首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Dean Pesnell 《Solar physics》2014,289(6):2317-2331
We describe using Ap and F10.7 as a geomagnetic-precursor pair to predict the amplitude of Solar Cycle 24. The precursor is created by using F10.7 to remove the direct solar-activity component of Ap. Four peaks are seen in the precursor function during the decline of Solar Cycle 23. A recurrence index that is generated by a local correlation of Ap is then used to determine which peak is the correct precursor. The earliest peak is the most prominent but coincides with high levels of non-recurrent solar activity associated with the intense solar activity of October and November 2003. The second and third peaks coincide with some recurrent activity on the Sun and show that a weak cycle precursor closely following a period of strong solar activity may be difficult to resolve. A fourth peak, which appears in early 2008 and has recurrent activity similar to precursors of earlier solar cycles, appears to be the “true” precursor peak for Solar Cycle 24 and predicts the smallest amplitude for Solar Cycle 24. To determine the timing of peak activity it is noted that the average time between the precursor peak and the following maximum is ≈?6.4 years. Hence, Solar Cycle 24 would peak during 2014. Several effects contribute to the smaller prediction when compared with other geomagnetic-precursor predictions. During Solar Cycle 23 the correlation between sunspot number and F10.7 shows that F10.7 is higher than the equivalent sunspot number over most of the cycle, implying that the sunspot number underestimates the solar-activity component described by F10.7. During 2003 the correlation between aa and Ap shows that aa is 10 % higher than the value predicted from Ap, leading to an overestimate of the aa precursor for that year. However, the most important difference is the lack of recurrent activity in the first three peaks and the presence of significant recurrent activity in the fourth. While the prediction is for an amplitude of Solar Cycle 24 of 65±20 in smoothed sunspot number, a below-average amplitude for Solar Cycle 24, with maximum at 2014.5±0.5, we conclude that Solar Cycle 24 will be no stronger than average and could be much weaker than average.  相似文献   

2.
Lantos  P.  Richard  O. 《Solar physics》1998,182(1):231-246
Precursor methods for the prediction of maximum amplitude of the solar cycle have previously been found to provide the most reliable indication for the size of the following cycle, years in advance. In this paper, we evaluate several of the previously used geomagnetic precursor methods and some new ones, both as single-variate and multivariate regressions. The newer precursor methods are based on the size of the geomagnetic index maximum, which, since cycle 12, has always occurred during the declining portion of the solar cycle, usually several years before subsequent cycle minimum. These various precursor techniques are then applied to cycle 23, yielding the prediction that its maximum amplitude should be about 168 ± 15 (r.m.s.), peaking sometime in 1999–2000.  相似文献   

3.
An updated catalog is created of 303 well-defined high-speed solar wind streams that occurred in the time period 2009?–?2016. These streams are identified from solar and interplanetary measurements obtained from the OMNIWeb database as well as from the Solar and Heliospheric Observatory (SOHO) database. This time interval covers the deep minimum observed between the last two Solar Cycles 23 and 24, as well as the ascending, the maximum, and part of the descending phases of the current Solar Cycle 24. The main properties of solar-wind high-speed streams, such as their maximum velocity, their duration, and their possible sources are analyzed in detail. We discuss the relative importance of all those parameters of high-speed solar wind streams and especially of their sources in terms of the different phases of the current cycle. We carry out a comparison between the characteristic parameters of high-speed solar wind streams in the present solar cycle with those of previous solar cycles to understand the dependence of their long-term variation on the cycle phase. Moreover, the present study investigates the varied phenomenology related to the magnetic interactions between these streams and the Earth’s magnetosphere. These interactions can initiate geomagnetic disturbances resulting in geomagnetic storms at Earth that may have impact on technology and endanger human activity and health.  相似文献   

4.
Correlations between monthly smoothed sunspot numbers at the solar-cycle maximum [R max] and duration of the ascending phase of the cycle [T rise], on the one hand, and sunspot-number parameters (values, differences and sums) near the cycle minimum, on the other hand, are studied. It is found that sunspot numbers two?–?three years around minimum correlate with R max or T rise better than those exactly at the minimum. The strongest correlation (Pearson’s r=0.93 with P<0.001 and Spearman’s rank correlation coefficient r S=0.95 with P=9×10?12) proved to be between R max and the sum of the increase of activity over 30 months after the cycle minimum and the drop of activity over 30 or 36 months before the minimum. Several predictions of maximal amplitude and duration of the ascending phase for Solar Cycle 24 are given using sunspot-number parameters as precursors. All of the predictions indicate that Solar Cycle 24 is expected to reach a maximal smoothed monthly sunspot number (SSN) of 70?–?100. The prediction based on the best correlation yields the maximal amplitude of 90±12. The maximum of Solar Cycle 24 is expected to be in December 2013?–?January 2014. The rising and declining phases of Solar Cycle 24 are estimated to be about 5.0 and 6.3 years, respectively. The minimum epoch between Solar Cycles 24 and 25 is predicted to be at 2020.3 with minimal SSN of 5.1?–?5.4. We predict also that Solar Cycle 25 will be slightly stronger than Solar Cycle 24; its maximal SSN will be of 105?–?110.  相似文献   

5.
Prediction of Solar Cycle Maximum Using Solar Cycle Lengths   总被引:1,自引:0,他引:1  
R. P. Kane 《Solar physics》2008,248(1):203-209
If the rise time RT, fall time FT, and total time TT (i.e., RT+FT) of a solar cycle are compared against the maximum amplitude Rz(max ) for the following cycle, then only the association between TT and Rz(max ) is inferred to be well anticorrelated, inferring that the larger (smaller) the value of Rz(max ) for the following cycle, the shorter (longer) the TT of the preceding cycle. Although the inferred correlation (−0.68) is statistically significant, the inferred standard error of estimate is quite large, so predictions using the inferred correlation are not very precise. Removal of cycle pairs 15/16, 19/20, and 20/21 (statistical outliers) yields a regression that is highly statistically significant (−0.85) and reduces the standard error of estimate by 18%. On the basis of the adjusted regression and presuming TT=140 months for cycle 23, the present ongoing cycle, cycle 24’s 90% prediction interval for Rz(max ) is estimated to be about 94±44, inferring only a 5% probability that its Rz(max ) will be larger than about 140, unless of course cycle pair 23/24 is a statistical outlier.  相似文献   

6.
Based on cycles 17 – 23, linear correlations are obtained between 12-month moving averages of the number of disturbed days when Ap is greater than or equal to 25, called the Disturbance Index (DI), at thirteen selected times (called variate blocks 1, 2,… , each of six-month duration) during the declining portion of the ongoing sunspot cycle and the maximum amplitude of the following sunspot cycle. In particular, variate block 9, which occurs just prior to subsequent cycle minimum, gives the best correlation (0.94) with a minimum standard error of estimation of ± 13, and hindcasting shows agreement between predicted and observed maximum amplitudes to about 10%. As applied to cycle 24, the modified precursor technique yields maximum amplitude of about 124±23 occurring about 45±4 months after its minimum amplitude occurrence, probably in mid to late 2011.  相似文献   

7.
Solar Physics - During solar minimum, the Sun is relatively inactive with few sunspots observed on the solar surface. Consequently, we observe a smaller number of highly energetic events such as...  相似文献   

8.
Historical geomagnetic and climate records were analyzed to study long-term trends and relationships with solar activity. Wavelet technique and recurrence plot analysis are applied to the data to find their coherence and similarities at different times and time-scales. It is shown that the solar cycle signal is more pronounced in climatic data during the last 60 years.  相似文献   

9.
In this paper, the method of similar cycles is applied to predict the start time of the 24th cycle of solar activity and the sunspot numbers in the later part of the descending phase of cycle 23. According to the characteristic parameters and the morphological characters of the descending phase of cycle 23 and of cycles 9, 10, 11, 15, 17 and 20 (cycles selected as the similar cycles for the descending phase of cycle 23), the start time of cycle 24 is predicted to be in 2007 yr 5 ± 1m, the smoothed monthly mean spot number, 7.1 ± 2.6 and the length of the 23rd cycle, 11.1 yr. These results agree rather well with those stated in Refs.[11] & [12] as well as those of MSFC. Our work shows that the method of similar cycles can well be applied to the long-term prediction of solar activity.  相似文献   

10.
Duhau  S. 《Solar physics》2003,213(1):203-212
A non-linear coupling function between sunspot maxima and aa minima modulations has been found as a result of a wavelet analysis of geomagnetic index aa and Wolf sunspot number yearly means since 1844. It has been demonstrated that the increase of these modulations for the past 158 years has not been steady, instead, it has occurred in less than 30 years starting around 1923. Otherwise sunspot maxima have oscillated about a constant level of 90 and 141, prior to 1923 and after 1949, respectively. The relevance of these findings regarding the forecasting of solar activity is analyzed here. It is found that if sunspot cycle maxima were still oscillating around the 141 constant value, then the Gnevyshev–Ohl rule would be violated for two consecutive even–odd sunspot pairs (22–23 and 24–25) for the first time in 1700 years. Instead, we present evidence that solar activity is in a declining episode that started about 1993. A value for maximum sunspot number in solar cycle 24 (87.5±23.5) is estimated from our results.  相似文献   

11.
Predictions of Solar Cycle 24   总被引:1,自引:0,他引:1  
A summary and analysis of more than 50 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. All of the predictions were published before solar minimum and represent our efforts to anticipate solar maximum at ever-earlier epochs. The consistency of the predictions within their assigned categories is discussed. Estimates of the significance of the predictions, compared to the climatological average, are presented.  相似文献   

12.
We present a brief review of predictions of solar cycle maximum amplitude with a lead time of 2 years or more. It is pointed out that a precise prediction of the maximum amplitude with such a lead-time is still an open question despite progress made since the 1960s. A method of prediction using statistical characteristics of solar cycles is developed: the solar cycles are divided into two groups, a high rising velocity (HRV) group and a low rising velocity (LRV) group, depending on the rising velocity in the ascending phase for a given duration of the ascending phase. The amplitude of Solar Cycle 24 can be predicted after the start of the cycle using the formula derived in this paper. Now, about 5 years before the start of the cycle, we can make a preliminary prediction of 83.2-119.4 for its maximum amplitude.  相似文献   

13.
14.
Magnetic clouds (MCs) are transient magnetic structures giving the strongest southward magnetic field (Bz south) in the solar wind. The sheath regions of MCs may also carry a southward magnetic field. The southward magnetic field is responsible for space-weather disturbances. We report a comprehensive analysis of MCs and Bz components in their sheath regions for 1995 to 2017. 85% of 303 MCs contain a south Bz up to 50 nT. Sheath Bz during the 23 years may reach as high as 40 nT. MCs of the strongest magnetic magnitude and Bz south occur in the declining phase of the solar cycle. Bipolar MCs depend on the solar cycle in their polarity, but not in the occurrence frequency. Unipolar MCs show solar-cycle dependence in their occurrence frequency, but not in their polarity. MCs with the highest speeds, the largest total-\(B\) magnitudes, and sheath Bz south originate from source regions closer to the solar disk center. About 80% of large Dst storms are caused by MC events. Combinations of a south Bz in the sheath and south-first MCs in close succession have caused the largest storms. The solar-cycle dependence of bipolar MCs is extended to 2017 and now spans 42 years. We find that the bipolar MC Bz polarity solar-cycle dependence is given by MCs that originated from quiescent filaments in decayed active regions and a group of weak MCs of unclear sources, while the polarity of bipolar MCs with active-region flares always has a mixed Bz polarity without solar-cycle dependence and is therefore the least predictable for Bz forecasting.  相似文献   

15.
As suggested in many studies the pre-increases or pre-decreases of the cosmic ray intensity (known as precursors), which usually precede a Forbush decrease, could serve as a useful tool for studying space weather effects. The events in this study were chosen based on two criteria. Firstly, the heliolongitude of the solar flare associated with each cosmic ray intensity decrease was in the 50°?–70°W sector and, secondly, the values of the geomagnetic activity index, Kp max, were ≥?5. Twenty five events were selected from 1967 to 2006. We have used data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst), and interplanetary magnetic field in our detailed analysis. The asymptotic longitudinal cosmic ray distribution diagrams were plotted using the “Ring of Stations” method for all the events. The results reveal clear signs of precursors in 60 % of selected events.  相似文献   

16.
We report on the 22?–?23 June 2015 geomagnetic storm that occurred at the summer solstice. There have been fewer intense geomagnetic storms during the current solar cycle, Solar Cycle 24, than in the previous cycle. This situation changed after mid-June 2015, when one of the largest solar active regions (AR 12371) of Solar Cycle 24 that was located close to the central meridian, produced several coronal mass ejections (CMEs) associated with M-class flares. The impact of these CMEs on the Earth’s magnetosphere resulted in a moderate to severe G4-class geomagnetic storm on 22?–?23 June 2015 and a G2 (moderate) geomagnetic storm on 24 June. The G4 solstice storm was the second largest (so far) geomagnetic storm of Cycle 24. We highlight the ground-level observations made with the New-Tupi, Muonca, and the CARPET El Leoncito cosmic-ray detectors that are located within the South Atlantic Anomaly (SAA) region. These observations are studied in correlation with data obtained by space-borne detectors (ACE, GOES, SDO, and SOHO) and other ground-based experiments. The CME designations are taken from the Computer Aided CME Tracking (CACTus) automated catalog. As expected, Forbush decreases (FD) associated with the passing CMEs were recorded by these detectors. We note a peculiar feature linked to a severe geomagnetic storm event. The 21 June 2015 CME 0091 (CACTus CME catalog number) was likely associated with the 22 June summer solstice FD event. The angular width of CME 0091 was very narrow and measured \({\sim}\, 56^{\circ }\) degrees seen from Earth. In most cases, only CME halos and partial halos lead to severe geomagnetic storms. We perform a cross-check analysis of the FD events detected during the rise phase of Solar Cycle 24, the geomagnetic parameters, and the CACTus CME catalog. Our study suggests that narrow angular-width CMEs that erupt in a westward direction from the Sun–Earth line can lead to moderate and severe geomagnetic storms. We also report on the strong solar proton radiation storm that began on 21 June. We did not find a signal from this SEP at ground level. The details of these observations are presented.  相似文献   

17.
Various forecast techniques have been analyzed with reference to solar activity cycle 24. Three prediction indices have been proposed: the intensity of the polar field, the mean field at the source surface, and a recurrence index of geomagnetic disturbances. As a rule, the forecast based on the polar field and extrapolation of local fields gives a height for cycle 24 that is smaller than that of cycle 23. The use of the recurrence index and the global field value leads us to the conclusion that cycle 24 will be medium high: the same as or somewhat higher than cycle 23.  相似文献   

18.
The aim of this paper is to investigate the association of geomagnetic storms with the component of the interplanetary magnetic field (IMF) perpendicular to the ecliptic (\(Bz\)), the solar wind speed (\(V\)), the product of solar wind speed and \(Bz\) (VBz), the Kp index, and the sunspot number (SSN) for two consecutive even solar cycles, Solar Cycles 22 (1986?–?1995) and 24 (2009?–?2017). A comparative study has been done using the superposed epoch method (Chree analysis). The results of the present analysis show that \(Bz\) is a geoeffective parameter. The correlation coefficient between Dst and \(Bz\) is found to be 0.8 for both Solar Cycles 22 and 24, which indicates that these two parameters are highly correlated. Statistical relationships between Dst and Kp are established and it is shown that for the two consecutive even solar cycles, Solar Cycles 22 and 24, the patterns are strikingly similar. The correlation coefficient between Dst and Kp is found to be the same for the two solar cycles (?0.8), which clearly indicates that these parameters are well anti-correlated. For the same studied period we found that the SSN does not show any relationship with Dst and Kp, while there exists an inverse relation between Dst and the solar wind speed, with some time lag. We have also found that VBz is a more relevant parameter for the production of geomagnetic storms, as compared to \(V\) and \(Bz\) separately. In addition, we have found that in Solar Cycles 22 and 24 this combined parameter is more relevant during the descending phase as compared to the ascending phase.  相似文献   

19.
A database is compiled for the study of solar and heliospheric causes of geomagnetic perturbations with the daily average index A > 20 that were observed in the period 1997–2000. The number of such events (more than 200) progressively increased and fluctuated as the current solar cycle developed. It is established that geomagnetic storms are generated by dynamical processes and structures near the center of the solar disk in a zone of several tens of degrees, and these processes are responsible for the appearance in the Earth's region, within several tens of hours, of quasistationary and transient solar wind streams with a sufficiently strong southward component of the heliospheric magnetic field. These streams lasted more than a few hours. The following structures can serve as morphological indicators for the prediction of the appearance of such streams: (1) active and disappearing filaments derived from synoptic -maps of the Sun, (2) solar flares, (3) coronal holes and evolving active regions, and (4) the heliospheric current sheet. The geometry of coronal mass ejections needs further observational study.  相似文献   

20.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号