首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequency of flares is one of the basic characteristics of the activity of flare stars. Long-term variations in the flaring frequency are determined by comparing the distribution functions of the flaring frequency for systems of flare stars with different ages. __________ Translated from Astrofizika, Vol. 51, No. 1, pp. 63–74 (February 2008).  相似文献   

2.
This is an analysis of the dependence of the flare activity of the well known flare star UV Ceti on the linear distance between the components of this binary system. It is shown that its flaring activity clearly depends on the mutual distance of the components, while this kind of variability is not seen in isolated flare stars.  相似文献   

3.
We studied the spectra of 24 flare stars of the Pleiades cluster region obtained on the 2.6m telescope of the Byurakan observatory in the years 1986–1989. From the spectral indices of titanium oxide (TiO) and other chemical elements of the stars investigated we determined their spectral classes and luminosities (absolute visual stellar magnitudes). The agreement of these moduli of the stars with the distance modulus of the Pleiades cluster confirms that 21 of them belong to the cluster. Only three of them (FSP 169, FSP 377, and FSP 435) are possibly not members of the cluster. This indicates that the flare activity of a star is a reliable criterion for its membership in a nearby stellar system (cluster or association).Translated fromAstrofizika, Vol. 37, No. 4, 1994.  相似文献   

4.
Simultaneous X-ray and extreme ultraviolet (EUV) ( ROSAT XRT and WFC All-Sky Survey) observations of the highly active dMe flare stars YY Gem and AU Mic show that the two stars displayed an unusual type of flaring behaviour. We detect several X-ray and EUV flares superimposed on an enhanced and smoothly varying quiescent background. The two large impulsive-type X-ray flares on YY Gem reach peak X-ray luminosities of     and we estimate that they had similar integrated luminosities (∼6–8×1033 erg). AU Mic also produced several X-ray and EUV flares, with one very impulsive flare producing a 10-fold increase in XRT count rate. This flare was even larger than the YY Gem flares (peak L X of     and integrated L X of    
The     ratio for both stars is at the 'saturation' limit found in rapidly rotating dwarfs and the most active RS CVn stars. We suggest that the gradually varying components are the result of a period of continuous, unresolved flaring activity. Alternatively, they may be the result of the emergence and subsequent decay of a new magnetic active region on the stellar surface of these stars.  相似文献   

5.
Observations of regular and irregular polarimetric variability in late-type stars are reviewed, and the related physical and geometrical effects are discussed. There are indications that the irregular part of the variability could be caused by transient events, possibly associated with flares. Polarimetric observations during flares are reviewed, and preliminary results of new observations of a well-known flare star, YY Geminorum, are presented. The results show that the small flare in YY Gem did not cause any significant variations in linear polarization, while the binary eclipse evidently causes an enhancement in the polarization. The reasons for the difficulties in stellar flare polarimetry are discussed. Finally, future prospects for the observations of flaring stars and for the utilization of linear polarimetry as a complementary method to other techniques of surface imaging of stellar activity and flares are presented.  相似文献   

6.
On the basis of the relationship between the age and the magnitude of the maximal flare amplitude in flare stars found previously by the author we propose a method of determining the age of aggregates. Using new observational data relative to flares in U and B we determine the age of the Cyg T1 association (3.4 · 10 6 years), which differs only slightly from an earlier estimate. We give estimated upper bounds for the ages of some flare stars in the solar neighborhood: UV Ceti, EV Lac, AD Leo, EG Peg, and YZ CMi, and also for seven flare stars of the galactic field. It follows from these results that the ages vary noticeably.Translated fromAstrofizika, Vol. 38, No. 3, 1995.  相似文献   

7.
The two best-studied subsystems of flare stars, in Orion and the Pleiades, which are of considerably different ages, are compared. It is shown that the observed differences between them are consistent with the evolutionary status of flare stars that represent a stage in the evolution of red dwarfs. It is found that less luminous stars exhibit higher flare frequencies. For equally luminous stars, flare activity is lower in older stars.Translated from Astrofizika, Vol. 37, No. 1, pp. 59–72, January–February, 1994.  相似文献   

8.
B. R. Pettersen 《Solar physics》1989,121(1-2):299-312
We review the flaring activity of stars across the HR-diagram. Brightenings have been reported along the entire Main Sequence and in many stars off the Main Sequence. Some stars are decidedly young, others are in advanced stages of stellar evolution. Flares are common on stars with outer convection zones and outbursts have been reported also on other types of stars, although confirmations are needed for some of them.Analyses of flare occurrence sometimes find flares to be randomly distributed in time, and sometimes indicate a tendency for flares to come in groups. Preferred active longitudes have been suggested. Recent solar results, where the occurrence rate for flares is found to exhibit a periodicity of 152 days, suggest that stellar flare data should be reanalyzed over long time baselines to see if the present confusing situation can be resolved.The radiation from stellar flares is dominated by continuum emission and about equal amounts of energy have been recorded in the optical, UV, and X-ray regions of the spectrum. In solar flares strong continuum emission is rarely recorded and a large collection of bright emission lines takes prominence. Small flares occur more frequently than large ones and the latter have longer time-scales. Flare energies can exceed 1037 erg. The most productive flare stars are those where the convective envelopes occupy large volumes. Slow stellar rotation rates are believed to reduce the level when the star has been braked significantly from its young rotation rate.  相似文献   

9.
The now-closed Clark Radio Observatory was used in 1984 and 1985 to search for flaring emission from a number of dMe flare stars in the 30.9 to 110.6 MHz frequency range. No emission was found to greatly exceed detection limits which range from about 1 Jy for 1 hr averaging, to about 50 Jy for 1 s averaging, even though flares were often seen to tens of mJy at 20 cm using the VLA for those times when VLA-CLRO observations were coordinated. There are marginal detections of flaring from AD Leo over two periods on December 15, 1985 which mark the beginning and the end of along-lasting, narrow-band flare at 1415 MHz.  相似文献   

10.
We present, for the first time, an analysis of seven intense X-ray flares observed from six stars (LAV 796, LAV 1174, SHM2002 3734, 2MASS 02191082+5707324, V553 Car, V557 Car). These stars are located in the region of young open star clusters NGC 869 and IC 2602. These flares detected in the XMM-Newton data show a rapid rise (10–40 min) and a slow decay (20–90 min). The X-ray luminosities during the flares in the energy band 0.3–7.5 keV are in the range of 1029.9 to 1031.7 erg s?1. The strongest flare was observed with the ratio ~13 for count rates at peak of the flare to the quiescent intensity. The maximum temperature during the flares has been found to be ~100 MK. The semi-loop lengths for the flaring loops are estimated to be of the order of 1010 cm. The physical parameters of the flaring structure, the peak density, pressure and minimum magnetic field required to confine the plasma have been derived and found to be consistent with flares from pre-main sequence stars in the Orion and the Taurus-Auriga-Perseus region.  相似文献   

11.
Observations of the Pleiades cluster by the method of stellar tracks, carried out on the 40-inch Schmidt telescope of Byurakan Astrophysical Observatory, have resulted in the detection of 49 flares from 38 stars, 17 of which were not previously known to be flare stars. It is shown that for bright stars (U ≤ 16.0) the detection of flares in observations by the method of stellar tracks is at least three times more efficient than for observations by the method of stellar chains. Another advantage of the first method is that one can detect brief flares that last less than 6 min. The visual stellar magnitude at the minimum for the brightest of the flare stars that we found is 11.92. This raised the upper luminosity limit of known flare stars in the Pleiades by 0.21 magnitude. A comparison of the expected number of bright flare stars in the Pleiades with the number of all bright members of the cluster (falling in the range from V ≈ 12.0 toV ≈16.0) suggested that all these stars evidently must be flare stars. Translated from Astrofizika, Vol. 42, No. 3, pp. 351–358, July–September, 1999.  相似文献   

12.
Long-term changes in two flare stars, EV Lac and BY Dra, have been detected by Mavridiset al. (1982). These long cyclic periods have been registered in theB-band at their quiescent-state luminosity as well as at their flare activity. Those observational data of the two previously mentioned flare stars as well as another observational data of the flare star, UV Cet, at its flare activity were submitted to our computer programme for periodicity detection excluding cyclic periods which have amplitudes less than tenth magnitude for great significance. Some of our results coincided with the long cyclic periods detected by Mavridiset al. (1982) while the remainder of our results have had no complete coincidence with those registered by Mavridiset al. (1982).  相似文献   

13.
A statistical study of 228 flares on the three UV Ceti-type stars, i.e., YZ CMi, AD Leo, and EV Lac, is presented. Observations were gathered by Ichimura and Shimizu over a total monitoring time of 907 hours distributed over 18 years (1971 to 1988). Period analysis of flare activity was performed, and no periodicity was detected on the three stars for either the flare number rate or the energy rate in time-scales ranging from a year up to 14 years. Average colour of flares at peak was (U-B)=–0.98±0.17 and (B-V)=0.05±0.13. Cumulative number distributions of flare event time-integrated energies were solved by a least-squares method on a log-log plot for a power-law function to get both the constant of and the gradient , which were found to be similar among the three stars. The gradient showed that rare large flare events radiate most of the energy released by all the flare events in the monitoring time. The flare number rate and energy rate are similar if the power-law distributions are extended up to a specific maximum energy. In reality, the Kolmogorov-Smirnov test showed that the observed cumulative number distributions of flare event energy were not necessarily a power-law function. The monte-Carlo simulation, however, indicates that the monitoring time and/or the patrol observation time interval may not be long enough to get the average flare number rate and energy rate, especially at the upper energy limits which are statistically unreliable.  相似文献   

14.
The results from a flare star investigation in the open cluster Alpha Persei are presented. Photographic flare star monitoring and CCD photometry of the discovered 4 new flare stars are made. The flare star activity phenomenon is restricted to the classical flare stars (UV Ceti type) as classified in the GCVS. The V/V‐I diagramme of the members of the cluster with the locations of the considered flare stars is given. Most of the flare stars are probable cluster members. The flare frequency determined from the Rozhen flare star monitoring is very low–one flare event occurs for 38.5 hours effective observing time. Comparison with the flare activity of the Pleiades is made because of the small difference in the age and distance of the clusters.  相似文献   

15.
A new method is proposed for determining the frequency distribution of bursts from randomly flashing objects based on fitting Pearson distributions by the method of moments. This method is applied to flare stars in the Pleiades cluster and the Orion association. The desired frequency distribution of the bursts from flare stars can be approximated by a gamma distribution. The burst frequency distribution describes the observed statistical picture fairly well. The result is compared with other methods.  相似文献   

16.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

17.
The mean density of the UV Cet-type flare stars in the solar neighbourhood is estimated. If differences of activity levels on different flare stars are taken into account, their summary flare activity is equivalent to 0.03 YZ CMi's flare activity per cubic parsec or to 4×1026 erg s–1 pc–3 in U-passband. From the X-ray flare observation on YZ CMi of 19.10.74 we estimate the luminosity of stellar flares in soft and intermediate X-ray. The ratio of X-ray to optical radiation for stellar flares is close to the respective ratio for strong solar chromospheric flares. It is shown the set of red-dwarf flare stars has all essential features of an ensemble of discrete X-ray sources to represent the galactic diffuse X-ray background.  相似文献   

18.
Craig  I.J.D.  Wheatland  M.S. 《Solar physics》2002,211(1-2):275-287
The ability of magnetic reconnection solutions to explain statistical flare data is discussed. It is assumed that flares occur at well-defined, isolated sites within an active region, determined by the null points and separators of the coronal magnetic field (Craig, 2001). Statistical flare observations then derive from a multiplicity of independent sites, flaring in parallel, that produce events of widely varying output (Wheatland, 2002). Given that the `separator length' at an individual site controls the event frequency and the mean energy release, it is shown that the observed frequency-energy spectrum N(E)can be inverted to yield a source function that relates directly to the distribution of separator lengths. It is also pointed out that, under the parallel flaring model, inferred waiting-time distributions are naturally interpreted as a superposition of individual point processes. Only a modest number of flaring separators is required to mimic a Poisson process.  相似文献   

19.
Hong  Zhenxiang  Li  Dong  Zhang  Minghui  Tan  Chengming  Ma  Suli  Ji  Haisheng 《Solar physics》2021,296(11):1-28

We have performed a search for flares and quasi-periodic pulsations (QPPs) from low-mass M-dwarf stars using Transient Exoplanet Survey Satellite (TESS) two-minute cadence data. We find seven stars that show evidence of QPPs. Using Fourier and empirical mode decomposition techniques, we confirm the presence of 11 QPPs in these seven stars with a period between 10.2 and 71.9 minutes, including an oscillation with strong drift in the period and a double-mode oscillation. The fraction of flares that showed QPPs (7%) is higher than other studies of stellar flares, but it is very similar to the fraction of solar C-class flares. Based on the stellar parameters taken from the TESS Input Catalog, we determine the lengths and magnetic-field strengths of the flare coronal loops using the period of the QPPs and various assumptions about the origin of the QPPs. We also use a scaling relationship based on flares from the Sun and solar-type stars and the observed energy, plus the duration of the flares, finding that the different approaches predict loop lengths that are consistent to within a factor of about two. We also discuss the flare frequency of the seven stars determining whether this could result in ozone depletion or abiogenesis in any orbiting exoplanet. Three of our stars have a sufficiently high rate of energetic flares, which are likely to cause abiogenesis. However, two of these stars are also in the range where ozone depletion is likely to occur. We speculate on the implications of the flare rates, loop lengths, and QPPs for life on potential exoplanets orbiting in their host star’s habitable zone.

  相似文献   

20.
Frequency distributions and correlations of solar X-ray flare parameters   总被引:3,自引:0,他引:3  
We have determined frequency distributions of flare parameters from over 12000 solar flares recorded with the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) satellite. These parameters include the flare duration, the peak counting rate, the peak hard X-ray flux, the total energy in electrons, and the peak energy flux in electrons (the latter two computed assuming a thick-target flare model). The energies were computed above a threshold energy between 25 and 50 keV. All of the distributions can be represented by power laws above the HXRBS sensitivity threshold. Correlations among these parameters are determined from linear regression fits as well as from the slopes of the frequency distributions. Variations of the frequency distributions were investigated with respect to the solar activity cycle.Theoretical models for the frequency distribution of flare parameters depend on the probability of flaring and the temporal evolution of the flare energy build-up. Our results are consistent with stochastic flaring and exponential energy build-up, with an average build-up time constant that is 0.5 times the mean time between flares. The measured distributions of flares are also consistent with predicted distributions of flares from computer simulations of avalanche models that are governed by the principle of self-organized criticality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号