首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.  相似文献   

2.
T. G. Forbes 《Solar physics》1988,117(1):97-121
Shock waves produced by impulsively driven reconnection may be important during flares or during the emergence of magnetic flux from the photosphere into the corona. Here we investigate such shock waves by carrying out numerical experiments using two-dimensional magneto-hydrodynamics. The results of the numerical experiments imply that there are three different categories of shocks associated with impulsively driven reconnection: (1) fast-mode, blast waves which rapidly propagate away from the reconnection site; (2) slow-mode, Petschek shocks which are attached to the reconnection site; and (3) fast-mode, termination shocks which terminate the plasma jets flowing out from the reconnection site. Fast-mode blast waves are a common feature of many flare models, but the Petschek shocks and jet termination shocks are specific to reconnection models. These two different types of reconnection shocks might contribute to chromospheric ablation and energetic particle acceleration in flares.  相似文献   

3.
A magnetically structured accretion disc corona, generated by buoyancy instability in the disc, can account for observations of flare-like events in active galactic nuclei. We examine how Petschek magnetic reconnection, associated with MHD turbulence, can result in a violent release of energy and heat the magnetically closed regions of the corona up to canonical X-ray emitting temperatures. X-ray magnetic flares, the after effect of the energy released in slow shocks, can account for the bulk of the X-ray luminosity from Seyfert galaxies and consistently explain the observed short-time-scale variability.  相似文献   

4.
Magnetic reconnection is considered to be the fundamental process by which magnetic energy is converted into plasma or particle kinetic energy. Magnetic reconnection is a widely applied physics model to explain the solar eruption events, such as coronal bright points(CBPs). Meanwhile, it is an usual way of the solar physics research to look for the observational evidences of magnetic reconnection in the solar eruption events in order to support the model. In this paper, we have explored the evidences of magnetic reconnection in a CBP observed by the Atmospheric Imaging Assembly(AIA) onboard the Solar Dynamics Observatory(SDO) at NOAA No. 11163 on 2011 March 5. Our observations show that this event is a small-scale loop system in active regions that have similar size as a traditional CBP and it might shed light on the physics of a traditional CBP. This CBP is bright in all nine AIA wavelengths and displays a flaring development with three bursts intermittently. Each burst exhibits a pair of bi-directional jets almost along a line. They originate from the same position(CBP core), then move in the opposite directions. Our findings are well consistent with the magnetic reconnection process by which the bi-directional plasma outflows are produced and radiate the bi-directional jets detected by SDO/AIA. These facts further support the conclusion that the CBP is produced by the magnetic reconnection process.  相似文献   

5.
The solar atmosphere displays a wide variety of dynamic phenomena driven by the interaction of magnetic fields and plasma. In particular, plasma jets in the solar chromosphere and corona, coronal heating, solar flares and coronal mass ejections all point to the presence of magnetic phenomena such as reconnection, flux cancellation, the formation of magnetic islands, and plasmoids. While we can observe the signatures and gross features of such phenomena we cannot probe the essential physics driving them, given the spatial resolution of current instrumentation. Flexible and well-controlled laboratory experiments, scaled to solar parameters, open unique opportunities to reproduce the relevant unsteady phenomena under various simulated solar conditions. The ability to carefully control these parameters in the laboratory allows one to diagnose the dynamical processes which occur and to apply the knowledge gained to the understanding of similar processes on the Sun, in addition directing future solar observations and models. This talk introduces the solar phenomena and reviews the contributions made by laboratory experimentation.  相似文献   

6.
The resistive MHD equations are numerically solved in two dimensions for an initial-boundary-value problem which simulates reconnection between an emerging magnetic flux region and an overlying coronal magnetic field. The emerging region is modelled by a cylindrical flux tube with a poloidal magnetic field lying in the same plane as the external, coronal field. The plasma betas of the emerging and coronal regions are 1.0 and 0.1, respectively, and the magnetic Reynolds number for the system is 2 × 103. At the beginning of the simulation the tube starts to emerge through the base of the rectangular computational domain, and, when the tube is halfway into the computational domain, its position is held fixed so that no more flux of plasma enters through the base. Because the time-scale of the emergence is slower than the Alfvén time-scale, but faster than the reconnection time-scale, a region of closed loops forms at the base. These loops are gradually opened and reconnected with the overlying, external magnetic field as time proceeds.The evolution of the plasma can be divided into four phases as follows: First, an initial, quasi-steady phase during which most of the emergence is completed. During this phase, reconnection initially occurs at the slow rate predicted by the Sweet model of diffusive reconnection, but increases steadily until the fast rate predicted by the Petschek model of slow-shock reconnection is approached. Second, an impulsive phase with large-scale, super-magnetosonic flows. This phase appears to be triggered when the internal mechanical equilibrium inside the emerging flux tube is upset by reconnection acting on the outer layers of the flux tube. During the impulsive phase most of the flux tube pinches off from the base to form a cylindrical magnetic island, and temporarily the reconnection rate exceeds the steady-state Petschek rate. (At the time of the peak reconnection rate, the diffusion region at the X-line is not fully resolved, and so this may be a numerical artifact.) Third, a second quasi-steady phase during which the magnetic island created in the impulsive phase is slowly dissipated by continuing, but low-level, reconnection. And fourth, a static, non-evolving phase containing a potential, current-free field and virtually no flow.During the short time in the impulsive phase when the reconnection rate exceeds the steady-state Petschek rate, a pile-up of magnetic flux at the neutral line occurs. At the same time the existing Petschek-slow-mode shocks are shed and replaced by new ones; and, for a while, both new and old sets of slow shocks coexist.  相似文献   

7.
In this paper we present the first comprehensive statistical study of EUV coronal jets observed with the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) imaging suites of the two STEREO spacecraft. A catalogue of 79 polar jets is presented, identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008, when solar activity was at a minimum. The twin spacecraft angular separation increased during this time interval from 2 to 48 degrees. The appearances of the coronal jets were always correlated with underlying small-scale chromospheric bright points. A basic characterization of the morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evolution. Though each jet appeared morphologically similar in the coronagraph field of view, in the sense of a narrow collimated outward flow of matter, at the source region in the low corona the jet showed different characteristics, which may correspond to different magnetic structures. A classification of the events with respect to previous jet studies shows that amongst the 79 events there were 37 Eiffel tower-type jet events, commonly interpreted as a small-scale (~35 arc?sec) magnetic bipole reconnecting with the ambient unipolar open coronal magnetic fields at its loop tops, and 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipole footpoints. Five events were termed micro-CME-type jet events because they resembled the classical coronal mass ejections (CMEs) but on much smaller scales. The remaining 25 cases could not be uniquely classified. Thirty-one of the total number of events exhibited a helical magnetic field structure, indicative for a torsional motion of the jet around its axis of propagation. A few jets are also found in equatorial coronal holes. In this study we present sample events for each of the jet types using both, STEREO A and STEREO B, perspectives. The typical lifetimes in the SECCHI/EUVI (Extreme UltraViolet Imager) field of view between 1.0 to 1.7 R and in SECCHI/COR1 field of view between 1.4 to 4 R are obtained, and the derived speeds are roughly estimated. In summary, the observations support the assumption of continuous small-scale reconnection as an intrinsic feature of the solar corona, with its role for the heating of the corona, particle acceleration, structuring and acceleration of the solar wind remaining to be explored in more detail in further studies.  相似文献   

8.
Solar coronal holes (CHs) are large regions of the corona magnetically open to interplanetary space. The nearly rigid north?–?south CH boundaries (CHBs) of equatorward extensions of polar CHs are maintained while the underlying photospheric fields rotate differentially, so interchange magnetic reconnection is presumed to be occurring continually at the CHBs. The time and size scales of the required reconnection events at CHBs have not been established from previous observations with soft X-ray images. We use TRACE 195 Å observations on 9 December 2000 of a long-lived equatorial extension of the negative-polarity north polar CH to look for changes of ??5 arcsec to >?20 arcsec at the western CHB. Brightenings and dimmings are observed on both short (≈?5 minutes) and long (≈?7 hours) time scales, but the CHB maintains its quasi-rigid location. The transient CHB changes do not appear associated with either magnetic field enhancements or the changes in those field enhancements observed in magnetograms from the Michelson Doppler Imager (MDI) on SOHO. In seven hours of TRACE observations we find no examples of the energetic jets similar to those observed to occur in magnetic reconnection in polar plumes. The lack of dramatic changes in the diffuse CHB implies that gradual magnetic reconnection occurs high in the corona with large (??10°) loops and/or weak coronal fields. We compare our results with recent observations of active regions at CHBs. We also discuss how the magnetic polarity symmetry surrounding quasi-rigid CHs implies an asymmetry in the interchange reconnection process and a possible asymmetry in the solar wind composition from the eastern and western CHB source regions.  相似文献   

9.
Transition-region explosive events (TREEs) have long been proposed as a consequence of magnetic reconnection. However, several critical issues have not been well addressed, such as the location of the reconnection site, their unusually short lifetime (about one minute), and the recently discovered repetitive behaviour with a period of three to five minutes. In this paper, we perform MHD numerical simulations of magnetic reconnection, where the effect of five-minute solar p-mode oscillations is examined. UV emission lines are synthesised on the basis of numerical results in order to compare with observations directly. It is found that several typical and puzzling features of the TREEs with impulsive bursty behaviour can only be explained if there exist p-mode oscillations and the reconnection site is located in the upper chromosphere at a height range of around 1900 km < h < 2150 km above the solar surface. Furthermore, the lack of proper motions of the high-velocity ejection may be due to a rapid change of temperature along the reconnection ejecta.  相似文献   

10.
The plasma conditions in the solar atmosphere and, in particular, in coronal holes are summarized, before space-borne instrumentation for observing these regions in vacuum-ultraviolet light is briefly introduced with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on the Solar and Heliospheric Observatory (SOHO) as example. Spectroscopic measurements of small plasma jets are then analyzed in detail. Magnetic reconnection is thought to be responsible for heating the corona of the Sun as well as accelerating the solar wind by converting magnetic energy into thermal and kinetic energies. The continuous outflow of the fast solar wind from coronal holes on ‘open’ field lines, which reach out into interplanetary space, then requires many reconnection events of very small scale sizes – most of them probably below the resolution capabilities of present-day instruments. Our observations of such an event have been obtained with the Solar and Heliospheric Observatory (SOHO) providing both high-resolution imaging and spectral information for structural and dynamical studies. We find whirling or rotating motions as well as jets with acceleration along their propagation paths in close spatial and temporal vicinity to the coronal jet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We present the main findings of two recent studies using high-resolution MHD simulations of supersonic magnetized shear flow layers. First, a strong large-scale coalescence effect partially countered by small-scale reconnection events is shown to dominate the dynamics in a two-dimensional layer subject to Kelvin-Helmholtz (KH) instabilities. Second, an interaction mechanism between two different types of instabilities (KH and current-driven modes) is shown to occur in a cylindrical jet configuration embedded in an helical magnetic field. Finally, we discuss the implications of these results for astrophysical jets survival.  相似文献   

12.
The propagation characteristics of MHD fast-mode disturbances, which can emanate from flare regions, are computed for realistic conditions of the solar corona at the times of particular flares. The path of a fast-mode disturbance is determined by the large-scale (global) coronal distributions of magnetic field and density, and can be computed by a general raytracing procedure (eikonal equation) adapted to MHD. We use the coronal (electron) density distribution calculated from daily K-coronameter data, and the coronal magnetic field calculated under the current-free approximation from magnetograph measurements of the photospheric magnetic field. We compare the path and time-development of an MHD fast-mode wavefront emitted from the flare region (as calculated from a realistic model corona for the day of the observed Moreton wave event) with actual observations of the Moreton wave event, and find that the Moreton wave can be identified with the rapidly moving intersection of the coronal fast-mode wavefront and the chromosphere (as hypothesized in our previous paper); the directivity (anisotropic propagation), as well as other characteristics of the propagation of the Moreton wave can be successfully explained.sponsored by the National Science Foundation.  相似文献   

13.
H. Peter 《Solar physics》2013,288(2):531-547
Magnetic field diagnostics of the transition region from the chromosphere to the corona faces us with the problem that one has to apply extreme-ultraviolet (EUV) spectro-polarimetry. While for the coronal diagnostics techniques already exist in the form of infrared coronagraphy above the limb and radio observations on the disk, one has to investigate EUV observations for the transition region. However, so far the success of such observations has been limited, but various current projects aim to obtain spectro-polarimetric data in the extreme UV in the near future. Therefore it is timely to study the polarimetric signals we can expect from these observations through realistic forward modeling. We employ a 3D magneto-hydrodynamic (MHD) forward model of the solar corona and synthesize the Stokes I and Stokes V profiles of C?iv (1548 Å). A signal well above 0.001 in Stokes V can be expected even if one integrates for several minutes to reach the required signal-to-noise ratio, and despite the rapidly changing intensity in the model (just as in observations). This variability of the intensity is often used as an argument against transition region magnetic diagnostics, which requires exposure times of minutes. However, the magnetic field is evolving much slower than the intensity, and therefore the degree of (circular) polarization remains rather constant when one integrates in time. Our study shows that it is possible to measure the transition region magnetic field if a polarimetric accuracy on the order of 0.001 can be reached, which we can expect from planned instrumentation.  相似文献   

14.
B. Vršnak 《Solar physics》1989,120(1):79-92
The properties and development of a high-temperature current sheet characterized by increasing merging velocity are studied and related to the early phases of solar flares. It is shown that the system can be described by the Petschek-type geometry for a wide range of merging velocities. In the diffusion region and the standing MHD shocks a certain low-frequency plasma microturbulence is generated from the very beginning of the reconnection process. We present qualitative solutions for the case of ion-acoustic turbulence in marginally stable state, which provide a comparison with observations. The increasing merging velocity leads to the appearance of the soft X-ray precursor. The precursor temperature maximum should appear during the current sheet formation, before the Petschek regime is established. In the Petschek regime the temperature of the hot plasma decreases due to the decrease of the magnetic field strength at the diffusion region boundary, while the soft X-ray radiation still increases, reaching precursor maximum for merging velocities about 1% of the external Alfvén velocity. The precursor phase ends when the value of the merging velocity surpasses the upper limit for the Petschek regime and the system enters into the pile-up regime, causing a new increase of plasma temperature and soft X-ray radiation.It is shown that Alfvén velocities in the range 800–1200 km s –1 are sufficient to explain typical soft X-ray precursors. Cases of low merging velocities and low Alfvén velocities are discussed and can be applied to describe the properties of spotless flares.  相似文献   

15.
We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar winds coupled with disc-driven jets where the resistive and viscous accretion disc is self-consistently described. The transmagnetosonic, collimated MHD outflows are investigated numerically using the VAC code. Our simulations show that the inner outflow is accelerated from the central object hot corona thanks to both the thermal pressure and the Lorentz force. In our framework, the thermal acceleration is sustained by the heating produced by the dissipated magnetic energy due to the turbulence. Conversely, the outflow launched from the resistive accretion disc is mainly accelerated by the magneto-centrifugal force. We also show that when a dense inner stellar wind occurs, the resulting disc-driven jet have a different structure, namely a magnetic structure where poloidal magnetic field lines are more inclined because of the pressure caused by the stellar wind. This modification leads to both an enhanced mass ejection rate in the disc-driven jet and a larger radial extension which is in better agreement with the observations besides being more consistent.  相似文献   

16.
The solar X-ray observing satellite Yohkoh has discovered various new dynamic features in solar flares and corona, e.g., cusp-shaped flare loops, above-the-loop-top hard X-ray sources, X-ray plasmoid ejections from impulsive flares, transient brightenings (spatially resolved microflares), X-ray jets, large scale arcade formation associated with filament eruption or coronal mass ejections, and so on. It has soon become clear that many of these features are closely related to magnetic reconnection. We can now say that Yohkoh established (at least phenomenologically) the magnetic reconnection model of flares. In this paper, we review various evidence of magnetic reconnection in solar flares and corona, and present unified model of flares on the basis of these new Yohkoh observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The acceleration of charged particles in the solar corona during flares is investigated in terms of a model in which the electrons and ions preaccelerated in the magnetic reconnection region are injected into a collapsing magnetic trap. Here, the particle energy increases rapidly simultaneously through the Fermi and betatron mechanisms. Comparison of the efficiencies of the two mechanisms shows that the accelerated electrons in such a trap produce more intense hard X-ray (HXR) bursts than those in a trap where only the Fermi acceleration mechanism would be at work. This effect explains the Yohkoh and RHESSI satellite observations in which HXR sources more intense than the HXR emission from the chromosphere were detected in the corona.  相似文献   

18.
In the present paper, we discuss an MHD model for the formation of astrophysical jets, in which the directed flows are ejected along the rotation axis of an accretion disk formed from a cloud having a large scale magnetic field parallel to the angular momentum axis of the disk. The acceleration of jets is due to thej×B force in the relaxing magnetic twist which is produced by the rotation of the disk. The characteristic features of the jets, predicted by our mechanism and hopefully to be proven by observations, are the helical velocity and the hollow cylindrical shape of the jet, with a diameter of roughly the size of the region from which the acceretion disk collected its mass. Justification for the assumption of the perpendicular orientation of the disk, or the parallelism of the jets, to the external magnetic field may be provided by the fact that the component of rotation whose axis is perpendicular to the field may have been damped in the earlier phase of the cloud contraction.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 Septemper–6 October, 1984.  相似文献   

19.
A topological model with magnetic reconnection at two separators in the corona is used to account for the recently discovered changes of the photospheric magnetic field in the active region NOAA 9077 during the July 14, 2000 flare. The model self-consistently explains the following observed effects: (1) the magnetic field strength decreases on the periphery of the active region but increases in its inner part near the neutral line of the photospheric magnetic field; (2) the center-of-mass positions of the fields of opposite (northern and southern) polarities converge; and (3) the magnetic flux of the active region decreases after the flare. The topological model gives not only a qualitative interpretation of the flare phenomena (the structure of the interacting magnetic fluxes in the corona, the location of the energy sources, the shape of the flare ribbons and kernels in the chromosphere and photosphere), but also correct quantitative estimates of the large-scale processes that form the basis for solar flares. The electric field emerging in the flare during large-scale reconnection is calculated. The electric field strength correlates with the observed intensity of the hard X-ray bremsstrahlung, suggesting an electron acceleration as a result of reconnection.  相似文献   

20.
We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese “noren” or vertical Venetian blinds out of the way while the slats are allowed to bend and twist in 3-D space. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized – but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号