首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
The paleomagnetic study of the Lower Ordovician and Cambrian sedimentary rocks exposed on the Narva River’s right bank revealed a multicomponent composition of natural remanent magnetization. Among four distinguished medium- and high-temperature magnetization components, the bipolar component, which carries the reversal test, is probably the primary component and reflects the geomagnetic field direction and variations during the Late Cambrian and Early Ordovician. The pole positions corresponding to this component have coordinates 22°N, 87°E (dp/dm = 5°/6°) for the Late Cambrian, and 18°N, 55°E (dp/dm = 5°/7°) for the Early Ordovician (Tremadocian and Arenigian). Together with the recently published paleomagnetic poles for the sections of the Early Ordovician in the Leningrad Region and the series of poles obtained when the Ordovician limestones were studied in Sweden, these poles form new key frameworks for the Upper Cambrian-Middle Ordovician segment of the apparent polar-wander path (APWP) for the Baltica. Based on these data, we propose a renewed version of the APWP segment: the model of the Baltica motion as its clockwise turn by 68° around the remote Euler pole. This motion around the great circle describes (with an error of A95 = 10°) both variations in the Baltic position from 500 to 456 Ma ago in paleolatitude and its turn relative to paleomeridians. According to the monopolar components of natural remanent magnetization detected in the Narva rocks, the South Pole positions are 2°S, 351°E (dp/dm = 5°/9°), 39°S, 327°E, (dp/dm = 4°/7°), and 42°S and 311°E (dp/dm = 9°/13°). It is assumed that these components reflect regional remagnetization events in the Silurian, Late Permian, and Triassic.  相似文献   

2.
Paleomagnetic studies have been made of certain constituents of the Bay St. George sub-basin. Specifically, results are reported from the Spout Falls Formation (Tournaisian), the Jeffreys Village Member of the Robinsons River Formation (Visean), and the Searston Formation (Namurian-Westphalian). The following magnetizations have been isolated: Spout Falls A (Tournaisian) with D = 343.5°, I = ?22.7°, k = 61.2, α95 = 7.1° and the corresponding pole at 28.6°N, 139.5°E (4.5°, 8.5°); Spout Falls B (Kiaman) with D = 166.7°, I = 12.2°, k = 51.7, α95 = 10.7° and the corresponding pole at 34.5°S, 42.7°W (5.5°, 10.9°); Jeffreys Village A (Visean) with D = 351.2°, I = ?27.3°, k = 54.0, α95 = 7.6° and the corresponding pole at 26.5°N, 130.7°E (4.5°, 8.3°); Searston A (Namurian) with D = 161.7°, I = 11.7°, k = 107, α95 = 7.4° and the corresponding pole at 33.9°S, 37.2°W (3.8°, 7.5°); and Searston C with D = 111.6°, I = ?13.8°, k = 28.8, α95 = 14.5° and the corresponding pole at 19.6°S, 19.0°E (7.6°, 14.8°). After comparison with paleopoles of similar ages derived from eastern and western Newfoundland rocks, from constituents of the east coast basin and for interior North America, it is concluded that: (1) it is unlikely that any large scale relative motion took place since the Early Carboniferous between eastern and western Newfoundland; (2) it is unlikely that any north-south relative motion took place between the east coast basin and the Bay St. George sub-basin; and (3) the Bay St. George sub-basin results do not support the earlier proposed displaced terrane hypothesis of the northern Appalachians in as much as the motions during the Carboniferous are not supported. There is evidence of the northward motion of the Appalachians and North America as a whole during the Carboniferous. The magnetostratigraphic horizon marker in the Carboniferous separating a dominant normal and reversed magnetization on the older side and an entirely reversed (Kiaman) magnetization on the younger side may be placed in the Bay St. George sub-basin at the base of the Searston Formation.  相似文献   

3.
利用P波初动和直达P、S波最大速度振幅比联合求解小震震源机制的方法求出珊溪水库ML2.0以上地震的震源机制,得到了珊溪水库震源机制各参数时空特征如下:主压应力为SN向,主张应力为EW向,应力主要为水平应力,发震断层倾角较大且多为走滑断层。在个别4级左右地震前P轴方位都有偏离再恢复的现象。在北纬27.65°~27.69°间,P轴方位集中在0°±30°或者180°±30°,节面走向集中在45°±15°或者135°±15°。震源深度大于4km的地震倾角多集中在70°~90°度之间。  相似文献   

4.
From Middle-Upper Jurassic volcanics at the western margin of the Maranha?o Basin (6.4°S, 47.4°W) 15 sites (121 samples) have a mean magnetization directionD = 3.9°,I = ?17.9° withα95 = 9.3°,k = 17.9 after AF cleaning (all sites have normal polarity). This yields a pole (named SAJ2) at 85.3°N, 82.5°E (A95 = 6.9°) which is near to the other known Middle Jurassic South American pole. For 21 sites (190 samples) from Lower Cretaceous basalt intrusions from the eastern part of the Maranha?o Basin (6.5°S, 42°W) the mean direction isD = 174.7°,I = +6.0° withα95 = 2.8°,k = 122 (all sites have reversed polarity) yielding a pole (SAK9) at 83.6°N, 261°E (A95 = 1.9°) in agreement with other Lower Cretaceous pole positions for South America. Comparing Mesozoic pole positions for South America and Africa in the pre-drift configuration after Bullard et al. [13] one finds a significant difference (with more than 95% probability) for the Lower Cretaceous and Middle Jurassic poles and also a probable difference for the mean Triassic poles indicating a small but probably stationary separation of the two continents from the predrift position in the Mesozoic until Lower Cretaceous time which may be due to an early rifting event.  相似文献   

5.
Mesoscale convective systems(MCSs) around the second-step terrain(106°–113°E, 28°–35°N), along the middle reaches of the Yangtze River, were detected, tracked and classified using a black body temperature(TBB) dataset during May to August 2000–2016(except 2005). The MCSs were divided into eastward-propagating(EP) and quasi-stationary(QS) types, to compare their spatial and temporal distributions and convective intensities, and to identify the favorable synoptic conditions for the formation and evolution of EP MCSs. The results showed that both MCS types occurred most often in July. The EP MCSs were mainly initiated over the eastern regions of the study area, while the QS type mainly originated in the western regions of the study area. Both MCS types mainly formed in the afternoon, but a second peak occurred in the early morning for QS MCSs. The EP MCSs had a larger cloud area at their mature stage and a lower cloud brightness temperature, indicating more intense convection. Additionally, the longer lifetime and further eastward propagation of the EP MCSs meant that they had a great influence on the precipitation over the middle and lower reaches of the Yangtze River. Synoptic circulation analysis demonstrated that the combination of the mid-level low trough east of the Tibetan Plateau(TP), and the western pacific subtropical high(WPSH), favored the formation and eastward propagation of EP MCSs. The positive vertical relative vorticity and stronger vertical wind shear provided dynamic conditions favorable for convective organization and development. Furthermore, a stronger low level jet imported warm and moist air to the eastern edge of, and the regions east of, the second-step terrain. The substantial convergence of water vapor promoted the development and long-lived maintenance of the EP MCSs.  相似文献   

6.
The runoff channels of two hot springs are investigated at seven and six stations with water temperatures of 64 … 34 or 44 … 35 °C, respectively. The temperatures are constant in the annual variation. With decreasing temperature, the pH-values and alkalinity decrease, whereas the hydrogen carbonate content and the orthophosphate concentration increase. In the range above 60 °C the mat consists of cyanophyceae and bacteria, and, unexpectedly, already from 60 °C also diatoms occur as dominant forms, below 40 °C the mat consisting of green algae and diatoms. With rotatoria, crustaceae and insects, herbivorous species occur only below 40 °C, fish species are regularly found below 38 °C.  相似文献   

7.
王恒  杨振宇 《地球物理学报》2019,62(5):1789-1808
印度—欧亚板块碰撞以来青藏高原内部及其周缘地区经历了复杂的构造演化,复杂构造变形区的复合构造使得古地磁的数据解释究竟代表区域的构造旋转还是只能反映局部的构造变形一直是备受关注的问题.本文通过采集川滇地块西缘渔泡江断裂东侧三岔河地区白垩纪红层古地磁样品,揭示采样区差异性旋转并探讨川滇地块西部自中新世以来的构造演化规律.前人的地质调查表明川滇地块渔泡江断裂东侧上白垩统赵家店组地层发育倾伏褶皱.三岔河剖面以三岔河镇为界分为南北两段,三岔河南段剖面高温剩磁分量平均方向在倾斜校正后Ds=29.3°,Is=45.7°,ks=54.3,α95=6.6°,倾伏地层产状校正后Ds=30.6°,Is=46.6°,ks=69.3,α95=5.8°;而三岔河北侧剖面高温剩磁分量平均方向在倾斜校正后Ds=350.4°,Is=42.1°,ks=69.4,α95=9.2°,倾伏地层产状校正后Ds=347.4°,Is=41.9°,ks=96.6,α95=7.8°;两组高温剩磁分量均通过了褶皱检验,表明其获得于褶皱形成之前.相对于东亚稳定区80Ma古地磁极,三岔河南侧剖面发生了20.5°±4.8°的顺时针构造旋转量,与楚雄盆地核部之间不存在差异性旋转;但三岔河镇以北剖面却发生了22.7°±6.6°的逆时针旋转.综合分析川滇地块内部的古地磁数据表明自中新世以来川滇地块南部楚雄盆地经历了约20°的顺时针构造旋转,而三岔河镇北侧经历了约20°逆时针旋转.进一步分析表明三岔河北侧剖面相对于南侧剖面经历了约40°的逆时针旋转,可能由于研究区的滑脱构造导致岩石薄弱层拆离滑脱所引起.  相似文献   

8.
In the western part of the Gardar Igneous Province of southern Greenland, lamprophyre dykes intruded at ca. 1276-1254 m.y. RbSr biotite ages yield a palaeomagnetic pole at 206.5°E,3°N (nine sites, dψ = 5.1°, dχ = 10.1°) Slightly younger dolerite dykes with RbSr biotite ages in the range 1278-1263 m.y. give a pole at 201.5°E,8.5°N (24 sites, dψ = 4.7°, dχ = 9.4°), and the syeno-gabbro ring dyke of the Kûngnât complex (RbSr isochron age 1245 ± 17 m.y.) cutting both of these dykes swarms, gives a pole at 198.5°E, 3.5°N (four sites, dψ = 2.3°,dχ = 4.4°). All these rock units have the same polarity and the poles are identical to those from Mackenzie and related igneous rocks of North America (1280-1220 m.y.) after closure of the Davis Strait; they confirm that this part of the Gardar Province is a lateral extension of the Mackenzie igneous episode within the Laurentian craton.In the Tugtutôq region of the eastern part of the Gardar Province 47 NNE-trending dykes of various petrologic types, and intruded between 1175 ± 9 and 1168 ± 37 m.y. (RbSr isochron ages) yield a palaeomagnetic pole at 223.9° E, 36.4°N (dψ = 4.1°, dχ = 6.1°). Fifteen other dykes in this swarm were intruded during a transitional phase of the magnetic field which, however, does not appear to have achieved a complete reversal over a period of several millions of years. The majority of dykes studied are highly stable to AF and thermal demagnetisation and contain single high blocking temperature components with single Curie points in the range 380–560°C.Palaeomagnetic poles from the Gardar Province between ca. 1330 and 1160 m.y. in age define the earlier part of the Great Logan apparent polar-wander loop; they correlate closely with contemporaneous North American results and confirm the coherence of the Laurentian craton in Upper Proterozoic times.  相似文献   

9.
Southwest Tarim (hereafter SW Tarim) is one of afew areas that well developed Cretaceous marinesedimentary rocks in China [1]. The Cretaceous marinesediments are stretched in front area along the Tian-shan and Kunlun Mountains. Toward the center ofTarim Basin, the Cretaceous sediments are buried bygreat thickness of Tertiary and Quaternary sedimentswith little exposure. Compared with the Cretaceousterrestrial strata of north Tarim, the Cretaceous marinestrata of SW Tarim continue and d…  相似文献   

10.
Two large earthquakes occurred in the western part of China in 2008, one of them being the Yutian (35.6°N, 81.6°E) M7.3 earthquake that occurred on March 21 (BJT) and the other the Wenchuan (31.0°N, 103.4°E) M8.0 earthquake that occurred on May 12 (BJT). In this paper, the West Continental China (included in 20.0°–50.0°N, 70.0°–110.0°E region) was the study region for verifyong the predictability of the pattern informatics (PI) method using the receiver-operating characteristic curve (ROC) test and R score test. Different forecasting maps with different calculating parameters were obtained. The calculating parameters were the grid size Δx, base time t b, reference interval t b to t 1, change interval t 1 to t 2, and forecasting interval t 2 to t 3. In this paper, the base time t b fixed to June 1, 1971, the ending forecast time t 3 fixed to June 1, 2008, and the forecasting interval t 2 to t 3 changed from 1 to 10 years, and the grid sizes were chosen as 1° × 1° and 2° × 2°, respectively. The results show that the PI method could forecast the Yutian M7.3 and Wenchuan M8.0 earthquakes only using suitable parameters. Comparing the forecast results of grid sizes 1° × 1° and 2° × 2°, the models with 2° × 2° grids were better. Comparing the forecast results with different forecasting windows from 1 to 10 years, the models with forecasting windows of 4–8 years were better using the ROC test, and the models with forecasting windows of 7–10 years were better using the R score test. The forecast efficiency of the model with a grid size of 2° × 2° and forecast window of 8 years was the best one using either the ROC test or the R score test.  相似文献   

11.
The toxicity of Na-pentachlorophenate to Viviparus bengalensis is investigated by batch tests with daily exchange of medium in the temperature range between 19 °C (February), 27 °C (April), 32 °C (June) and 30 °C (August) at times of exposure between 12 and 96 h. In the range of higher concentrations, pronounced abnormalities in behaviour by secreting mucus and discharging eggs and embryos occur. The LC50 are lowest for all times of exposure at 27 °C, whereas the times of survival with a given concentration are highest at 30 °C. From the LC50, 96h, 27°C = 66 μg/l results a safe concentration of only 47 μg/l Na-pentachlorophenate for Viviparus bengalensis.  相似文献   

12.
拉萨地块林周盆地白垩系红层的古地磁数据一直都有较大争议.过去认为磁倾角变浅可能是造成这些分歧的主要原因.我们在林周盆地设兴组背斜两翼进行了系统的古地磁采样,15个采样点的特征剩磁分量在倾斜校正和倾伏褶皱校正后平均方向为D=339.3°,I=22.9°(α_(95)=5.1°).特征剩磁分量在大约69%展开时获得最大集中,表明其为同褶皱重磁化;此时平均方向为D=339.1°,I=27.3°(α_(95)=4.1°),对应的古地磁极为65.4°N,327.5°E(A_(95)=3.5°),参考点29.3°N/88.5°E的古纬度为15.0°N±3.5°.薄片镜下分析显示赤铁矿为次生矿物,岩石磁组构(AMS)也表现为过渡型构造变形组构.样品的特征剩磁方向应为重磁化的结果,E/I(elongation vs inclination)校正法显示特征剩磁方向并没有发生倾角变浅.根据区域构造,重磁化时代约为72.4±1.8 Ma到64.4±0.6 Ma.综合考虑拉萨地块东西部的古地磁数据以及地震层析成像资料后我们认为,碰撞前拉萨地块大约呈NW-SE向准线性分布,并处于~10°N-15.0°N;自~70 Ma以来,拉萨地块与稳定欧亚大陆之间至少存在1200±400 km(11.1°±3.5°)的南北向构造缩短量;印度大陆与欧亚大陆的碰撞不应晚于55 Ma.  相似文献   

13.
—The 4-season (12-month) running means of temperatures at five atmospheric levels (surface, 850–300 mb, 300–100 mb, 100–50 mb, 100–30 mb) and seven climatic zones (60°N–90°N, 30°N–60°N, 10°N–30°N, 10°N–10°S, 10°S–30°S, 30°S–60°S, 60°S–90°S) showed QBO (Quasi-biennial Oscillation), QTO (Quasi-triennial Oscillation) and larger periodicities. For stratosphere and tropopause, the temperature variations near the equator and North Pole somewhat resembled the 50mb low latitude zonal winds, mainly due to prominent QBO. For troposphere and surface, the temperature variations, especially those near the equator, resemble those of eastern equatorial Pacific sea-surface temperatures, mainly due to prominent QTO. In general, the temperature trends in the last 35 years show stratospheric cooling and tropospheric warming. But the trends are not monotonic. For example, the surface trends were downward during 1960–70, upward during 1970–82, downward during 1982–85 and upward thereafter. Models of green-house warming should take these non-uniformities into account.  相似文献   

14.
The major Proterozoic igneous intrusions in the Swedish sector of the Baltic Shield are the Ragunda complex (1293 m.y., palaeomagnetic pole 165°E, 54°N) and the Nordingrågabbro-granite-anorthosite complex (1385 ± 30 m.y.). The latter body has been partially remagnetised by later post-Jotnian dolerites (1254 m.y.), and sites influenced by the dolerites have a stable magnetisation with a mean direction D = 45°, I = ?39°, (α95 = 4.3°). Elsewhere, the gabbro-anorthosite facies have a magnetisation of dual polarity predating the dolerite and recoverable at various stages of thermal and/or a.f. cleaning with a mean of D = 48°, I = 37° (α95 = 5.3°); medium and high coercivity remanence resides in large magnetite grains and fine, predominantly hematite, rods in feldspar megacrysts. The Nordingrårapakivi granite yields a mean, also including dual polarities, of D = 221°, I = ?25° (α95 = 13°), and the Gävle granite yields a mean of D = 26°, I = 17° (α95 = 13°).New data define the a.p.w. path for the Baltic Shield after final uplift and cooling of the ca. 1800 m.y. Svecofennian mobile belt and prior to intrusion of the post-Jotnian dolerites at 1250 m.y.; this (ca. 1500–1200 m.y.) path defines a double loop similar in size and shape to the contemporaneous path for the Laurentian Shield and the paths can be superimposed to define relative positions of the shields. They were in juxtaposition prior to 1200 m.y. with the optimum reconstruction obtained by rotation of approximately 64° about a Euler pole at 1°E, 36°N. Pre-1500 m.y. palaeomagnetic data are also shown to fit this same unique reconstruction. The main geological correlations are an alignment of the Lower/Middle Proterozoic major strike-slip zones, the structural trends within the pre-1700 m.y. mobile belts, and the Grenville and Sveconorwegian (ca. 1100 m.y.) mobile belts. The anorogenic magmatism characteristic of Proterozoic times became gradually more restricted to one active margin of the continental reconstruction as temperature gradients decreased and the crust consolidated. All of these Proterozoic tectonic/magmatic trends are parallel to the long axis of the continental reconstruction.  相似文献   

15.

A paleomagnetic study of about 95 samples from 16 sites sampled in the Early Cretaceous in Luanping basin in Hebei Province was reported. Stepwise thermal demagnetization was used to isolate magnetic components. Most samples have a characteristic direction with a high temperature component above 500°C. The tectonic-corrected data areD = 347.8°,I = 50.4°, α95 = 7.l°, and the corresponding pole position is at 76.1°N, 346.3°E,with dp =6.4°,dm = 3.8°, paleolatitude λ = 31.1°N. This result indicates a counterclockwise post-Cretaceous rotation of 30.7° ±9.8° with respect to the stable Ordos basin in the west of North China Block, and a non-significant northward motion. This rotation could be related to local fault action or structural detachment, or regional NNW-NWWward motion and collision of Kula-Pacific plate with eastern China since the Early Cretaceous.

  相似文献   

16.
Results of a paleomagnetic study carried out on the exposed volcanic rocks on the western side of the South Kenya Rift Valley are presented. Nine stratigraphic groups ranging in age from Miocene to Pleistocene were sampled. The rocks consist of basalts, trachytes, nephelinites, melanephelinites, olivine melanephelinites and ignimbrites. Paleomagnetic poles obtained for different age ranges are as follows: Period I (0.64–0.72 Ma), 116°E, 85°N (A95 = 6°); Period II (1.6–6.9 Ma), 297°E, 84°N (A95 = 4°); Period III (12.0–15.0 Ma), 34°E, 80°N (A95 = 9°). The results for Period II show large secular variations which are in disagreement with the model predictions for near-equatorial sites.  相似文献   

17.
An en echelon suite of four fracture zones, trending approximately N40°E, has been discovered during a survey of the Southwest Indian Ocean Ridge between Bouvet Island and 14°E. The largest of these fracture zones, the Islas Orcadas and Shaka, are less than 30 km wide, have more than 3 km of vertical relief, and are respectively 100 and 200 km in length. The morphology of these and the Bouvet and Prince Edward fracture zones have been used to compute a pole for the relative motion between Africa and Antarctica. This pole, at 4°S and 32°W, is within the range of previously computed pole positions.Ridge basalts were dredged at three separate locations: at the Conrad fracture zone near 55°40′S and 3°51′W, at the Islas Orcadas fracture zone near 54°5′S and 6°4′E, and at the ridge crest near 11°E. In addition, samples from a probable upper mantle intrusion were recovered from one wall of the Islas Orcadas fracture zone. The opposite wall was very different consisting entirely of normal mid-ocean ridge basalt.  相似文献   

18.
本文利用位于我国中南部电离层闪烁监测台网2012年至2015年的观测数据,比较分析了GPS(Global Positioning System)信号闪烁与周跳的统计特征以及太阳活动和地磁扰动对闪烁与周跳的影响.结果表明,闪烁活动与周跳出现随地方时、月份、太阳活动和地磁扰动变化的统计特征类似,且周跳出现的可能性随S4指数增高显著增大,说明闪烁与周跳存在密切的关联,是引起周跳的一种重要因素.一天之中,闪烁和周跳主要出现在日落后至黎明前,午夜前出现最频繁,白天仅偶尔出现.在赤道异常峰及其邻近区域,一年之中,闪烁和周跳主要出现在春秋季,春季闪烁活动和周跳出现明显比秋季频繁,呈现春秋不对称性,冬夏季节闪烁和周跳都很少出现.闪烁活动与周跳出现的逐年变化显著依赖太阳活动水平,随太阳活动水平升高而增强,而地磁扰动与闪烁活动与周跳出现呈负相关,地磁扰动对闪烁活动与周跳出现整体上起抑制作用.平均而言,越靠近磁赤道的台站闪烁活动越频繁,随纬度升高,闪烁活动频次逐渐降低,且闪烁活动的开始时间随纬度升高而滞后,暗示引起GPS信号闪烁的电离层不规则结构主要起源于磁赤道区.此外,分析还发现,闪烁活动与周跳出现的空域有相当好的一致性,主要分布在观测点上空仰角55°以下、方位角150°~240°的空域内.  相似文献   

19.
A paleomagnetic study of about 95 samples from 16 sites sampled in the Early Cretaceous in Luanping basin in Hebei Province was reported. Stepwise thermal demagnetization was used to isolate magnetic components. Most samples have a characteristic direction with a high temperature component above 500°C. The tectonic-corrected data areD = 347.8°,I = 50.4°, α95 = 7.l°, and the corresponding pole position is at 76.1°N, 346.3°E,with dp =6.4°,dm = 3.8°, paleolatitude λ = 31.1°N. This result indicates a counterclockwise post-Cretaceous rotation of 30.7° ±9.8° with respect to the stable Ordos basin in the west of North China Block, and a non-significant northward motion. This rotation could be related to local fault action or structural detachment, or regional NNW-NWWward motion and collision of Kula-Pacific plate with eastern China since the Early Cretaceous.  相似文献   

20.
A one-dimensional model is used to analyze, at the local scale, the response of the equatorial Atlantic Ocean under different meteorological conditions. The study was performed at the location of three moored buoys of the Pilot Research Moored Array in the Tropical Atlantic located at 10° W, 0° N; 10° W, 6° S; and 10° W, 10° S. During the EGEE-3 (Etude de la circulation océanique et de sa variabilité dans le Golfe de Guinee) campaign of May–June 2006, each buoy was visited for maintenance during 2 days. On board the ship, high-resolution atmospheric parameters were collected, as were profiles of temperature, salinity, and current. These data are used here to initialize, force, and validate a one-dimensional model in order to study the diurnal oceanic mixed-layer variability. It is shown that the diurnal variability of the sea surface temperatures is mainly driven by the solar heat flux. The diurnal response of the near-surface temperatures to daytime heating and nighttime cooling has an amplitude of a few tenths of degree. The computed diurnal heat budget experiences a net warming tendency of 31 and 27 W m−2 at 0° N and 10° S, respectively, and a cooling tendency of 122 W m−2 at 6° S. Both observed and simulated mixed-layer depths experience a jump between the nighttime convection phase and the well-stabilized diurnal water column. Its amplitude changes dramatically depending on the meteorological conditions occurring at the stations and reaches its maximum amplitude (~50 m) at 10° S. At 6° and 10° S, the presence of barrier layers is observed, a feature that is clearer at 10° S. Simulated turbulent kinetic energy (TKE) dissipation rates, compared to independent microstructure measurements, show that the model tracks their diurnal evolution reasonably well. It is also shown that the shear and buoyancy productions and the vertical diffusion of TKE all contribute to the supply of TKE, but the buoyancy production is the main source of TKE during the period of the simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号