首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We examined relationships between the pore structure of microaggregates and the protection of organic matter (OM) within that structure. By using ultra-small angle X-ray scattering (USAXS) before and after combustion of microaggregates at 350 °C, we took advantage of differences in X-ray scattering contrast among soil minerals, OM, and air to evaluate the distribution of the total- and OM-filled porosity within microaggregates (53-250 μm in diameter). Systematic changes in microaggregate structure were observed for long-term field manipulations of land use (a chronosequence of tallgrass prairie restorations) and agricultural management (conventional tillage versus no-till at two levels of nitrogen fertilization). Our results imply that OM preservation arose from the evolution of the architectural system of microaggregates during their formation and stabilization. Soils and treatments with increasing OM in microaggregates were associated with encapsulation of colloidal OM by minerals, thereby creating protected OM-filled pores at the submicron scale within the microaggregate structure. For example, in the prairie chronosequence, microaggregates from the cultivated soil had the lowest concentration of OM, but 75% of the OM that had survived cultivation was in OM-filled pores. Following restoration, the concentration of OM in microaggregates increased rapidly, but the proportion of OM in OM-filled pores declined initially and then increased over time until 90% of the OM was in OM-filled pores. OM totally encapsulated within the pore structure can create spatial and kinetic constraints on microbial access to and degradation of OM. Encapsulation of OM increases the capacity for its protection relative to sorption on mineral surfaces, and comparison of its extent among treatments suggests important feedback loops. The use of USAXS, which has not previously been applied to the study of soil aggregate structures and the distribution of OM within those structures, provided new information on the mechanisms of OM protection in soil microaggregates, and insights relevant to strategies for enhancing carbon-sequestration in soil through changes in agricultural management practices and land use.  相似文献   

2.
Sorptive stabilization of organic matter by amorphous Al hydroxide   总被引:3,自引:0,他引:3  
Amorphous Al hydroxides (am-Al(OH)3) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L−1) with OM extracted from organic horizons under a Norway spruce and a European beech forest. The stabilization of OM by sorption was analyzed by comparing the CO2 mineralized during the incubation of sorbed and non-sorbed OM. The mineralization of OM was evaluated based in terms of (i) the availability of the am-Al(OH)3, thus surface OM loadings, (ii) spectral properties of OM, and (iii) the presence of phosphate as a competitor for OM. This was done by varying the solid-to-solution ratio (SSR = 0.02-1.2 g L−1) during sorption. At low SSRs, hence limited am-Al(OH)3 availability, only small portions of dissolved OM were sorbed; for OM from Oa horizons, the mineralization of the sorbed fraction exceeded that of the original dissolved OM. The likely reason is competition with phosphate for sorption sites favouring the formation of weak mineral-organic bindings and the surface accumulation of N-rich, less aromatic and less complex OM. This small fraction controlled the mineralization of sorbed OM even at higher SSRs. At higher SSRs, i.e., with am-Al(OH)3 more available, competition of phosphate decreased and aromatic compounds were sorbed selectively, which resulted in pronounced resistance of sorbed OM against decay. The combined OC mineralization of sorbed and non-sorbed OM was 12-65% less than that of the original DOM. Sorbed OM contributed only little to the overall OC mineralization. Stabilization of OC increased in direct proportion to am-Al(OH)3 availability, despite constant aromatic C (∼30%). The strong stabilization at higher mineral availability is primarily governed by strong Al-OM bonds formed under less competitive conditions. Due to these strong bonds and the resulting strong stabilization, the surface loading, a proxy for the mineral’s occupation by OM, was not a factor in the mineralization of sorbed OM over a wide range of C sorption (0.2-1.1 mg C m−2). This study demonstrates that sorption to am-Al(OH)3 results in stabilization of OM. The mineral availability as well as the inorganic solution chemistry control sorptive interactions, thereby the properties of sorbed OM, and the stability of OM against microbial decay.  相似文献   

3.
微生物降解蒙脱石层间吸附有机质的实验研究   总被引:1,自引:0,他引:1  
近年来,国内外学者意识到,有机质在蒙脱石结构层间的吸附是有机质保存的重要机理之一,然而,目前关于微生物能否降解蒙脱石层间吸附有机质以及降解的程度等尚没有任何实验数据的支撑。本文试图通过人工合成含有层间吸附有机质的蒙脱石,利用海洋和湖泊沉积物中常见的降解有机质的微生物对其进行降解实验,据此探讨有机质的蒙脱石层间吸附在沉积物埋藏过程中对有机质保存的贡献。有机质选择半胱氨酸和甲苯,前者是生物生长所需的一种重要氨基酸,后者大量存在于土壤和沉积物中,多种细菌可以在有碳氢化合物的环境下将其降解。实验菌种选择恶臭假单胞杆菌(Pseudomonas putida)和腐败希瓦氏菌(Shewanella putrefaciens CN32)2种细菌,它们均为海洋和湖泊沉积物中的主导微生物,前者有较强的有机质降解能力,后者为铁的还原菌,厌氧代谢过程中能将蒙脱石结构中的Fe(III)还原为Fe(II)。通过上述不同菌种对蒙脱石层间吸附不同性质有机质的降解实验,结果显示,微生物对蒙脱石层间吸附的有机质的降解方式主要有分泌有机酸直接降解和破坏层间结构释放有机物从而进行降解。代表菌种假单胞菌和希瓦氏菌对半胱氨酸绿脱石及甲苯绿脱石的作用表明,微生物通过分泌有机酸的形式对蒙脱石层间吸附的有机质降解作用很有限,该结构在恒定的有氧和无氧条件下对保存有机质有利;希瓦氏菌在严格无氧条件下通过还原Fe(III)进行代谢,实验表明,无氧条件下,希瓦氏菌可以一定程度破坏矿物结构,释放并消耗有机物,因此,铁还原微生物对蒙脱石层间吸附有机质的保存有一定的影响,但由于微生物对矿物晶体结构的破坏能力有限,故其对层间吸附有机质降解的能力也有限;不同有机物对生物降解过程也有影响,这些影响取决于有机质的特性及有机质与细菌之间的相互作用。绿脱石层间吸附的半胱氨酸对生物生长有利,从而可能促进生物还原Fe(III)作用。相反,甲苯却很明显的抑制了Fe(III)的还原。由此可见,有机质的蒙脱石层间吸附是有机质保存的重要方式之一。  相似文献   

4.
Molar organic carbon to total nitrogen to organic phosphorus (OC:TN:OP) ratios are used in tandem with carbon isotopic values to constrain sources of organic matter (OM) to marine sediments in a tropical coastal embayment. Analysis of end-members specific to the study site indicates that the bulk OM pool cannot be modeled as a simple mixture of two end-members (terrestrial vs. marine OM), but rather reflects a more complex, multicomponent mixture. Mangrove, coral reef ecosystems, and bacterial biomass contribute OM to tropical coastal marine sediments that is compositionally distinct from traditional marine and terrestrial end-members and thus preclude the application of a classical two end-member mixing model of the sort that has been used traditionally in sediments from temperate environments. A survey of elemental ratios and carbon isotopic values of potential OM end-members reported in the literature, as well as depth profiles before and after whole-core incubation experiments conducted as part of this study, were used to evaluate the strength of OC:TN versus OC:OP ratios as OM source indices. Our study suggests that OC:TN ratios are a weaker indicator of OM source than OC:OP ratios, because: (1) the more restricted dynamic range of OC:TN ratios prevents clear distinction of terrestrial-from marine-derived OM, and (2) post-depositional changes in OC:TN ratios occur during diagenesis, obscuring the source signature of initially deposited OM. The fidelity of OM indices during early diagenesis underscores the importance of quantifying OP in sediments to assess sedimentary OM source.  相似文献   

5.
There are various types of Organic Matter (OM) in marine sediments, and it is of great significance to accurately estimate the source of them. The methods used in most researches include element ratio (C/N), stable isotopes (δ13C) and biomarkers (BIT), all of which are used for the whole sample as objects and calculated by end-member of terrestrial and marine source OM, respectively. However, OM is preserved in different ways, such as on its own recalcitrance or combining with inorganic minerals. Preservation differences make their respective parameter values change. After differential sedimentary by gravity or other factors,different preservation types of OM are enriched or dispersed, making some parameters distorted and even meaningless in some areas. Therefore, the parameters of OM measured by the whole sample are influenced by the source of OM and the way of deposition and preservation. Therefore, it is unreliable to use these parameters to study the source of OM without considering the way of preservation. Based on this, this paper put forward a method of particle separation to separate the sediment in different propertied and preservation types. According to the composition and characteristics of the OM at the specific grain level, the corresponding index and end-members value were used to calculate more accurate proportion of the OM. It is of profound significance to understand the production, aggregation, occurrence, migration and deposition of OM and its evolution in the entire carbon cycle.  相似文献   

6.
未熟-低熟油生成机理的化学动力学研究及其初步应用   总被引:18,自引:2,他引:18  
对树脂体、木栓质体、可溶有机质、富硫有机质、经细菌强烈改造过的有机质等各类与未熟─低熟油产出密切相关的样品及部分参照样品所进行的系统的化学动力学定量研究显示,虽然未熟─低熟油的产出和富集可能与多种不同的地质条件或因素有关,但它们的共同之处在于这些有机质较常规有机质具有明显偏低的成烃活化能。化学动力学模型的初步应用显示,这些有机质的确能在浅于常规生烃门限的地质条件下开始大量成烃,从而定量阐明了业已报道的各种地质条件下未熟─低熟油产出和富集的机理.  相似文献   

7.
基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构   总被引:3,自引:3,他引:3  
页岩中纳米级有机孔的大小直接影响页岩气含气量,其连通性亦对气体运移和开采至关重要。本文选择漆辽地区龙马溪组富有机质页岩,利用聚焦离子束-扫描电镜(FIB-SEM)在纳米尺度上(10 nm)进行有机孔结构的三维重构。研究结果表明:(1)FIB-SEM方法适用于微米级页岩的纳米(3 nm)孔隙结构特征研究。(2)蜂窝状有机孔发育均匀,孔径集中于10~200 nm,连通性较差;界面有机孔孔径集中于200~300 nm,局部连通性较好。(3)页岩总孔隙度与有机质含量成正比。研究认为,对于以有机孔为重要储集空间的页岩,有机质分布越集中,连续性越好,研究孔隙度的表征单元体尺度越小。  相似文献   

8.
近年来的研究证明,中新生代未熟—低熟海相富有机质泥质烃源岩中有机质是通过溶解在水中的分子规模的碳有机质以化学吸附的形式被吸附到矿物表面上和蒙脱石结构层内。然而,对于高熟海相泥质烃源岩中有机质的赋存状态却少有报道。通过对塔里木盆地下寒统底部高熟海相泥质烃源岩的有机碳含量、矿物表面积、扫描电镜和透射电镜的综合分析,得到了其有机质以细小的颗粒状保存于沉积物颗粒之间的结论。同时,通过高熟海相烃源岩与现代未熟海相烃源岩有机质赋存状态的对比,提出了值得进一步研究的有关科学问题。  相似文献   

9.
Inherent chemical recalcitrance and association of organic matter (OM) with minerals are mechanisms responsible for the long term preservation of OM in soils. The structural characteristics of OM are also believed to control specific interactions between OM and soil minerals. However, the extent of the relationship between recalcitrance and mineral protection and the specificity of these chemically driven interactions are not clearly understood at the molecular level. To measure chemical patterns of OM sequestration in sand-, silt-, clay-size and light fractions, we analyzed three soils, which mainly differed in carbon content and overlying vegetation, but have similar clay mineralogy, using biomarker analysis and nuclear magnetic resonance (NMR). Despite differences in environmental controls, long chain aliphatic compounds generally accumulated in the fine fractions of all soils. This accumulation is likely due to the strong interaction between recalcitrant forms of OM and soil minerals. For example, polymethylene and >C20 organic acids accumulated in fine fractions, while lignin-derived phenols were protected from oxidation in silt-size fractions. Diffusion edited solution state 1H NMR suggested that contributions from microbial-derived OM was greater in finer fractions, which is likely due to the accumulation of microbial-derived compounds or higher microbial activity in clay micro-sites. Our data suggest that, for these Prairie soils, the specific structure of OM and not environmental factors is responsible for long term preservation of OM in mineral fractions. Further research is necessary to understand the interplay between these preservation mechanisms such that the long term fate of OM can be further elucidated.  相似文献   

10.
Suspended sediments (SS) from the Atchafalaya River (AR) and the Mississippi River and surficial sediment samples from seven shallow cross-shelf transects west of the AR in the northern Gulf of Mexico were examined using elemental (%OC, C/N), isotopic (δ13C, Δ14C), and terrigenous biomarker analyses. The organic matter (OM) delivered by the AR is isotopically enriched (∼−24.5‰) and relatively degraded, suggesting that soil-derived OM with a C4 signature is the predominant OM source for these SS. The shelf sediments display OC values that generally decrease seaward within each transect and westward, parallel to the coastline. A strong terrigenous C/N (29) signal is observed in sediments deposited close to the mouth of the river, but values along the remainder of the shelf fall within a narrow range (8-13), with no apparent offshore trends. Depleted stable carbon isotope (δ13C) values typical of C3 plant debris (−27‰) are found near the river mouth and become more enriched (−22 to −21‰) offshore. The spatial distribution of lignin in shelf sediments mirrors that of OC, with high lignin yields found inshore relative to that found offshore (water depth > 10 m).The isotopic and biomarker data indicate that at least two types of terrigenous OM are deposited within the study area. Relatively undegraded, C3 plant debris is deposited close to the mouth of the AR, whereas more degraded, isotopically enriched, soil-derived OM appears to be deposited along the remainder of the shelf. An important input from marine carbon is found at the stations offshore from the 10-m isobath. Quantification of the terrigenous component of sedimentary OM is complicated by the heterogeneous composition of the terrigenous end-member. A three-end-member mixing model is therefore required to more accurately evaluate the sources of OM deposited in the study area. The results of the mixing calculation indicate that terrigenous OM (soil-derived OM and vascular plant debris) accounts for ∼79% of the OM deposited as inshore sediments and 66% of OM deposited as offshore sediments. Importantly, the abundance of terrigenous OM is 40% higher in inshore sediments and nearly 85% higher in offshore sediments than indicated by a two-end-member mixing model. Such a result highlights the need to reevaluate the inputs and cycling of soil-derived OM in the coastal ocean.  相似文献   

11.
Organic matter (OM) in mineral-organic associations (MOAs) represents a large fraction of carbon in terrestrial ecosystems which is considered stable against biodegradation. To assess the role of MOAs in carbon cycling, there is a need to better understand (i) the time-dependent biogeochemical evolution of MOAs in soil, (ii) the effect of the mineral composition on the physico-chemical properties of attached OM, and (iii) the resulting consequences for the stabilization of OM. We studied the development of MOAs across a mineralogical soil gradient (0.3-4100 kyr) at the Hawaiian Islands that derived from basaltic tephra under comparable climatic and hydrological regimes. Mineral-organic associations were characterized using biomarker analyses of OM with chemolytic methods (lignin phenols, non-cellulosic carbohydrates) and wet chemical extractions, surface area/porosity measurements (N2 at 77 K and CO2 at 273 K), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results show that in the initial weathering stage (0.3 kyr), MOAs are mainly composed of primary, low-surface area minerals (olivine, pyroxene, feldspar) with small amounts of attached OM and lignin phenols but a large contribution of microbial-derived carbohydrates. As high-surface area, poorly crystalline (PC) minerals increase in abundance during the second weathering stage (20-400 kyr), the content of mineral-associated OM increased sharply, up to 290 mg C/g MOA, with lignin phenols being favored over carbohydrates in the association with minerals. In the third and final weathering stage (1400-4100 kyr), metastable PC phases transformed into well crystalline secondary Fe and Al (hydr)oxides and kaolin minerals that were associated with less OM overall, and depleted in both lignin and carbohydrate as a fraction of total OM. XPS, the N2 pore volume data and OM-mineral volumetric ratios suggest that, in contrast to the endmember sites where OM accumulated at the surfaces of larger mineral grains, topsoil MOAs of the 20-400-kyr sites are composed of a homogeneous admixture of small-sized PC minerals and OM, which originated from both adsorption and precipitation processes. The chemical composition of OM in surface-horizon MOAs, however, was largely controlled by the uniform source vegetation irrespective of the substrate age whereas in subsoil horizons, aromatic and carboxylic C correlated positively with oxalate-extractable Al and Si and CuCl2-extractable Al concentrations representing PC aluminosilicates and Al-organic complexes (r2 > 0.85). Additionally, XPS depth profiles suggest a zonal structure of sorbed OM with aromatic carbons being enriched in the proximity of mineral surfaces and amide carbons (peptides/proteins) being located in outer regions of MOAs. Albeit the mineralogical and compositional changes of OM, the rigidity of mineral-associated OM as analyzed by DSC changed little over time. A significantly reduced side chain mobility of sorbed OM was, however, observed in subsoil MOAs, which likely arose from stronger mineral-organic bindings. In conclusion, our study shows that the properties of soil MOAs change substantially over time with different mineral assemblages favoring the association of different types of OM, which is further accentuated by a vertical gradient of OM composition on mineral surfaces. Factors supporting the stabilization of sorbed OM were (i) the surface area and reactivity of minerals (primary or secondary crystalline minerals versus PC secondary minerals), (ii) the association of OM with micropores of PC minerals (via ‘sterically’ enhanced adsorption), (iii) the effective embedding of OM in ‘well mixed’ arrays with PC minerals and monomeric/polymeric metal species, (iv) the inherent stability of acidic aromatic OM components, and (iv) an impaired segmental mobility of sorbed OM, which might increase its stability against desorption and microbial utilization.  相似文献   

12.
The group composition of organic matter (OM) was studied in the channel sediments of the Pakhra River under natural condition and in the zone affected by the town of Podol’sk, Moscow oblast. It was found that the natural alluvium is poor in OM (Corg = 0.65%), the composition of which is dominated by humus acids (81.8% of Corg) at minor fractions of residual OM (16.7%) and lipids (1.5%). Anthropogenic muds formed in the river channel in the zone affected by urban pollution are conspicuous in high OM content (Corg = 1.26–2.60%), the composition of which is enriched in lipids (up to 10–20%) and residual OM (up to 27.3–48.6%), whereas the fraction of humus acids decreases to 29.6–57.1%. The muds are most significantly enriched in lipids (their specific concentration increases by factors of 6–59 compared with the natural alluvium) and residual OM (by factors of 3–11). The amount and character of the group composition of OM from anthropogenic muds are controlled by the specific features of the sources of sedimentary material in the river and the character of the environment of alluvium sedimentation in the zone affected by an industrial town.  相似文献   

13.
Mineral-associated organic matter (OM) represents a large reservoir of organic carbon (OC) in natural environments. The factors controlling the extent of the mineral-mediated OC stabilization, however, are poorly understood. The protection of OM against biodegradation upon sorption to mineral phases is assumed to result from the formation of strong bonds that limit desorption. To test this, we studied the biodegradation of OM bound to goethite (α-FeOOH), pyrophyllite, and vermiculite via specific mechanisms as estimated from OC uptake in different background electrolytes and operationally defined as ‘ligand exchange’, ‘Ca2+ bridging’, and ‘van der Waals forces’. Organic matter extracted from an Oa forest floor horizon under Norway spruce (Picea abies (L.) Karst) was reacted with minerals at dissolved OC concentrations of ∼5-130 mg/L at pH 4. Goethite retained up to 30.1 mg OC/g predominantly by ‘ligand exchange’; pyrophyllite sorbed maximally 12.5 mg OC/g, largely via ‘van der Waals forces’ and ‘Ca2+ bridging’, while sorption of OM to vermiculite was 7.3 mg OC/g, mainly due to the formation of ‘Ca2+ bridges’. Aromatic OM components were selectively sorbed by all minerals (goethite ? phyllosilicates). The sorption of OM was strongly hysteretic with the desorption into 0.01 M NaCl being larger for OM held by ‘Ca2+ bridges’ and ‘van der Waals forces’ than by ‘ligand exchange’. Incubation experiments under aerobic conditions (initial pH 4; 90 days) revealed that OM mainly bound to minerals by ‘ligand exchange’ was more resistant against mineralization than OM held by non-columbic interactions (‘van der Waals forces’). Calcium bridges enhanced the stability of sorbed OM, especially for vermiculite, but less than the binding via ‘ligand exchange’. Combined evidence suggests that the extent and rate of mineralization of mineral-associated OM are governed by desorption. The intrinsic stability of sorbed OM as related to the presence of resistant, lignin-derived aromatic components appears less decisive for the sorptive stabilization of OM than the involved binding mechanisms. In a given environment, the type of minerals present and the solution chemistry determine the operating binding mechanisms, thereby the extent of OM sorption and desorption, and thus ultimately the bioavailability of mineral-associated OM.  相似文献   

14.
We present an organic geochemical study of surface sediments of Lake Sarbsko, a shallow coastal lake on the middle Polish Baltic coast. The aim was to provide evidence concerning the origin of the organic matter (OM) and its compositional diversity in surface deposits of this very productive, highly dynamic water body. The content and composition of the OM in the bottom sediments were investigated at 11 sampling stations throughout the lake basin. OM sources were assigned on the basis of bulk indicators [total organic carbon (TOC), total nitrogen (TN), δ13CTOC and δ15N and extractable OM yield], biomarker composition of extractable OM and compound-specific C isotope signatures. The source characterization of autochthonous compounds was verified via phytoplankton analysis. The distribution of gaseous hydrocarbons in the sediments, as well as temporal changes in lake water pH, the concentration of DIC (dissolved inorganic carbon) and δ13CDIC were used to trace OM decomposition.The sedimentary OM is composed mainly of well preserved phytoplankton compounds and shows minor spatial variability in composition. However, the presence of CH4 and CO2 in the bottom deposits provides evidence for microbial degradation of sedimentary OM. The transformation of organic compounds in surface, bottom and pore waters via oxidative processes influences carbonate equilibrium in the lake and seasonally favours precipitation or dissolution of CaCO3.The data enhance our understanding of the relationships between the composition of sedimentary OM and environmental conditions within coastal ecosystems and shed light on the reliability of OM proxies for environmental reconstruction of coastal lakes.  相似文献   

15.
The main features of the transformation of organic matter (OM) in the greenschist, amphibolite, and granulite facies of metamorphism are considered based on the example of the Ukrainian crystal shield. The occurrence area and OM content in highly carbonaceous ancient rocks are characterized. The composition of primary sedimentary rocks and the processes of accumulation of biophile elements under the OM transformation are reconstructed.  相似文献   

16.
《Comptes Rendus Geoscience》2014,346(3-4):53-63
Natural organic matter (OM) is widespread in terrestrial ecosystems and it plays a major role in the global carbon cycle. Despite this high environmental importance, its characterization at the molecular level remains unsatisfactory, especially when the macromolecular OM is concerned. Such a characterization is challenging because of the diversity and heterogeneity of OM, but it is of prime importance to derive OM reactivity and, more generally, to model environmental processes in which natural OM is involved. This awareness led to a wealth of analytical developments, which are described in the present review. They include improvements of existing techniques, but also new approaches and concern spectroscopic tools along with chemical and thermal degradations.  相似文献   

17.
The role of organic matter (OM) concentration, structure and composition and how these relate to mineral protection is important for the understanding of long term soil OM dynamics. Various OM–clay complexes were constructed by sequential sorption of lignin and dodecanoic acid to montmorillonite. Humic acid–montmorillonite complexes were prepared at pH 4 and 7 to vary OM conformation prior to sorption. Results obtained with constructed OM–clay complexes were tested with isolated mineral fractions from two soils. Oxidation with an acidic NaClO2 solution was used to chemically oxidize lignin in the OM–clay complexes, sand-, silt- and clay-size soil fractions to test whether or not it can be protected from chemical attack. Gas chromatography–mass spectrometry was used to analyze lignin-derived phenols, cutin OH–acid (after CuO oxidation), fatty acid and n-alkanol concentrations and composition. We found that carbon content was not solely responsible for lignin stability against chemical oxidation. Lignin was protected from chemical oxidation through coating with dodecanoic acid and sorption of humic acid to clay minerals in a stretched conformation at pH 7. Therefore, interactions between OM constituents as well as OM conformation are important factors that protect lignin from chemical oxidation. Lignin-derived phenol dimers in the Grassland-Forest Transition soil fractions were protected from chemical oxidation to a greater extent compared to those in Grassland soil fractions. Therefore, although lignin was protected from degradation through mineral association, the extent of this protection was also related to OM content and the specific stability of lignin components.  相似文献   

18.
More and more evidence indicates that organic matter (OM) in immature organicrich sediments and sedimentary rocks is chemically adsorbed onto the outer surfaces of minerals and into interlayer (inner) surfaces of smectitic clay minerals in the form of amorphous molecular-scale carbon. But there have been few reports about the occurrence of highly mature OM in marine black shales ( petroleum source rocks ). The occurrence of highly mature OM in the black shales of basal Cambrian from northern Tarim Basin is studied in this paper. Based on the comprehensive analyses of total organic carbon contents (TOC) , maximum thermolysis tempera tures ( Tmax ) of OM, mineral surface areas (MSA) ,and scanning electronic microscopic (SEM) and transmission electronic microscopic (TEM) observations of the black shales, it is concluded that the highly mature OM in the marine black shales of the basal Cambrian from northern Tarim Basin occurs in particulates ranging in size from 1 to 5 μm in diameter. Through the contrast of the occurrence of the highly mature OM in the black shales with that of the immature ones in modern marine continental margin sediments, some scientific problems are proposed, which are worth to study further in detail.  相似文献   

19.
Available data on synthesis, input, and decomposition of organic matter (OM) in the water column and recent bottom sediments of the World Ocean are generalized. The most reliable values of OM production and masses in the ocean, the total supply of organic carbon, and the input of terrigenous OM with coastal erosion, river runoff, and eolian matter are estimated. Maps of fossilization coefficients, distribution, and accumulation of OM in recent bottom sediments of the World Ocean are presented. A numerical expression is proposed for the main circumcontinental pattern of OM accumulation in the ocean. The group and elemental compositions of living matter of the ocean, land, and the Earth as a whole and the organic composition of bottom sediments are briefly considered.  相似文献   

20.
Temporal and spatial changes in the sediment properties of a mangrove ecosystem (Cochin, southwest coast India) are presented. The region was freshwater dominated during monsoon (June–September) and seawater dominated during other two seasons. The system remained eutrophic due to the high inputs of organic matter (OM) during most part of the year. The organic-rich sediments accumulated high amount of carbohydrates (22% of OM) and proteins (11% of OM) during non-monsoon months as compared to coastal environments. Principal component analysis showed that the biochemical properties are uniformly influenced by seasonal and spatial variations. Higher concentrations of sediment protein over carbohydrate indicate an efficient mineralization leading to the non-availability of aged OM in the system. The dominance of these labile components is generally indicative of the eutrophic condition of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号