首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
The present study assesses the forecast skill of the Madden–Julian Oscillation (MJO) observed during the period of DYNAMO (Dynamics of the MJO)/CINDY (Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011) field campaign in the GFS (NCEP Global Forecast System), CFSv2 (NCEP Climate Forecast System version 2) and UH (University of Hawaii) models, and revealed their strength and weakness in forecasting initiation and propagation of the MJO. Overall, the models forecast better the successive MJO which follows the preceding event than that with no preceding event (primary MJO). The common modeling problems include too slow eastward propagation, the Maritime Continent barrier and weak intensity. The forecasting skills of MJO major modes reach 13, 25 and 28 days, respectively, in the GFS atmosphere-only model, the CFSv2 and UH coupled models. An equal-weighted multi-model ensemble with the CFSv2 and UH models reaches 36 days. Air–sea coupling plays an important role for initiation and propagation of the MJO and largely accounts for the skill difference between the GFS and CFSv2. A series of forecasting experiments by forcing UH model with persistent, forecasted and observed daily SST further demonstrate that: (1) air–sea coupling extends MJO skill by about 1 week; (2) atmosphere-only forecasts driven by forecasted daily SST have a similar skill as the coupled forecasts, which suggests that if the high-resolution GFS is forced with CFSv2 forecasted daily SST, its forecast skill can be much higher than its current level as forced with persistent SST; (3) atmosphere-only forecasts driven by observed daily SST reaches beyond 40 days. It is also found that the MJO–TC (Tropical Cyclone) interactions have been much better represented in the UH and CFSv2 models than that in the GFS model. Both the CFSv2 and UH coupled models reasonably well capture the development of westerly wind bursts associated with November 2011 MJO and the cyclogenesis of TC05A in the Indian Ocean with a lead time of 2 weeks. However, the high-resolution GFS atmosphere-only model fails to reproduce the November MJO and the genesis of TC05A at 2 weeks’ lead. This result highlights the necessity to get MJO right in order to ensure skillful extended-range TC forecasting.  相似文献   

2.
The basic features of climatology and interannual variations of tropical Pacific and Indian Oceans were analyzed using a coupled general circulation model (CGCM), which was constituted with an intermediate 2.5-layer ocean model and atmosphere model ECHAM4. The CGCM well captures the spatial and temporal structure of the Pacific El Ni?o-Southern Oscillation (ENSO) and the variability features in the tropical Indian Ocean. The influence of Pacific air-sea coupled process on the Indian Ocean variability was investigated carefully by conducting numerical experiments. Results show that the occurrence frequency of positive/negative Indian Ocean Dipole (IOD) event will decrease/increase with the presence/absence of the coupled process in the Pacific Ocean. Further analysis demonstrated that the air-sea coupled process in the Pacific Ocean affects the IOD variability mainly by influencing the zonal gradient of thermocline via modulating the background sea surface wind.  相似文献   

3.
林爱兰  LI Tim  FU Xiouhu 《大气科学》2009,33(6):1123-1136
利用分辨率较高的SINTEX-F(Scale INTeraction EXperiment-FRCGC) 海气耦合模式, 进行多组长时间积分模拟和理想试验, 分析研究热带印度洋海气耦合对夏季大气环流气候态的影响。主要结果有: (1) 热带印度洋海气相互作用使热带东印度洋产生明显的东风变化, 使热带中西太平洋赤道北部产生气旋性切变变化。 (2) 印度洋海气相互作用对大气环流气候态的影响绝大部分由于大气对海气相互作用的响应存在年际变化正负距平不对称性造成, 这种年际变化不对称性包括正偶极子与负偶极子的不对称、 海盆宽度正异常与海盆宽度负异常的不对称。 (3) 年际和季节内两种时间尺度海气相互作用对印度洋关键区大气环流平均态都有影响, 约各占60%、 40%; 季节内尺度海气相互作用对太平洋近赤道区大气环流平均态有重要影响; 年际尺度海气相互作用对太平洋赤道外地区大气环流平均态有重要影响。热带印度洋年际尺度、 季节内尺度海气相互作用对大气环流气候态的影响, 都存在年际变化以及年际变化正负距平不对称性。这两种尺度海气相互作用主要通过年际变化正负距平不对称性而对大气环流平均态产生影响。  相似文献   

4.
Vertical cumulus momentum transport is an important physical process in the tropical atmosphere and plays a key role in the evolution of the tropical atmospheric system. This paper focuses on the impact of the vertical cumulus momentum transport on Madden-Julian Oscillation (MJO) simulation in two global climate models (GCMs). The Tiedtke cumulus parameterization scheme is applied to both GCMs [CAM2 and Spectral Atmospheric general circulation Model of LASG/IAP (SAMIL)]. It is found that the MJO simulation ability might be influenced by the vertical cumulus momentum transport through the cumulus parameterization scheme. However, the use of vertical momentum transport in different models provides different results. In order to improve model's MJO simulation ability, we must introduce vertical cumulus momentum transport in a more reasonable way into models. Furthermore, the coherence of the parameterization and the underlying model also need to be considered.  相似文献   

5.
IMPACTS OF CUMULUS PARAMETERIZATION AND RESOLUTION ON THE MJO SIMULATION   总被引:1,自引:1,他引:0  
Madden-Julian Oscillations (MJO) in six integrations using an AGCM with different cumulus parameterization schemes and resolutions are examined to investigate their impacts on the MJO simulation. Results suggest that the MJO simulation can be affected by both resolution and cumulus parameterization, though the latter, which determines the fundamental ability of the AGCM in simulating the MJO and the characteristics of the simulated MJO, is more crucial than the former. Model resolution can substantially affect the simulated MJO in certain aspects. Increasing resolution cannot improve the simulated MJO substantially, but can significantly modulate the detailed character of the simulated MJO; meanwhile, the impacts of resolution are dependent on the cumulus parameterization, determining the basic features of the MJO. Changes in the resolution do not alter the nature of the simulated MJO but rather regulate the simulation itself, which is constrained by cumulus parameterization schemes. Therefore, the vertical resolution needs to be increased simultaneously. The vertical profile of diabatic heating may be a crucial factor that is responsible for these different modeling results. To a large extent, it is determined by the cumulus parameterization scheme used.  相似文献   

6.
基于WRF(Weather Research and Forecasting)模式及其3Dvar(3-Dimentional Variational)资料同化系统,采用36、12、4 km嵌套网格进行快速更新循环同化和不同的微物理及积云对流参数化方案对比试验,对2011年5月8日鲁中一次局地大暴雨过程进行了研究。结果表明,快速更新循环同化地面观测资料是影响模式降水落区预报准确性的关键因素,不同的微物理和积云对流参数化方案主要影响降水强度预报。采用不同的微物理参数化方案和积云对流参数化方案进行降水预报对比试验表明,LIN方案和WSM6(WRF Single-Moment 6-class)微物理参数化方案对降水预报均较好,LIN方案降水预报较WSM6方案略强。4 km网格预报使用K-F (Kain-Fritsch)积云对流参数化方案或不使用积云对流参数化方案,预报的降水均较好。4 km网格使用旧的K-F积云对流参数化方案,预报的近地层大气风场偏弱,导致大气动力抬升作用偏弱,从而造成模式降水预报偏弱。  相似文献   

7.
采用一种基于降水异常追踪MJO(Madden–Julian Oscillation)东传的MJO识别方法(MJO Tracking)评估了参与MJOTF/GASS(MJO Task Force/Global Energy and Water Cycle Experiment Atmospheric System Study)全球模式比较计划的全海气耦合模式(CNRM-CM)、半海气耦合模式(CNRM-ACM)和大气模式(CNRM-AM)1991~2010年模拟MJO的能力,探究了海气耦合过程对模式模拟MJO能力的影响机理。CNRM-CM模式模拟的MJO结构更加接近观测,该模式不仅具有最高的MJO生成频率,也能够模拟较强的MJO强度以及较远的传播距离。海气耦合过程会造成CNRM-CM和CNRM-ACM模式中印度洋—太平洋暖池区域海温气候态的冷偏差。但是这种海温气候态的偏差基本没有改变模式模拟MJO的能力。CNRM-CM中MJO对流中心东(西)侧存在较强的季节内尺度海温暖(冷)异常,纬向梯度明显,而CNRM-ACM和CNRM-AM中不存在这样的海温东西不对称结构。结果表明在CNRM模式中海气耦合过程调控模式海温季节内尺度变率对模式MJO模拟能力的影响比调控模式海温气候态更加重要。  相似文献   

8.
1. Introduction Air-sea interaction plays an important role in theglobal seasonal to inter-annual climate variability,most notably, the El Ni?no and Southern Oscillation(ENSO) phenomenon (Webster and Lukas, 1992). Be-cause of its widespread impacts on …  相似文献   

9.
Based on the aqua-planet experiments, the wavenumber-frequency characteristics of tropical waves and their influencing factors in SST distribution and the convective parameterization scheme are investigated using the spectral atmospheric general circulation model (SAMIL). Space-time spectral analysis is used to obtain the variance of convectively coupled tropical waves. In the Control experiment with maximum SST located at the equator the simulated tropical-wave behaviors are in agreement with those in observations and theoretical solutions. When the maximum SST is located at 5°N, the symmetric and antisymmetric waves are much weaker than those in the control experiment, suggesting that tropical wave activities are very sensitive to the SST distributions. Importantly, the variance maximum of Madden-Julian oscillation (MJO) is found to occur around 5°N, which suggests that the development of the MJO depends largely on the latitude of maximum SST. Furthermore, the seasonal variations of MJO may be mainly caused by the seasonal variations of the maximum SST. The experiment results with two different cumulus schemes the Manabe moist convective adjustment and Zhang-McFarlane (ZM) convective scheme, were also compared to examine the impacts of convective parameterization. Weakened variances of each individual tropical wave when the ZM scheme is used suggest that the ZM scheme is not favorable for the tropical wave activities. However, the wave characteristics are different when the ZM scheme is used in different models, which may imply that the simulated basic state is important to the meridional distributions of the waves. The MJO signals suggest that the parameterization scheme may have great influence on the strength, but have less direct impact on the MJO distribution. The frequency of the tropical waves may be associated with the moisture control of convection and the large-scale condensation scheme used in the model.  相似文献   

10.
Tropical channel models, defined as models that are global in the zonal direction but bounded in the meridional direction, are particularly useful for simulating the Madden-Julian oscillation (MJO) and understanding its physical and dynamical basis. Influences from the extratropics through the lateral boundaries have been found to be essential to the reproduction of the initiation of certain MJO events. This led to a hypothesis that multi-year simulations using a tropical channel model would reproduce reasonable MJO statistics under the influence of prescribed lateral boundary conditions derived from global reanalyses. Interestingly, the MJO statistics in such a multi-year simulation by a high-resolution tropical channel model are not better than those from global climate models. The error in the atmospheric mean state is found to be a possible reason for the poor MJO statistics in the simulation. Nevertheless, even with a large error in the mean state, the multi-year simulation captures two MJO events previously found to be initiated by extratropical influences. However, the model does not reproduce a third event, whose initiation is not directly influenced by the extratropics. This implies that in the absence of dynamical interactions between the MJO and the lateral boundary conditions, the error in the mean state could be sufficient to prevent the MJO initiation. To explore this third MJO event further, a series of sensitivity tests are conducted. These tests show that the simulation of this event is neither critically influenced by the cumulus parameterization employed, nor the initial conditions when the model is integrated 2?weeks prior to the MJO initiation. The model captures this event when the MJO signal is already present in the initial conditions. The use of high-resolution sea surface temperature does not improve the simulation of the third MJO event. A higher-resolution nested domain covering the Indo-Pacific warm pool region and including a cloud-system resolving domain over the Indonesian Maritime Continent has little effect on the MJO initiation over the Indian Ocean. In <2?weeks the error in the simulation is comparable to the climate error. The role of the simulated MJO on the mean state is also explored. Implications and limitations of these results are discussed.  相似文献   

11.
基于1979—2008年NCEP/CFSR再分析耦合数据集,研究了冬季MJO对ENSO事件的影响。结果表明,在年际时间尺度以及长期的年代际时间尺度上,热带印度洋MJO活动的强弱性都可以影响热带中东太平洋ENSO事件的发生和发展。在年际时间尺度上,ENSO发生前期征兆的赤道中东太平洋的西风爆发事件(Westerly Wind Burst,WWB),作为MJO影响ENSO的主要途径,存在着显著的次季节时间尺度的变化。相对于气候平均的赤道太平洋西部暖池区上升而东部下沉的Walker环流,MJO正位相东传后的西风异常,减弱了低层东风和赤道东太平洋海水上翻。这一上升海流的减弱导致了中东赤道太平洋的海温升高,从而有利于ENSO暖海温事件的发生。而在年代际时间尺度上,MJO范围和强度在1998年前后出现了明显的转变,1998年之前MJO的东移范围更东,强度更强,从而导致了西太平洋西风爆发区的次季节西风异常事件更加显著,在Bjeknes正反馈机制下对应了年代际时间尺度下的强尼诺事件出现,1998年之后则与之相反。冬季MJO对ENSO影响的这一年代际特征主要体现在晚冬季节,而在早冬伴随着印度洋的增暖,MJO强度一直在逐年增加。  相似文献   

12.
13.
全球热带简单海气耦合模式中的ENSO预报试验   总被引:1,自引:0,他引:1  
史历  殷永红  倪允琪 《大气科学》2001,25(5):627-640
利用一个全球热带简单海气耦合模式(GTSM模式),并选取热带三大洋较强的冷暖事件作为预报对象进行了若干预报试验,分析结果发现:在GTSM模式中由于热带三大洋海气耦合通过大气模式而相互作用和影响,使得该模式对于东大西洋和中东印度洋较强冷暖事件的预报能力,较单独大西洋或单独印度洋耦合模式均有明显提高,预报和观测的ATL3、IND3指数的相关系数达到0.5以上的月份,分别达到9个月和6个月左右;而在东太平洋则和ZC(LDEO1)模式差不多,预报和观测的Nio3指数的相关系数达到0.6以上的月份可以达到15个月左右.  相似文献   

14.
刘琳  于卫东  刁新源 《大气科学》2008,32(5):1083-1093
大气环流的变异是热带印度洋偶极子(IOD)事件研究中的一个重要问题。本文从风场旋度分量和散度分量角度出发,利用观测资料和大气环流模式,对IOD事件发生时热带印度洋海区上空的大气环流变化进行了分析,揭示出风场不同分量在IOD事件期间的变化特征。研究结果表明,热带印度洋大气环流系统在IOD事件期间,旋度分量和散度分量在垂直方向上呈现明显的一阶斜压形式,而在水平方向上呈现明显的对称分布特征。对低空(850 hPa)来说,无辐散流函数距平场在IOD事件正位相期间表现为关于赤道对称的一对反气旋式环流;无旋度分量在IOD事件正位相期间的响应表现为东印度洋辐散、西印度洋辐合;大气环流的两种分量场均可以在赤道印度洋地区产生距平意义下的纬向东风,正是这种形式的距平东风使得IOD事件依靠海气系统正反馈机制得以维持和发展。而高空(200 hPa)大气环流形式刚好与850 hPa相反。  相似文献   

15.
The Madden–Julian oscillation (MJO) is simulated using an AGCM with three different cumulus parameterization schemes: a moist convective adjustment (MCA) scheme, the Zhang–McFarlane (ZM) mass-flux scheme, and the Tiedtke scheme. Results show that the simulated MJO is highly dependent on the cumulus parameterization used. Among the three cumulus parameterizations, only the MCA scheme produces MJO features similar to observations, including the reasonable spatial distribution, intraseasonal time scales and eastward propagation. Meanwhile, the amplitude is too large and the eastward propagation speed too fast than observations and the relationship between precipitation and low-level wind anomaly is unrealistic with enhanced convection occurring within easterly anomalies instead of westerly anomalies as in observations. The over-dependence of precipitation on boundary convergence produced by the MCA scheme is presumably responsible for this unrealistic phase relation in the simulation. The other two schemes produce very poor simulations of the MJO: spectral power of westward propagation is larger than that of eastward propagation in zonal wind and precipitation, indicating a westward propagation of the intraseasonal variability.The mean state and vertical profile of diabatic heating are perhaps responsible for the differences in these simulations. The MCA scheme produces relatively realistic climate background. When either ZM or Tiedtke scheme is used, the observed extension of westerly winds from the western Pacific to the dateline is missing and precipitation over the equatorial region and SPCZ is dramatically underestimated. In addition, diabatic heating produced by both ZM and Tiedtke schemes are very weak and nearly uniform with height. The heating profile produced by the MCA scheme has a middle-heavy structure with much larger magnitude than those produced by the other two schemes. In addition, a very unrealistic boundary layer heating maximum produced by the MCA scheme induces too strong surface convergence, which perhaps contributes to the too strong intraseasonal variability in the simulation.  相似文献   

16.
The middle and lower reaches of the Yangtze River in eastern China during summer 2020 suffered the strongest mei-yu since 1961. In this work, we comprehensively analyzed the mechanism of the extreme mei-yu season in 2020, with focuses on the combined effects of the Madden-Julian Oscillation (MJO) and the cooperative influence of the Pacific and Indian Oceans in 2020 and from a historical perspective. The prediction and predictability of the extreme mei-yu are further investigated by assessing the performances of the climate model operational predictions and simulations.   It is noted that persistent MJO phases 1?2 during June?July 2020 played a crucial role for the extreme mei-yu by strengthening the western Pacific subtropical high. Both the development of La Ni?a conditions and sea surface temperature (SST) warming in the tropical Indian Ocean exerted important influences on the long-lived MJO phases 1?2 by slowing down the eastward propagation of the MJO and activating convection related to the MJO over the tropical Indian Ocean. The spatial distribution of the 2020 mei-yu can be qualitatively captured in model real-time forecasts with a one-month lead. This can be attributed to the contributions of both the tropical Indian Ocean warming and La Ni?a development. Nevertheless, the mei-yu rainfall amounts are seriously underestimated. Model simulations forced with observed SST suggest that internal processes of the atmosphere play a more important role than boundary forcing (e.g., SST) in the variability of mei-yu anomaly, implying a challenge in quantitatively predicting an extreme mei-yu season, like the one in 2020.  相似文献   

17.
本文利用区域海气耦合模式RegCM-POM,分别选取Grell积云参数化方案和Emanuel积云参数化方案对北半球夏季(5—10月)的东亚气候进行模拟,研究不同积云对流参数化方案(CPS)对东亚夏季季风区海气系统位相关系模拟的影响。结果表明:不同CPS模拟的陆地降水具有一定的不确定性,而海洋降水和海温的模拟受CPS选择的影响更大。其中,Emanuel方案对海洋降水和海温的分布形势模拟总体上要好于Grell方案,且可以更好的模拟中国近海各海区的海气系统位相关系,特别是大气对海温的负反馈过程。原因在于Emanuel方案模拟的对流降水与海温的位相关系更接近观测总降水与海温的位相关系;而Grell方案对南海和孟加拉湾的对流降水模拟偏少,对黑潮对流降水的模拟偏多,错误地模拟了这几个海区积云对流过程发挥的作用,故其模拟的海气系统位相关系不如Emanuel方案。  相似文献   

18.
BCC大气环流模式对亚澳季风年际变率主导模态的模拟   总被引:8,自引:3,他引:5  
王璐  周天军  吴统文  吴波 《气象学报》2009,67(6):973-982
利用观测海温驱动下的北京气候中心大气环流模式(BCC-AGCM)1979-2000年的模拟数据,从亚澳季风(A-AM)年际变率的角度,对该模式的性能进行了分析.通过季节依赖的EOF分析方法(SEOF)得到观测第1模态,与ENSO从暖位相向冷位相的转变相联系,并伴随东南印度洋和西北太平洋的降水异常随季节变化.该模态具有准2a和4-6a周期的谱峰.分析结果显示,BCC模式可以很好地模拟出第1模态的时间变化特征,及其与ENSO位相的同步关系.但是,模式模拟的降水空间型与观测存在偏差,这主要是由于模式对环流场模拟的偏差造成的,具体表现在西北太平洋(WNP)反气旋和南印度洋(SIO)反气旋的季节锁相模拟偏差.前者与模式模拟的环流场整体偏东有关,后者是由于SIO反气旋的发展和衰亡过程受印度洋局地海气相瓦作用影响,而单独大气模式则无法合理地反映这一过程.另外,模式模拟的第一模态降水空间型在夏季效果较差,原因在于模式模拟的夏季平均降水量存在偏差,尤其是东南印度洋的降水量模拟偏少.进一步分析表明,这可能与对流参数化方案的选择有关.  相似文献   

19.
基于中国科学院大气物理所大气环流模式IAP AGCM4.0总共30年(1979~2008年)的模拟结果,评估了IAP AGCM4.0模式对热带大气季节内振荡的模拟能力。分析结果表明IAP AGCM4.0模式可以在一定程度上模拟出热带大气季节内振荡的主要时空谱结构特征,在周期30~80天处存在明显的谱能量中心;模式模拟的季节内振荡东传的主要特征与观测基本一致,东移波的能量远大于西移波。基于RMM指数(All-season Real-time Multivariate MJO Index)的分析表明,模式模拟的850 h Pa和200 h Pa季节内尺度风场和对流活动在赤道地区的空间分布与观测基本一致。但与观测相比,模式模拟的热带大气季节内振荡的周期较短,东传速度快于观测,虚假的西传特征过强,对流活跃区域范围较小、强度较弱。就非绝热加热而言,模式模拟结果与再分析资料比较接近,但最大加热在印度洋和西太平洋地区出现的位相较晚。进一步分析表明,模式中影响对流触发的相对湿度阈值(RHc)的不同取值(RHc分别取为85%、90%、95%和100%),可以显著影响热带大气非绝热加热垂直廓线,从而影响模式对热带大气季节内振荡的模拟;当对流触发相对湿度阈值取为90%时,IAP AGCM4.0模式对热带大气季节内振荡模拟的能力相对最好,非绝热加热垂直廓线在不同位相的分布特征也与再分析资料最为接近。这说明模式对流参数化方案中不同参数的合适选取,可以改进模式对热带大气季节内振荡的模拟能力。  相似文献   

20.
The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Monte Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies. However, the integrations with ECHO-G and SINTEX, which used T30 atmospheres, produce westward propagation of the latent heat flux anomalies, contrary to reanalysis. It is suggested that the differing ability of the models to represent the near-surface westerlies over the Indian Ocean is related to the different horizontal resolutions of the atmospheric model employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号