首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study deals with the direct determination of colloidal forms of iron in river-borne solids from main rivers of the Amazon Basin. The contribution of different forms of colloidal iron have been assessed using ultrafiltration associated with various techniques including electron paramagnetic resonance spectroscopy (EPR), high resolution transmission electron microscopy (HRTEM), and micro proton-induced X ray emission analysis (μPIXE). EPR shows the presence of Fe3+ bound to organic matter (Fe3+-OM) and colloidal iron oxides. Quantitative estimate of Fe3+-OM content in colloidal matter ranges from 0.1 to 1.6 weight % of dried solids and decreases as the pH of the river increases in the range 4 to 6.8. The modeling of the field data with the Equilibrium Calculation of Speciation and Transport (ECOSAT) code demonstrates that this trend is indicative of a geochemical control resulting from the solubility equilibrium of Fe oxyhydroxide phase and Fe binding to organic matter. Combining EPR and μPIXE data quantitatively confirms the presence of colloidal iron phase (min. 35 to 65% of iron content), assuming no divalent Fe is present. In the Rio Negro, HRTEM specifies the nature of colloidal iron phase mainly as ferrihydrite particles of circa 20 to 50 Å associated with organic matter. The geochemical forms of colloidal iron differentiate the pedoclimatic regions drained by the different rivers, corresponding to different major weathering/erosion processes. Modeling allows the calculation of the speciation of iron as mineral, organic and dissolved phases in the studied rivers.  相似文献   

2.
海洋胶体与痕量金属的相互作用   总被引:6,自引:0,他引:6  
痕量金属的胶体结合态是海洋中金属的一种相当普遍的存在形式。胶体与痕量金属之间的相互作用影响着痕量金属在海水中的形态、迁移、生物可利用性及其归宿。总结了海洋胶体态金属的存在及其显著性,概述了胶体对金属在河口混合过程中行为的影响,并简要讨论了胶体在海水中痕量金属的固液相分配中的作用。  相似文献   

3.
This study deals with the weathering processes operating at the scale of a small catchment (Nsimi-Zoetele, Cameroon) and is focused on the role of organic colloids on mineral weathering and transport of elements in natural waters. Samples of river, spring and groundwaters from Nsimi-Zoetele were filtered through membranes of decreasing pore size (0.22 μm, 0.025 μm, or: 300,000 Da, 5000 Da) to separate colloidal fractions from the truly dissolved one. Major and trace elements and dissolved organic carbon (DOC) were analysed in each fraction. Two kinds of waters can be distinguished in the catchment: clear and coloured waters. Clear waters exhibit low concentrations of major and trace elements and DOC. Elements are carried in these solutions in a true dissolved form except Al and rare earth elements (REEs). By contrast, the higher abundances of Al, Fe and trace elements in coloured waters are controlled by the colloidal fraction. Thermodynamic equilibrium calculations show that clear waters are in equilibrium with kaolinite and iron oxi-hydroxide which are major minerals in the weathered soil. For coloured waters, the aqueous speciation of Ca, Mg, Cu, Fe, Al, La and Th was calculated taking into account the complexes with humic acids. Speciation calculations for Cu, Fe, Al, La, Th show a strong complexation with humic acids, in good agreement with the results of the filtration experiments. By contrast, although filtration experiments show a strong control of major cations by organic matter (for example 75% for Ca), speciation calculations reveal that their complexes with humic ligands do not exceed a few percent of total dissolved elements. This discrepancy is explained as an artefact induced by the organic colloids and occurring during the filtration procedure. Finally, both filtration experiments and speciation calculations show that organic matter plays an important role in natural DOC-rich waters. Organic acids increase significantly the dissolution rates of silicates and oxi-hydroxides and thus the amounts of solutes and of complexed elements leaving the catchment.  相似文献   

4.
The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter.  相似文献   

5.
采用液-液萃取法,连续提取法和ICP-MS测试技术,对龙感湖不同季节水和颗粒物中稀土元素进行研究.结果表明,龙感湖的溶解态稀土含量极低,稀土总含量(ΣREE)在3.14~129.81ng/kg之间,且季节性变化明显.龙感湖溶解态稀土元素表现出平坦型的页岩配分模式,这是由于在草型湖泊中溶解态稀土主要以吸附在微细胶体上的形式存在,水粒相互作用在这个过程中起主要控制作用.悬浮物中的稀土含量顺序为:残渣态>>Fe-Mn结合态>>有机态和AEC态,颗粒物中稀土元素主要以残渣态形式存在.Fe-Mn结合态、有机态和AEC态的页岩配分模式为中稀土富集,残渣态的页岩配分模式为平坦型.这说明中稀土与轻重稀土相比具有更强的潜在地球化学活性,但在龙感湖的环境中的迁移能力相对轻重稀土来说较弱.  相似文献   

6.
A dialysis procedure was used to assess the distribution coefficients of ∼50 major and trace elements (TEs) between colloidal (1 kDa–0.22 μm) and truly dissolved (<1 kDa) phases in Fe- and organic-rich boreal surface waters. These measurements allowed quantification of both TE partitioning coefficients and the proportion of colloidal forms as a function of solution pH (from 3 to 8). Two groups of elements can be distinguished according to their behaviour during dialysis: (i) elements which are strongly associated with colloids and exhibit significant increases of relative proportion of colloidal forms with pH increase (Al, Ba, Cd, Co, Cr, Cu, Fe, Ga, Hf, Mn, Ni, Pb, rare earth elements (REEs), Sr, Th, U, Y, Zn, Zr and dissolved organic C) and (ii) elements that are weakly associated with colloids and whose distribution coefficients between colloidal and truly dissolved phases are not significantly affected by solution pH (As, B, Ca, Cs, Ge, K, Li, Mg, Mo, Na, Nb, Rb, Sb, Si, Sn, Ti, V). Element speciation was assessed using the Visual MINTEQ computer code with an implemented NICA-Donnan humic ion binding model and database. The model reproduces quantitatively the pH-dependence of colloidal form proportion for alkaline-earth (Ba, Ca, Mg, Sr) and most divalent metals (Co, Cd, Mn, Ni, Pb, Zn) implying that the complexation of these metals with low molecular weight organic matter (<1 kDa fraction) is negligible. In contrast, model prediction of colloidal proportion (fraction of 1 kDa–0.22 μm) of Cu2+ and all trivalent and tetravalent metals is much higher than that measured in the experiment. This difference may be explained by (i) the presence of strong metal-binding organic ligands in the <1 kDa fraction whose stability constants are several orders of magnitude higher than those of colloidal humic and fulvic acids and/or (ii) coprecipitation of TE with Fe(Al) oxy(hydr)oxides in the colloidal fraction, whose dissolution and aggregation controls the pH-dependent pattern of TE partitioning. Quantitative modeling of metal – organic ligand complexation and empirical distribution coefficients corroborate the existence of two colloidal pools, formerly reported in boreal surface waters: “classic” fulvic or humic acids binding divalent transition metals and alkaline-earth elements and large-size organo-ferric colloids transporting insoluble trivalent and tetravalent elements.  相似文献   

7.
The photodegradation of organo-mineral complexes in natural conditions was studied using samples of soil and swamp waters to study the effect of sunlight on the composition and properties of organic matter and metal forms dissolved in natural waters. The total contents of certain aliphatic and aromatic carboxylic acids increased in the samples after irradiation. Photodegradation of organic matter of the natural waters with the high Fe content is accompanied by the formation of colloidal particles (Fe hydroxides). The number of negatively-charged complexes of Ni, Cu, Zn, and Cd increased under insolation in swamp waters and decreased in soil waters.  相似文献   

8.
The colloidal distribution and size fractionation of organic carbon and trace elements were studied in a seasonally stratified, organic-rich boreal lake, Lake Maselga, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 5?years in winter (glacial) and summer periods and during the spring and autumn overturn. A newly developed in situ dialysis technique (1, 10, and 50?kDa) and traditional frontal filtration and ultrafiltration (20, 10, 5, 0.22, and 0.025???m) were used to assess element concentrations at different depths. No significant changes in element concentrations occurred during filtration through sub-colloidal pore-size membranes (20?C0.22???m), suggesting a negligible amount of particulate Fe, OC, and associated trace metals. Large colloids (0.025?C0.22???m) were found to be the main carriers of poorly soluble elements (Fe, Al, Ti, Zr, REEs, Th, and U) during the summer and winter stratification. There was also a clear change in the vertical pattern of the percentage of colloidal Al, Ti, V, Cr, Fe, and Ni during different seasons, and the greatest proportion of colloidal forms was observed during the spring and autumn overturn. This pattern is most likely linked to the dominance of soil (allochthonous) organic carbon, which complexes with trace metals during these periods. During the summer seasons, autochthonous production of small exometabolites or photodegradation increases the concentration of the low-molecular weight fractions (<1?kDa) that dominate the speciation of divalent heavy metals in surface horizons. The colloidal status of As (30?C60%), which was documented in different seasons along the full depth of the water column, is most likely linked to the presence of organic complexes. The overall results of this study suggest that changes in the colloidal speciation of trace elements with depth in different seasons depend on changes in the redox conditions, the input of soil OM, the biodegradation of plankton biomass releasing dissolved organic matter in the bottom horizons, and in upward diffusion from the sediments.  相似文献   

9.
Distribution of colloidal trace metals in the San Francisco Bay estuary   总被引:11,自引:0,他引:11  
The size distribution of trace metals (Al, Ag, Cd, Cu, Fe, Mn, Ni, Sr, and Zn) was examined in surface waters of the San Francisco Bay estuary. Water samples were collected in January 1994 across the whole salinity gradient and fractionated into total dissolved (<0.2 μm colloidal (10 KDa–0.2 μm) and < 10 kDa molecular weight phases. In the low salinity region of the estuary, concentrations of colloidal A1, Ag, and Fe accounted for ≥84% of the total dissolved fraction, and colloidal Cu and Mn accounted for 16–20% of the total. At high salinities, while colloidal Fe was still relatively high (40% of the dissolved), very little colloidal Al, Mn, and Cu (<10%) and no colloidal Ag was detectable. Colloidal Zn accounted for <3% of the total dissolved along the estuary, and colloidal Ni was only detectable (<2%) at the river endmember. All of the total dissolved Cd and Sr throughout the estuary consisted of relatively low molecular weight (<10 kDa) species. The relative affinity of metals for humic substances and their reactivity with particle surfaces appear to determine the amounts of metal associated with colloids. The mixing behavior of metals along the estuary appears to be determined by the relative contribution of the colloidal phase to the total dissolved pool. Metals with a small or undetectable colloidal fraction showed a nonconservative excess (Cd, Cu, Ni, and Mn) or conservative mixing (Sr) in the total dissolved fraction, relative to ideal dilution of river water and seawater along the estuary.

The salt-induced coagulation of colloidal A1, Fe, and Cu is indicated by their highly nonconservative removal along the salinity gradient. However, colloidal metals with low affinity for humic substances (Mn and Zn) showed conservative mixing behavior, indicating that some riverine colloids are not effectively aggregated during their transport to the sea. While colloidal metal concentrations correlated with dissolved organic carbon, they also covaried with colloidal Al, suggesting that colloids are a mixture of organic and inorganic components. Furthermore, the similarity between the colloidal metal:A1 ratios with the crustal ratios indicated that colloids could be the product of weathering processes or particle resuspension. Distribution coefficients for colloidal particles (Kc) and for large, filter-retained particles (Kd) were of the same magnitude, suggesting similar binding strength for the two types of particles. Also, the dependence of the distribution coefficients on the amount of suspended particulate matter (the so-called particle concentration effect) was still evident for the colloids-corrected distribution coefficient (Kp+c) and for metals (e.g., Ni) without affinity for colloidal particles.  相似文献   


10.
《Applied Geochemistry》1998,13(1):31-42
Organic material typically constitutes a substantial volume (∼ 90%) of the low-level radioactive wastes (LLRW) intended for near-surface disposal at Chalk River Laboratories (CRL), Ontario, Canada. These wastes can contain a large variety of organic materials, including paper, cardboard, plastic bags, used clothing, and mop heads. After emplacement in a disposal facility, leaching of the LLRW by water can mobilize inorganic and organic substances, ranging from small molecules such as acetic acid to unidentifiable material of colloidal size range. This study determined the potential for colloid formation produced by LLRW degradation, because colloid-facilitated transport of contaminants could affect the safety performance of a disposal facility.The decomposition of compacted LLRW was simulated by recirculating water in a closed system over several compacted bales of waste to determine the potential composition and colloid content of leachates. Size fractionation of organic matter was performed on leachate samples that had been aged for 18 months to simulate the microbial degradation of organic matter within leachates during migration out of the LLRW disposal facility. The aged leachates contained high concentrations of dissolved organic matter, ranging between 74 and 5074 mg/l as C. In most of the leachates, volatile fatty acids accounted for a significant fraction (up to 81%) of the dissolved organic carbon. Although 5–110 mg/l of organic colloids were observed in leachates, in most cases, the organic colloids made up a very small fraction of the total leached organic carbon. Therefore, since the complexation properties of dissolved and colloidal organics are probably similar, contaminants complexed to organics are most likely to be dissolved and not affected by colloid transport. The leachates also contained significant quantities of Fe and Al, which could potentially precipitate Fe and Al as colloids after oxidation. Although a significant portion of the dissolved Fe may have been produced by the corrosion of the ☐es used to contain the bales, the high Fe concentrations could be representative of leachates from LLRW that contain metallic Fe components. If Fe and Al colloids are stable, stable concentrations in LLRW leachates could be high enough to affect contaminant transport. Therefore, the Fe and Al content of LLRW should be minimized. The concentrations of natural colloids in sandy aquifers, such as those found at CRL are too low to affect contaminant migration significantly.  相似文献   

11.
Air-sea interfacial solutions have characteristically high concentrations of trace metals, microorganisms, organic compounds, and solids relative to bulk solutions. The potential for the chemical interaction of an array of trace metals in the interfacial regions with complexing organic ligands and adsorbing solid surfaces has been evaluated through the use of an equilibrium computer model. Computations suggest that higher interfacial accumulations of copper and lead may occur relative to cadmium and mercury. These results are found to be generally compatible with available field data describing trace metal interfacial accumulation. The forms of metals found to be partitioned between bulk and interfacial solutions are consistent with the hypothesis that solid surface adsorption and dissolved organic complexation reactions bring about metal enrichment at the surface microlayer.  相似文献   

12.
The investigation was conducted within highly and moderately separated highlands and high plateaus where glaciers, stone streams, solifluction, and glacial and fluvio-glacial deposits are widely developed. A capping of Miocene basalts remains in the divides over the Au ore deposits and their oxidation zones. Young water-filled fractures traverse the ore-bearing structures and control the direction of the glacial and river valleys, as well as the location of the lakes, springs, and icings.Gold occurs in small- to average-sized sulphide-Au-quartz veins and in a sulphidized black shale series of Precambrian and Paleozoic age. Both mechanical and hydromorphic dispersion of Au are exhibited clearly in the highlands. The latter is due to the processes of modern oxidation of the Au-bearing sulphide minerals. The anomalies of Au in streams and small lakes are related to supra- and sub-ice waters. In the water of streams Au is present in three forms; colloidal, dissolved, and sorbed. Gold in colloidal form comprises the most ample and contrasty anomalies. The truly dissolved Au is more local and manifests itself close to the source of the stream. Gold sorbed on suspended matter is evident because of a significant removal from the source into the solution. Migration of Au and formation of long (up to 2.5 km) and contrasty dispersions in waters of low dissolved solids is favoured by the presence of organic matter and argillaceous and ferruginous suspensions as well as other sorbents. The anomalies of Au in water either coincide with anomalies in stream sediments over mineralized zones or indicate new mineralized areas not reflected in stream sediments.  相似文献   

13.
The role of organic ligands in metal complexing in natural waters has received little attention because of uncertainties regarding both the abundance and nature of dissolved organic carbon compounds. Recent data show that the bulk of dissolved organic matter in natural waters consists of highly oxidized and chemically and biologically stable polymeric compounds closely resembling soil humic substances. Average molar concentrations of these aquatic humics in major U.S. rivers range from 5 × 10?6to 3 × 10?5 moles 1?1. Fractional elution of soil organic matter by meteoric waters may be considered to be the main process contributing to the presence of humic matter in rivers. The aquatic humic polymers participate in complex formation through ionizable functional groups with a range of differential acidities. The stabilities of metal-humic complexes in natural waters are higher than those of the corresponding inorganic metal complexes. Quantitative evaluation of the metal-organic interactions can be approached by applying variable equilibrium functions which take into account the differential physico-chemical characteristics of the active complexing sites on the polymer molecule. Assuming an average humic concentration of 10 mg 1?1, complexation of trace metals can be significant even in the presence of excess concentrations of major cations.  相似文献   

14.
《Applied Geochemistry》1999,14(3):395-407
An ultrafiltration procedure has been developed to study the interaction between organic C and Hg species in natural waters, and a pilot study was conducted in the surface waters of the Florida Everglades. Compared to total Hg, CH3Hg shows different distribution patterns in the suspended particulate, colloidal, and truly dissolved phases. Colloidal forms (0.22 μm, 3 kDa) contain the majority of the total dissolved Hg, while the amount found in the truly dissolved fraction (<3 kDa) is small (about 10%). However, CH3Hg, which shows strong binding capability with low molecular-weight dissolved organic C, is present almost entirely in the lower molecular-weight fraction of the colloids and in the truly dissolved fraction. Quantitative CH3Hg data correlate well with those for dissolved organic C, an indication that the organic matter present in the system plays an important role in the fate and transport of organomercury. Distribution coefficients between water and the different-sized fractions of the dissolved organic C were determined for both total Hg and CH3Hg. Results for total Hg were in general agreement with other reports resulting from studies of molecular size distributions of total Hg in freshwater systems. This is, to the best of our knowledge, the first report of such distribution profiles for CH3Hg between different-sized fractions of dissolved organic C in natural waters.  相似文献   

15.
A survey of U.S. east coast estuaries confirms that large-scale rapid removal of iron from river water is a general phenomenon during estuarine mixing. The river-borne ‘dissolved’ iron consists almost entirely of mixed iron oxide-organic matter colloids, of diameter less than 0.45 μm, stabilized by the dissolved organic matter. Precipitation occurs on mixing because the seawater cations neutralize the negatively charged iron-bearing colloids allowing flocculation. The process has been duplicated in laboratory experiments using both natural filtered and unfiltered river water and a synthetic colloidal goethite in 0.05 μm filtered water. The colloidal nature of the iron has been further confirmed by ultracentrifugation and ultrafiltration. A major consequence of the precipitation phenomena is to reduce the effective input of ‘dissolved’ iron to the ocean by about 90% of the primary river value, equivalent to a concentration of less than 1 μmol per liter of river water.  相似文献   

16.
Water samples were analyzed for DOC and trace metals from Bagmati River within Kathmandu valley, Nepal, to understand the variation trends of DOC and trace metals and their relationship along the drainage network. The variability in organic matter and wastewater input within the Bagmati drainage basin appeared to control DOC and most of the trace metal concentration. The large input of organic matter and wastewater creates anoxic condition by consuming dissolved oxygen and releasing higher concentrations of DOC, trace elements such as nickel, arsenic, barium, cadmium, and copper with downstream distance. Concentrations of DOC and trace metals like barium and zinc showed strong relationships with human population density and suggest that human activities have strong control on these parameters along the drainage network. The DOC and most of the trace metal concentration increased with downstream distance and appeared to be directly associated with human activities. The variation trends of most of the trace metals appeared to be the same; however, concentration varied widely. Inputs of organic matter and wastewater due to human activities appeared directly to be associated for the variation of DOC and trace metals along the Bagmati drainage network within Kathmandu valley.  相似文献   

17.
Three sediment cores were collected in the Scheldt, Lys and Spiere canals, which drain a highly populated and industrialized area in Western Europe. The speciation and the distribution of trace metals in pore waters and sediment particles were assessed through a combination of computational and experimental techniques. The concentrations of dissolved major and trace elements (anions, cations, sulfides, dissolved organic C, Cd, Co, Fe, Mn, Ni, Pb and Zn) were used to calculate the thermodynamic equilibrium speciation in pore waters and to evaluate the saturation of minerals (Visual Minteq software). A sequential extraction procedure was applied on anoxic sediment particles in order to assess the main host phases of trace elements. Manganese was the most labile metal in pore waters and was mainly associated with carbonates in particles. In contrast, a weak affinity of Cd, Co, Ni, Pb and Zn with carbonates was established because: (1) a systematic under-saturation was noticed in pore waters and (2) less than 10% of these elements were extracted in the exchangeable and carbonate sedimentary fraction. In the studied anoxic sediments, the mobility and the lability of trace metals, apart from Mn, seemed to be controlled through the competition between sulfidic and organic ligands. In particular, the necessity of taking into account organic matter in the modelling of thermodynamic equilibrium was demonstrated for Cd, Ni, Zn and Pb, the latter element exhibiting the strongest affinity with humic substances. Consequently, dissolved organic matter could favour the stabilization of trace metals in the liquid phase. Conversely, sulfide minerals played a key role in the scavenging of trace metals in sediment particles. Finally, similar trace metal lability rankings were obtained for the liquid and solid phases.  相似文献   

18.
自然界中有机质分布广泛、类型多样且性质各异,不论在水体还是在沉积物(岩)中都扮演着重要的角色。因此,探讨各类型有机质聚集和沉积过程的差异性,对深化认识有机质沉积特征和演化规律具有重要的意义。生物体在生长过程中产生了许多有机质,包括生物体自身、生物残体、动物排泄物以及生物分泌的有机分子等,各类型有机质的性质差异极大。由于研究方法的不同,可将海洋中有机质划分为颗粒有机质(particulate organic matter,POM)和溶解有机质(dissolved organic matter,DOM),而DOM又可划分为胶体有机质(colloidal organic matter,COM)和真溶解有机质;从聚合体形式上看,又有海雪和悬浮体等存在形式。进一步分析发现有机质的形态包括生物体、生物残体、排泄物和有机质聚合体等,并且各类型有机质与无机矿物以不同的形式共存。此外,DOM与POM间存在一定的转化关系。这些性质和特征架起了不同类型有机质间聚集和沉积的桥梁。在沉积物(岩)中通过粒度或密度分级分离及孢粉相分析,也发现不同类型的有机质,如生物体、生物残体和无定形等,它们常与特定的无机矿物共生,如无定形多富集在黏粒级颗粒中,而生物体和生物残体多富集在粗颗粒中。进一步溯源发现沉积物(岩)中的各类有机质与生物有机质或海洋中有机质的类型极具相似性,这些特征展现各类型有机质在沉积过程中的差异性。综合有机质的形态、性质以及与矿物共生关系,认为有机质可通过机械沉积、化学沉积和生物沉积等3种不同的方式沉积保存,其中机械沉积的有机质以惰性的生物残体为主,化学沉积的有机质以活性极强的无定形为主,生物沉积有机质以活性较强的微生物和粘附物为主。有机质沉积方式及有机质特征、矿物—有机质间关系和保存条件的差异,决定了有机质的演化命运的不同,进而对有机质生烃以及碳循环产生重要的影响,因而应引起人们的高度关注。  相似文献   

19.
The estuarine mixing of dissolved Fe, Cu, Ni, Si and surface-active organic matter has been investigated in the Taieri Estuary, New Zealand, simultaneously with measurements of the electrokinetic charge on colloidal particles. Dissolved Fe showed almost quantitative removal from solution characteristic of the coagulation of iron-containing colloids by seawater electrolytes. Surface active organic matter behaved conservatively, indicating that a relatively constant fraction of estuarine organic matter is surface active, but that organic species associated with iron during removal are a minor fraction. Results for Cu, Ni and Si were scattered but offered no evidence for gross removal during estuarine mixing. The negative charge on suspended colloids was not reversed by adsorption of seawater cations, but remained uniformly negative throughout the salinity range, decreasing sharply in magnitude during the first few %. salinity.  相似文献   

20.
The importance of trace metal scavenging by organic matter in geochemical samples was estimated using an alkaline sodium hypochlorite extraction to leach copper, zinc, molybdenum, iron and manganese from a variety of soils, and stream and lake sediments collected on the Nechako plateau, central British Columbia. The reagent oxidizes or dissolves most forms of organic matter, together with any sulphide minerals, to give strongly coloured extracts containing the associated trace elements at a pH where solution of other sample fractions is at a minimum. Metals precipitated due to alkaline conditions are redissolved by a succeeding distilled-water leach (pH 3.0 ± 0.3).A large fraction of the copper, zinc, molybdenum, and manganese held within the organic fraction of the A soil horizon is liberated whereas only minor amounts of copper, zinc, and manganese are released from inorganic soil (B and C) horizons. Molybdenum, however, is relatively soluble in all soils as the molybdate ion. Despite similar concentrations of organic matter in A horizon soils and stream sediments the latter release a lower proportion of their trace element content. Behaviour of the organic fraction of lake sediments varies from lake to lake and there is great variability in the association of copper, zinc, molybdenum and manganese with organic matter even within the same lake.The presence of organic matter in samples subjected to other partial extractions can be a deleterious factor if the organic fraction is not first removed by a hypochlorite extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号