共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time, the U–Pb age is determined for detrital zircons of quartzite–schist sequences, which are part of the Precambrian basement of the Aktau–Mointy Block (Central Kazakhstan) along with Neoproterozoic felsic volcanic (925–920 Ma) and granitic (945–917 Ma) rocks [6]. We analyzed 219 zircon grains from small-grained quartzites of the northern part of the block (Mt. Bol’shoi Alabas) including 206 grains with concordant age (1149–1273, 1276–1975, 2354–2592 Ma). These ages indicate the Mesoproterozoic, Paleoproterozoic, and Neoarchean rocks as provenances. The youngest statistically significant age peak of 1209 Ma indicates that the quartzite–schist sequences accumulated 1200–900 Ma ago (at the end of the Mesoproterozoic and beginning of the Neoproterozoic) prior to the formation of the Early Neoproterozoic felsic rocks and granites. 相似文献
2.
Doklady Earth Sciences - U–Pb geochronological studies of detrital zircons from quartzite–schist sequences of the Akbastau Formation of the Chu Block (northwestern part of the... 相似文献
3.
Several generations of Paleozoic granitic rocks are studied with Sm–Nd isotopic methods in the northwestern part of the Aktau–Dzhungar microcontinent of Central Kazakhstan (Atasu–Mointy divide). The initial Nd isotopic composition of the granitic rocks varies in a relatively narrow range from–0.1 to–3.5ε; the Nd model ages are also similar (1.11–1.46 Ga). These results indicate that the crustal source of all the Paleozoic granitic rocks of the region had similar composition and, probably, age. It is shown that the tNd(DM) values of the Paleozoic granites reflect different proportions between ancient and juvenile material in the crustal source. 相似文献
4.
U–Pb dating of tonalite of the Shaytantas Pluton located within the Ulutau sialic Massif (Central Kazakhstan) has been carried out. Their crystallization age of 521 ± 2 Ma corresponds to the Early Cambrian (boundary of Stages 2 and 3). The obtained geochronological data allow us to identify the Early Cambrian stage of the intraplate magmatic activity in the history of formation of the sialic massifs in the western part of the Central Asian fold belt. 相似文献
5.
The position of the Pamirs and the Hissar–Alai mountainous system in the structure of Central Asia and features of their junction are considered. It is shown that their outer contours and tectonic infrastructure are significantly distinct in the planar pattern: latitudinally linear and arched for the Hissar–Alai and the Pamirs, respectively. These structures logically match those of the Central Asian and Alpine–Himalayan belts, respectively. The Pamir orogen is a relatively autonomous structural element of the crust, which is located discordantly relative to the country lithospheric blocks. Most of the Pamirs (at least, the Northern and Central) probably form a giant allochthon on the ancient basement of the Tarim and Afghan–Tajik blocks. The junction zone of these two “hard” crustal segments is reflected in the transverse Transpamir threshold, which is expressed in the relief, deep structure, and seismicity. The specific geological structure of the junction zone of the Pamirs and Hissar–Alai (systems of the Tarim, Alai, and Afghan–Tajik troughs) is shown. It suggested that this zone is a damper, which significantly neutralizes the dynamic influence of the Pamir and the southernmost elements of the Pamir–Punjab syntax on Hissar–Alai structures. 相似文献
6.
The results of studying an aggregate of graphite-and-diamond crystal in tourmaline 5 μm of the Kokchetav massif by the method of transmission electron microscopy are presented. The detail studies of the interface between the crystals of graphite and diamond have revealed the absence of disordered graphite that is detail partially graphitized diamond. Intense deformation changes in the graphite crystal occurred after it was captured by tourmaline at the regression stage, which led to considerable kinking of the graphite crystal along the a-axis. Thus, the coexistence of graphite and diamond crystals cannot be unambiguously interpreted as a product of partial diamond graphitization. Graphite could have crystallized syngenetic with a diamond crystal or at the retrograde stage in the graphite stability field. 相似文献
7.
Doklady Earth Sciences - In the present paper, the results of our isotope–geochemical studies on eclogites of the ultrahighpressure metamorphic complex of the Kokchetav massif are reported.... 相似文献
8.
We present results of study of mineral assemblages and PT-conditions of metamorphism of mafic garnet–two-pyroxene and two-pyroxene granulites in the Early Precambrian metamorphic complex of the Angara–Kan terrane as well as the U–Pb age and trace-element and Lu–Hf isotope compositions of zircon from these rocks and the zircon/garnet REE distribution coefficients. The temperatures of metamorphism of two-pyroxene granulites are estimated as 800–870 to ~ 900 °C. Mafic garnet–two-pyroxene granulites contain garnet coronas formed at 750–860 °C and 8–9.5 kbar. The formation of the garnet coronas proceeded probably at the retrograde stage during cooling and was controlled by the rock composition. The age (1.92–1.94 Ga) of zircon cores, which retain the REE pattern typical of magmatic zircon, can be taken as the minimum age of protolith for the mafic granulites. The metamorphic zircon generation in the mafic granulites is represented by multifaceted or soccerball crystals and rims depleted in Y, MREE, and HREE compared to the cores. The age of metamorphic zircon in the garnet–two-pyroxene (~ 1.77 Ga) and two-pyroxene granulites (~ 1.85 and 1.78 Ga) indicates two episodes of high-temperature metamorphism. The presence of one generation (1.77 Ga) of metamorphic zircon in the garnet–two-pyroxene granulites and, on the contrary, the predominance of 1.85 Ga zircon in the two-pyroxene granulites with single garnet grains suggest that the formation of the garnet coronas proceeded at the second stage of metamorphism. The agreement between the zircon/garnet HREE distribution coefficients and the experimentally determined values at 800 °C suggests the simultaneous formation of ~ 1.77 Ga metamorphic zircon and garnet. Zircon formation by dissolution/reprecipitation or recrystallization in a closed system without exchange with the rock matrix is confirmed by the close ranges of 176Hf/ 177Hf values for the core and rims. The positive ε Hf values (up to + 6.2) for the zircon cores suggest that the protolith of mafic granulites are derived from depleted-mantle source. The first stage of metamorphism of the mafic granulites and paragneisses of the Kan complex (1.85–1.89 Ga) ended with the formation of collisional granitoids (1.84 Ga). The second stage (~ 1.77 Ga) corresponds to the intrusion of the second phase of subalkalic leucogranites of the Taraka pluton and charnockites (1.73–1.75 Ga). 相似文献
9.
Geotectonics - Seismic and tectonic processes were analyzed, taking into account the dimensions of tectonic structures and geological factors that determine the features of the relationship between... 相似文献
10.
Nd model ages(TDM) of the Pre-Mesozoic crustal rock samples from Southeast China range from 1.2 to 3.5Ga.Two age peaks of 1.4Ga and 1.8 Ga are observed in the histogram of TDM model ages.Available U-Pb zircon inheritance ages are concentrated around 1.2-1.4Ga,1.8Ga and 2.5Ga,respectively.The combined use of Sm-Nd and U-Pb zircon inheritance ages suggests that the formation of the Precambrian curst is of episodic character.The oldest crustal nucleus may have been formed during the Late Archean(2.5Ga or older?).A rapid production of the crust took place 1.8 Ga ago,consistent with the global crust formation event at 1.7-1.9Ga.Another important episode of the addition of juvenile crustal material from the mantle in Southeast China took place 1.2-1.4Ga ago,during which the pre-existing crust was strongly reworked and/or remelted. 相似文献
11.
The North Qaidam is an Early Paleozoic UHP metamorphic belt located at the north margin of the Tibet plateau. Eclogites in this belt contain both continental‐and oceanic‐type ones. In which, the continental‐type eclogites have protolith ages of 750–850 Ma and WPB or CFB geochemical signatures and are believed to have formed in a continental rift or an incipient oceanic basin setting related to the breakup of the Rodinia supercontinent, their metamorphic ages (421–458 Ma) and P–T paths are comparable to their host gneisses; oceanic‐type eclogites have cumulate gabbro or E‐MORB geochemical signatures, their protolith and metamorphic ages are 510–516 Ma and 425–450 Ma, respectively(Zhang et al., 2008). Therefore, the North Qaidam UHP belt was thought to record the whole Neoprotoerozoic–Paleozoic Wilson cycle (Song et al., 2014). In this study, we reported three new kinds of eclogites: kyanite‐bearing eclogite, lawsonite pseudomorph‐bearing eclogite and double mineral eclogite. They occur as big lentoid blocks in regional granitic gneiss in the western part of the belt. Phase equilibrium modelling and zircon LA‐ICPMS U‐Pb dating show that all these three eclogites experienced a clockwise P–T path with peak metamorphic conditions close to or fall in the coesite stability field, and their peak metamorphic age were around 436‐439 Ma, similar to those continental‐type eclogites in this belt. But their protolith ages are between 1273 and 1070 Ma, and some of them recorded an amphibolite facies metamorphic age of 927 Ma, and geochemical data and zircon Lu‐Hf and O isotope analysis indicate these eclogites have features of present day N‐MORB. Combined with the existing results, we propose that the North Qaidam is a polycyclic composite orogenwhich recorded tectonic evolution of Mesoproterozoic ocean floor spreading, assembly and breakup of Rodinia supercontinent, Early Paleozoic oceanic deep subduction and subsequently continental deep subduction. 相似文献
12.
Doklady Earth Sciences - Data indicating the important role of microorganisms in the redistribution of REEs in the weathering crust and the decisive role in the concentration of REEs during the... 相似文献
13.
Geotectonics - The paper considers the origin of hydrocarbon accumulations within the Pre-Cenozoic basement of the Vietnam shelf. It is shown that the formation of hydrocarbon deposits is... 相似文献
15.
This work presents the results of U–Pb geochronological studies of alkaline granites of the Aralaul complex of Northern Kazakhstan, which allow one to substantiate their Late Silurian (420 ± 4 Ma) age. Taking into consideration the previously obtained data, we propose a new development scheme of Paleozoic granitoid magmatism in Northern Kazakhstan, which includes Late Ordovician granite–granodiorite (Zerenda and Krykkuduk), Early Silurian granite–leucogranite (Borovoe and Karabulak), Late Silurian granosyenites–granite (Aralaul), and Early Devonian (Balkashino and Orlinogorsk) complexes. 相似文献
16.
Abstract: The Balfour Formation has a pronounced lithological variation that is characterized by alternating sandstone- and mudstone-dominated members. The sandstone-dominated Oudeberg and Barberskrans Members are composed of lithofacies that range from intraformational conglomerates to fine-grained sediments, whereas the mudstone-dominated members (Daggaboersnek, Elandsberg, and Palingkloof) are dominated by the facies Fm and Fl. Petrography, geochemistry, and a paleocurrent analysis indicated that the source rock of the Balfour Formation was to south east and the rocks had a transitional/dissected magmatic arc signature. The sandstones-rich members were deposited by seasonal and ephemeral high-energy, low-sinuous streams, and the fine-grained-rich members were formed by ephemeral meandering streams. The paleoclimates have been equated to present temperate climates; they were semiarid becoming arid towards the top of the Balfour Formation. This has been determined by reconstructing the paleolatitude of the Karoo Basin, geochemistry, paleontology, sedimentary structures, and other rock properties, like color. 相似文献
17.
U–Pb dating of the Torangalyk Complex (Northern Balkhash) yielded a Late Carboniferous age of 305 ± 2 Ma. Taking into account the previous data, a new scheme for Late Paleozoic granitic magmatism in this region has been proposed. It includes the Early Carboniferous granite–granodiorite Balkhash Complex, Late Carboniferous monzonite–granosyenite Kokdombak and Torangalyk complexes, and the Late Carboniferous–Early Permian granite–leucogranite Akchatau Complex. 相似文献
18.
In the Variscan French Massif Central and Armorican Massif, the tectonic significance of a widespread NW–SE-trending stretching lineation, coeval with medium pressure–medium temperature metamorphism, is an open question. Based on a structural analysis in the southern part of the Massif Central, we show that this top-to-the-NW shearing is a deformation event, referred to as D2, which followed a D1 top-to-the-south shearing Devonian phase, and was itself re-deformed by a Late D3 Visean–Serpukhovian southward-thrusting event. We date the D2 phase at 360 Ma (Famennian–Tournaisian boundary). In the Armorican Massif, D2 is the “Bretonian phase” recorded in the metamorphic series and sedimentary basins. Geodynamically, D2 is related to a general northwestward shearing during the Laurussia–Gondwana collision, which occurred after the closure of the Rheic Ocean, as indicated by the emplacement of the Lizard ophiolitic nappe in Britain. The left-lateral Nort-sur-Erdre fault accommodated the absence of ductile shearing in Central Armorica. 相似文献
19.
Doklady Earth Sciences - A zonal igneous areal appeared at the western end of the Mongol–Okhotsk Belt in the Early Mesozoic. Its central part is comprised of the Khentei–Daurian giant... 相似文献
20.
Doklady Earth Sciences - Suprasubduction zone ophiolites in the Bayanaul and Maikain–Kyzyltas zones in the northeastern part of Central Kazakhstan were studied. U–Pb dating of... 相似文献
|