity of the underlying lithosphere: predictions are made for different model cases. The computational methods is checked by predicting Fennoscandian and Laurentide postglacial warping, from published estimates of icecap histories, with good results. The depth variations of shorelines formed around 17,000 BP (e.g., North America, 90–130 m; Australia, 130–170 m), are largely explainable in terms of combined elastic and relaxation isostasy. Differences between Holocene eustatic records from oceanic islands (Micronesia, Bermuda), and continental coasts (eastern North America, Australia), are largely but not entirely explained in the same terms.  相似文献   

14.
Assemblages of foraminifers, ostracods and molluscs from temperate Ipswichian Stage (last temperate stage) sediments and overlying cold Devensian Stage (last cold stage) sediments at Somersham in the southern Fenland of Cambridgeshire have been analysed. The Ipswichian sediments contain faunas consistent with temperate brackish water conditions under tidal influence. The Devensian assemblages were recovered from a series of sands and gravels laterally accreting in a channel cutting into Ipswichian sediments. In contrast to the Ipswichian faunas, the faunas of particular Devensian samples show a complex mixture of temperate freshwater, brackish and marine taxa. The molluscs are mainly freshwater, with few land snails; they occur together with foraminifers and ostracods. Freshwater, brackish water and marine ostracods are present with foraminifers. A sample of Devensian fine laminated sediment in the channel was analysed for pollen; only abundant pre-Quaternary spores were present, with abundant foraminifers in the same sample. The taphonomy of the assemblages and the difficulties of their interpretation in environmental terms are discussed. The importance of taphonomy in assessing environments, climate, range of taxa and dating is stressed.  相似文献   

15.
贵州罗甸晚二叠世辉绿岩及其区域构造意义   总被引:12,自引:0,他引:12  
黔东南罗甸辉绿岩为拉斑系列岩石,其主量元素以高TiO2(2.36%~2.57%)、高CaO(9.40%~10.31%)、低MgO(5.65%~6.93%),低碱且Na2O>K2O为特征;稀土含量(ΣREE= 164.9×10-6~ 187.3×10-6)较高,反映轻稀土富集,重稀土亏损;Eu正异常(δEu=1.22~1.26),球粒陨石标准化配分曲线具有右倾分布特征。对辉绿岩中锆石进行的LA-ICP-MS U-Pb定年分析获得其谐和图下交点年龄为255.0±0.62Ma,代表岩体结晶时代。结合区域地质分析认为,罗甸辉绿岩可能起源于接近于原始的地幔橄榄岩的部分熔融作用,岩浆在快速上升过程中可能受到地壳物质的混染。罗甸辉绿岩具有与峨眉山玄武岩相似的地球化学特征,其形成年龄与峨眉山玄武岩的主喷发期基本同时。综合分析认为,黔东南晚二叠世辉绿岩是峨眉山玄武岩同质异相岩浆活动的产物,黔东南罗甸—望谟一带处于峨眉山玄武质岩浆活动的东部边缘地带。  相似文献   

16.
During the last glacial stage, Washington Land in western North Greenland was probably completely inundated by the Greenland Ice Sheet. The oldest shell dates from raised marine deposits that provide minimum ages for the last deglaciation are 9300 cal. yr BP (northern Washington Land) and 7600 cal. yr BP (SW Washington Land). These dates indicate that Washington Land, which borders the central part of Nares Strait separating Greenland from Ellesmere Island in Canada, did not become free of glacier ice until well into the Holocene. The elevation of the marine limit falls from 110 m a.s.l. in the north to 60 m a.s.l. in the southwest. The recession was followed by readvance of glaciers in the late Holocene, and the youngest shell date from Neoglacial lateral moraines north of Humboldt Gletscher is 600 cal. yr BP. Since the Neoglacial maximum, probably around 100 years ago, glaciers have receded. The Holocene marine assemblages comprise a few southern extralimital records, notably of Chlamys islandica dated to 7300 cal. yr BP. Musk ox and reindeer disappeared from Washington Land recently, perhaps in connection with the cold period that culminated about 100 years ago.  相似文献   

17.
Rancholabrean and/or Holocene remains record the presence of the following species of Carnivora in the Black Belt; Canis Latrans, Urocyon cinereoargentatus, Ursus amenricanus, Tremarctors floridanus. Arctodus simus, Felis amnicola, and Lynx rufus . A temporal size reduction was noted in the case of Canis latrans and Ursus americans  相似文献   

18.
Glacial geological studies in tropical mountain areas of the Southern Hemisphere can be used to address two issues of late Pleistocene climate change: the global synchroneity of deglaciation and the magnitude of temperature reduction in the tropics. Radiocarbon dates from the Cordillera Real and from other areas in Perú and Bolivia suggest that late Pleistocene glaciation culminated between 14 000 and 12 000 yr BP, followed by rapid deglaciation. Because deglaciation was apparently synchronous with that in Northern Hemisphere regions, insolation change at high latitudes may not have been the only factor that produced global deglaciation at this time. Late Pleistocene glaciation in the Cordillera Real culminated when precipitation was 200 mm yr?1 higher and temperatures were 3.5° ±1.6°C lower than today; this produced an equilibrium-line altitude depression of about 300 ± 100 m on the western side of the cordillera. Prior to this, conditions were drier and probably at least as cold. However, the lack of moraines in the Cordillera Real dated to the Last Glacial Maximum (ca. 18000 yr BP) precludes using the equilibrium-line altitude method to quantitatively evaluate the discrepancy between warm sea-surface temperatures and cold terrestrial conditions reconstructed with other proxies for this time period.  相似文献   

19.
Pollen, plant macrofossil, and charcoal records from Spruce Pond (41°14′22″N, 74°12′15″W), southeastern New York, USA dated by AMS provide details about late-glacial–early Holocene vegetation development in the Hudson Highlands from >12410 to 9750 14C yr BP. Prior to 12410 yr BP, vegetation was apparently open, dominated by herbs and shrubs (Cyperaceae, Gramineae, Tubuliflorae, Salix, Alnus, Betula), possibly with scattered trees (Picea and Pinus). However, Picea macrofossils are not found until 12410 yr BP. Development of a temperature deciduous–boreal-coniferous forest featuring Quercus, Fraxinus, Ostrya/Carpinus, Pinus, Picea, and Abies occurs between 12410 and 11140 yr BP. A return of predominantly boreal forest taxa between 11140 and 10230 yr BP is interpreted as an expression of the Younger Dryas cooling event. Holocene warming at 10230 yr BP is signalled by arrival of Pinus strobus, coincident with expansion of Quercus-dominated forest. Fire activity, as inferred from charcoal influx, appears to have increased as woodland developed after 12410 yr BP. Two charcoal influx peaks occur during Younger Dryas time. Early Holocene fire activity was relatively high but decreased for approximately 100 yr prior to the establishment of Tsuga canadensis in the forest at 9750 yr BP. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
A sedimentological and plant microfossil history of the Late Quaternary is preserved in two sediment cores from early Polynesian ditch systems on southern Aupouri Peninsula. The study places human activities into a geomorphological and ecological context and allows comparison of natural and anthropogenic effects on two different geological settings: a floodplain and a relatively closed peat swamp. The data fill part of the current gap in the environmental record from northern New Zealand, namely MIS 3 (57k–26k yr BP). There is evidence for an increase in fire frequency in the region after 40k 14C yr BP, suggesting a shift to drier (and cooler) conditions. Pollen records show that conifer‐hardwood forest dominated by podocarps (especially Dacrydium) prevailed prior to Polynesian arrival and deforestation within the last millennium, with Fuscopsora insignificant throughout. Both cores show sections with gaps in deposition or preservation, possible flood‐stripping of peat during the pre‐Holocene and mechanical disturbance by early Polynesians. The identification of prehistoric starch grains and other microremains of introduced Colocasia esculenta (taro) in both cores supports indirect evidence that the ditch systems of far northern New Zealand were used for the extensive cultivation of this crop. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号