共查询到17条相似文献,搜索用时 62 毫秒
1.
基于BP人工神经网络的水体遥感测深方法研究 总被引:1,自引:0,他引:1
利用Landsat7 ETM 遥感图像反射率和实测水深值之间的相关性,建立了动量BP人工神经网络水深反演模型,并对长江口南港河段水深进行了反演。结果表明:具有较强非线性映射能力的动量BP神经网络模型能较好地反演出长江口南港河段的水深分布情况;由于受长江口水体高含沙量的影响,模型对小于5m的水深值反演精度较高,而对大于10m的水深值反演精度较低。 相似文献
2.
3.
利用Landsat7 ETM+遥感影像反射率和实测水深值之间的相关性,选取了相关性较好的ETM1、ETM2、ETM3、ETM4、ETM3/ETM2等5个水深反演因子,建立了BP神经网络水深反演模型。为充分体现BP神经网络模型的优越性,利用SPSS软件建立了单波段、波段比值、多波段三种不同的线性回归模型。通过对比发现,具有很好的自适应能力和非线性映射能力的BP神经网络模型在处理遥感水深反演问题上比传统的线性模型效果更好。 相似文献
4.
5.
高光谱遥感水深反演是一种对传统水深测量方法的补充,具有方便、快捷、经济等突出优势。本文研究区位于上海横沙,属于典型滩涂浅水区,研究数据包括GF5-AHSI高光谱遥感数据和同时期的水深数据。通过数据变换和相关分析等方法提取建模参数,利用单波段比值模型、多元线性回归模型、最优标度回归模型和BP神经网络模型实现该区域水深反演,并对4种模型反演结果的准确性进行了验证和比较。研究发现:最优标度回归模型优于其他3种模型,R2达到了0.972,RMSE为0.47 m,适用于横沙浅海水深反演。 相似文献
6.
以海口湾为研究区,利用Landsat资料进行可见光遥感测深方法研究。采用NDWI、MNDWI、EWI、NWI指数的阈值分割法进行水陆分离,结果表明NDWI指数更适合海口湾。选取与水深相关性比较好的反射率因子TM2、TM3、TM1/TM2、TM1/TM3,采用目前常见的可见光遥感测深方法,建立了线性、对数、幂指数、指数测深模型,与实测水深的比较结果表明TM1/TM3的指数测深模型在0-10 m水深的平均绝对误差为1.67 m,在实际应用中有参考价值。此外,建立了TM2、TM3、TM1/TM2、TM1/TM3的二次多项式测深模型以及对数二次多项式测深模型,建立了它们的二元和四元线性、对数测深模型,还建立了它们的分段函数测深模型,与实测水深的比较结果表明,二次多项式测深模型优于线性测深模型,对数二次多项式测深模型优于对数测深模型,分段函数测深模型优于非分段函数测深模型。 相似文献
7.
基于Landsat-8遥感影像和LiDAR测深数据的水深主被动遥 总被引:1,自引:0,他引:1
主被动遥感结合反演远海岛礁周边水深信息,不仅可以有效弥补传统测深方法覆盖范围小且费时费力的不足,也可为航运安全、海洋减灾、生态环境保护等领域提供基础资料。以夏威夷瓦胡岛周边水深反演为例,应用Landsat-8多光谱遥感数据和机载Li DAR测深数据,开展了不同密度Li DAR测深数据对水深多光谱遥感反演精度的影响分析、不同水深网格化处理方法对水深遥感反演结果的影响分析和基于少量Li DAR控制区块的大区域水深反演能力分析三方面的研究工作。结果表明:(1)Li DAR测深数据密度的改变对水深反演结果的影响不大,变化后的水深反演结果与原始的水深反演结果相比,平均相对误差变化在0.3%以内,平均绝对误差变化在0.03m以内;(2)采用均值格网处理方法的多光谱遥感水深反演精度要略高于采用中值格网处理方法的水深反演精度,具体体现在均值的平均绝对误差要比中值的低0.04~0.05 m,平均相对误差低1%~10%,反演结果的残差分布显示在0~2 m和20~25 m的水深段内均值统计法的残差分布更集中且其平均值接近于0 m,而在其它水深段二者的残差分布基本相同;(3)基于少量Li DAR控制区块的大区域遥感水深反演结果较为理想,两个检查区块的水深反演结果 R2、平均绝对误差和平均相对误差分别为:0.877,1.66 m,3.5%和0.941,1.62 m,28.4%。反演结果分段分析表明各水深段内反演的精度都比较理想,平均绝对误差除20~25 m水深段外,均低于2.5 m,平均相对误差除0~2 m,2~5 m外,均低于25%。 相似文献
8.
9.
10.
《海洋技术学报》2023,(2)
基于遥感影像的测深技术具有易获取、成本低和覆盖率大等优势,是目前的研究热点问题之一。为在波浪折射的基础上,进一步综合考虑绕射及非线性的影响,本文提出了一种基于海浪波数和波高信息的近岸水深反演模型。将模型与Berkhoff 椭圆形浅滩理想试验对比,平均误差为0.13%,显著小于现有基于频散关系反演水深的方法。进一步应用模型反演三亚湾近岸地形,通过与海图对比,平均误差为11.58%,且大部分区域的误差小于10%。部分区域误差较大,主要是由于遥感影像获取的波数空间分辨率和精度较低。以上结果表明该模型可以利用遥感海浪信息较准确推算近岸水深。本文对于近岸浅海区的水深反演工作具有一定的参考价值。 相似文献
11.
Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for preliminary engineering application. 相似文献
12.
基于二次散射的水污染遥感模型及其在珠江口水域的应用 总被引:10,自引:1,他引:10
根据水中悬浮物、污染物和水分子等的散射和吸收物理机制建模是实现水污染定量遥感的有效途径.基于一次散射的水污染遥感模型简单易行,但在浑浊度较大时其精度不高.在基于一次散射模型的基础上分析了多次散射的能量组成特点,提出再考虑二次散射可使模型的精度显著提高且不至于使模型过于复杂;导出了二次散射的补偿因子,同时给出了考虑二次散射因子的简单计算方法.将该模型应用于珠江口水域的水污染遥感的结果表明,较之基于一次散射的模型,考虑二次散射的水污染遥感模型在精度上有明显改进.遥感提取结果显示,珠江口水域重污染区主要分布在伶仃洋东北部,香港维多利亚港和深圳湾. 相似文献
13.
基于控制因子分析的方法,本研究建立了夏季珠江口海域海水CO2分压(pCO2)的遥感反演模型。基于珠江水与黑潮水的两端元混合,建立了水平混合和热力学作用的量化模型,并生成了查找表。同时,建立了基于黄色物质(含碎屑)吸收系数的盐度遥感算法,实现珠江口海域表层盐度的遥感反演。利用走航pCO2和匹配的遥感叶绿素质量浓度产品,建立了生物作用的量化模型。通过集成水平混合和生物作用,最终实现夏季珠江口海域pCO2的遥感反演。与走航pCO2比较表明,仅考虑水平混合和热力学作用的遥感结果会显著高估,考虑生物作用后,遥感结果无论在量值和空间变化趋势上均与实测结果相符。此外,遥感反演结果表明,夏季珠江口近岸水域为CO2的汇区,而离岸的陆架水域则为CO2的弱源。 相似文献
14.
有色溶解有机物(Colored Dissolved Organic Matter, CDOM)是水体中重要的水质参数之一,是水色遥感的重要研究对象,如何构建适合特定区域的近海二类水体CDOM反演模型一直是国内外研究难点。本文利用2017年5月26~29日对南海西北部海域湛江湾20个站位采集的水样和测量的光谱资料,分析归一化遥感反射率与CDOM浓度a_g(400)的相关性,发现最大负相关系数出现在586nm处,选择580、585、590、595nm这四个波段处的归一化遥感反射率与a_g(400)建立了多元线性回归模型、BP(Back-Propagation)神经网络模型和RBF(Radial-Basis Function)神经网络模型,并与其他算法模型进行对比分析。结果发现, BP和RBF神经网络模型的平均相对误差和均方根误差均远小于多元线性回归模型和其他算法模型,神经网络模型的预测值与实测值拟合效果要优于多元线性回归模型。研究表明,神经网络模型更适合于湛江湾有色溶解有机物的遥感估算。 相似文献
15.
基于多种神经网络的风暴潮增水预测方法的比较分析 总被引:1,自引:0,他引:1
简要介绍了利用BP神经网络、小波神经网络、递归神经网络进行风暴潮增水值预测的原理。选取广东省珠江口以南的阳江站2017年风暴潮增水数据进行测试。结果表明,三种神经网络方法针对阳江地区风暴潮增水的预测均具有可靠性和实用性。以当前增水值为输入量的单因子模型更能反映真实风暴潮增水趋势,而从增水极值预测的准确性来看,以台风风力、气压、风向等相关参数为输入量的多因子模型优于单因子模型。BP神经网络更适用于多因子长时间预测,小波神经网络在单因子短时间预测上准确性更高,递归神经网络预测值与实测值相关性更强。在工程运用中,需根据地域时空特点、数据资料的丰富度与预测值评估指标选择合适的方法。 相似文献
16.
浅海区水深的精确反演对于海洋空间管理和生态环境保护至关重要。选取南海西沙群岛的羚羊礁海域为研究区,基于GeoEye-1和WorldView-2高分辨率多光谱遥感数据和实测水深数据,分别建立了单波段模型、多波段模型和波段比值模型。结果显示,由绿波段参与建立的水深反演模型相关性普遍较高,同时利用4个波段组合建立的多波段模型精度最高,相关系数分别达到了0.870和0.853。基于该模型的反演结果对GeoEye-1和WorldView-2遥感数据在不同水深范围内的反演精度进行比较,结果表明,两种数据在不同水深范围内的反演误差变化趋势一致,平均相对误差最大值均出现在0~5 m,而最小值均出现在20~25 m。总体而言,WorldView-2影像反演水深的精度高于GeoEye-1影像的反演精度。研究对于热带浅海区的水深反演工作具有一定的参考意义。 相似文献
17.
基于BP人工神经网络的海水水质综合评价 总被引:1,自引:0,他引:1
为了能够客观地对海水水质进行综合评价,在分析人工神经网络概念和原理的基础上,从阈值角度出发,通过对各类海水水质污染指标浓度生成样本的方法,生成了适用于BP人工神经网络模型训练的样本,并应用基于误差反向传播原理的前向多层神经网络,建立了用于海水水质评价的BP人工神经网络模型。将该模型用于渤海湾近岸海域水环境评价,通过模型... 相似文献