首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zaika  V. A.  Sorokin  A. A.  Sorokin  A. P. 《Doklady Earth Sciences》2019,486(2):593-597
Doklady Earth Sciences - This paper presents the results of U–Pb (LA-ICP-MS) and Lu–Hf isotope studies of detrital zircons from the presumably Permian meta sedimentary rocks of the...  相似文献   

2.
Zaika  V. A.  Sorokin  A. A.  Kovach  V. P.  Sorokin  A. P.  Kotov  A. B. 《Doklady Earth Sciences》2019,484(2):115-119
Doklady Earth Sciences - The results of U–Th–Pb geochronological study indicate that the youngest peaks on the relative probability curves of the age obtained for the Un’ya-Bom...  相似文献   

3.
This work presents the results of geological, geochemical, Sm–Nd isotope-geochemical studies of metasedimentary rocks of the Teploklyuchevskaya, Garmakan, and Algaja formations of the Tukuringra Terrane of the eastern part of the Mongol–Okhotsk fold belt, as well as U–Th–Pb geochronological (LA-ICP-MS) studies of detrital zircons from these rocks. It is established that the lower age boundary of formation of the protolith of metasedimentary rocks of the Teploklyuchevskaya Formation is about 243 Ma (Middle Triassic); those of the Garmakan and Algaja formations are ~175 Ma (Lower–Middle Jurassic boundary) and ~192 Ma (Lower Jurassic), respectively. This makes it possible to correlate the Teploklyuchevskaya, Garmakan, and Algaja formations with the youngest sedimentary complexes of the eastern part of the Mongol–Okhotsk fold belt. In terms of geochemistry, the protoliths of metasedimentary rocks of the above-mentioned formations are the most similar to sedimentary rocks of island arcs and active continental margins. The source terrigenous material was transported from the southern frame of the Mongol–Okhotsk fold belt. It is not improbable that Lower Mesozoic deposits of the western part of the Tukuringra Terrane, in particular, and the eastern part of the Mongol–Okhotsk fold belt, as a whole, are relics of residual basins, preserved in “gaps” in the collision zone between the southern margin of plates of the North Asian Craton and the Amur Superterrane.  相似文献   

4.
The results of U—Th—Pb (LA-ICP-MS) geochronological studies of detrital zircons from terrigenous rocks of the Dzhida terrane of the Central Asian Fold Belt (CAFB) are presented. The data obtained allow us to distinguish the following age maxima (Ma): 578 and 634 (Vendian); 720, 823, and 919 (Late Riphean); 1922, 2090, 2225, and 2321 (Early Proterozoic). A number of zircons have Late Archean age in the interval of 2670–2980 Ma. Taking into account Late Cambrian age (504–506 Ma) of intrusive rocks that intruded the Dzhida terrane, a possible sedimentation period of sequences of this terrane is estimated to be in the interval of 580–510 Ma (from Vendian to Late Cambrian). The possible provenance areas of terrigenous sediments are proposed and the previously proposed models of geodynamic evolution of the Dzhida terrane are correlated with new geochronological data.  相似文献   

5.
Golionko  B. G.  Ryazantsev  A. V.  Kanygina  N. A. 《Geotectonics》2021,55(6):795-821
Geotectonics - Detailed structural analysis of the formations of the Maksyutov eclogite–glaucophane–schist complex in the Southern Urals has been carried out. U–Pb (LA-ICP-MS)...  相似文献   

6.
Pystin  A. M.  Pystina  Yu. I.  Khubanov  V. B. 《Doklady Earth Sciences》2019,488(1):1031-1034
Doklady Earth Sciences - Based on the first results of massive U–Pb dating of detrital zircons from the basal deposits of the Upper Precambrian section in the Subpolar Urals, their age is...  相似文献   

7.
In this article we present geochemical and isotope characteristics of rocks of the Unerikan, Selitkan and Aezop–Yamalin volcano–plutonic zones of the eastern termination of the Mongol–Okhotsk Orogenic Belt. The obtained data demonstrate that the Mesozoic igneous rocks of the Mongol–Okhotsk sector of the Pacific Folded Belt were formed due to the melting of the continental crust in a tectonic setting corresponding to a suprasubduction one.  相似文献   

8.
Doklady Earth Sciences - The results of studies indicate that the age of the protoliths of garnet-bearing biotite–sericite–muscovite schists of the Inim Block is <991 Ma, and...  相似文献   

9.
Doklady Earth Sciences - The first U–Pb (LA–ICP–MS) isotope dating of detrital zircons from quartzites of two strata of the Maksyutov metamorphic complex (Southern Urals) was...  相似文献   

10.
Doklady Earth Sciences - New results of U–Pb geochronological and geochemical studies of rocks that form two structurally different massifs in the Mamyn Terrane are presented here. It has...  相似文献   

11.
Doklady Earth Sciences - The principal possibility of using high-uranium metamict zircon with a high self-irradiation α-dose for U–Pb geochronological studies (ID-TIMS) is demonstrated....  相似文献   

12.
The Mongol–Okhotsk Belt, a major structural element of East Asia, is probably the youngest orogenic segment within the Central Asian Orogenic Belt. However, the timing of final closure of the Mongol–Okhotsk Ocean remains unresolved. Here, we present detrital zircon U–Pb–Hf isotopic data and whole-rock geochemical data (major and trace elements and Sm-Nd isotopes) for the metasedimentary rocks from the Un'ya–Bom Terrane, Dzhagdy Terrane, and the eastern part of the Tukuringra Terrane. Our new zircon U-Pb ages suggest that all sedimentary formations along the Dzhagdy Transect are early Mesozoic in age, rather than Paleozoic as previously thought. The detrital zircons from the metasedimentary rocks in the Un'ya–Bom Terrane, the Dzhagdy Terrane, and the eastern part of the Tukuringra Terrane yielded the youngest concordant ages of 194 ± 4, 193 ± 2, and 171 ± 2 Ma, respectively. Moreover, we note that the so-called sedimentary formations of these terranes are not single sedimentary sequences as previously suggested, but a set of an olistostrome or tectonic mélanges composed of rocks of different ages and origins. These sedimentary formations are probably relics of the Mongol–Okhotsk remnant basin that formed in the “gaps” between the southern margin of the North Asian Craton and the Amur Block during their collision. The absence of detrital zircons younger than 171 Ma in the sedimentary rocks of the Mongol–Okhotsk basin implies that the final closure of this basin could have taken place at the boundary of the Early and Middle Jurassic as a result of the collision or the development of the Mongol–Okhotsk orogenic belt in this region. After that, the Mongol–Okhotsk Belt underwent intense deformation related to within-plate strike-slip faulting, which could be attributed to the late Mesozoic rotation of the North Asian Craton relative to the continental massifs of East Asia.  相似文献   

13.
Doklady Earth Sciences - The first results of U–Pb (LA–ICP–MS) isotope dating of detrital zircons (dZr) from the Upper Oligocene sands of the Poltava Formation exposed on the...  相似文献   

14.
The origin of the Greater Himalayan Sequence in the Himalaya and the paleogeographic position of the Lhasa terrane within Gondwanaland remain controversial. In the Eastern Himalayan syntaxis, the basement complexes of the northeastern Indian plate (Namche Barwa Complex) and the South Lhasa terrane (Nyingchi Complex) can be studied to explore these issues. Detrital zircons from the metasedimentary rocks in the Namche Barwa Complex and Nyingchi Complex yield similar U–Pb age spectra, with major age populations of 1.00–1.20 Ga, 1.30–1.45 Ga, 1.50–1.65 Ga and 1.70–1.80 Ga. The maximum depositional ages for their sedimentary protoliths are ~ 1.0 Ga based on the mean ages of the youngest three detrital zircons. Their minimum depositional ages are ~ 477 Ma for the Namche Barwa Complex and ~ 499 Ma for the Nyingchi Complex. Detrital zircons from the Namche Barwa Complex and Nyingchi Complex also display similar trace-element signatures and Hf isotopic composition, indicating that they were derived from common provenance. The trace-element signatures of 1.30–1.45 Ga detrital zircons indicate that the 1.3–1.5 Ga alkalic and mafic rocks belt in the southeastern India is a potential provenance. Most 1.50–1.65 Ga zircons have positive εHf(t) values (+ 1.2 to + 9.0), and most 1.70–1.80 Ga zircons have negative εHf(t) values (− 7.1 to − 1.9), which are compatible with those of the Paleo- to Mesoproterozoic orthogneisses in the Namche Barwa Complex. Provenance analysis indicates that the southern Indian Shield, South Lhasa terrane and probably Eastern Antarctica were the potential detrital sources. Combined with previous studies, our results suggest that: (1) the Namche Barwa Complex is the northeastern extension of the Greater Himalaya Sequence; (2) the metasedimentary rocks in the Namche Barwa Complex represent distal deposits of the northern Indian margin relative to the Lesser Himalaya; (3) the South Lhasa terrane was tectonically linked to northern India before the Cambrian.  相似文献   

15.
The first results of U–Pb isotopic dating (LA–ICP–MS) of detrital zircons from metasedimentary rocks of the pre-Devonian basement of the SW part of western Spitsbergen (from Upper Mezoproterozoic Gulliksenfellet quartzite) showed ages ranging from 1700 ± 25 to 2948 ± 27 Ma.  相似文献   

16.
Detrital zircons (DZs) from arkose sandstones of the Upper Riphean Zilmerdak Formation (Southern Urals) yielded ages in the range of 3039–964 Ma. Grains with Late Karelian and Early and Middle Riphean ages compose 35, 34, and 26% of the total number of the analyzed zircons, respectively. This is similar to the age spectra of the Vendian sandstones (Asha Group), but it differs significantly from the age distribution typical of the Riphean stratotype sandstones.  相似文献   

17.
The main results are presented on U/Pb-isotope dating of 100 detrital zircons and, selectively, on the Lu/Hf-isotope system of 43 grains from sandstones of the Lopatinskii formation (the lower stratigraphic level of the Chingasan group). Ages from 896 ± 51 to 2925 ± 38 Ma were obtained with a pronounced maximum of ~1890 Ma in the curve of probability density, along with εHf estimates from +8.4 to–15.1, which allow one to throw doubt upon the molasse nature of the Lopatinskii formation.  相似文献   

18.
Yarmolyuk  V. V.  Kozlovsky  A. M.  Salnikova  E. B.  Eenjin  G. 《Doklady Earth Sciences》2019,488(1):1022-1026
Doklady Earth Sciences - A zonal igneous areal appeared at the western end of the Mongol–Okhotsk Belt in the Early Mesozoic. Its central part is comprised of the Khentei–Daurian giant...  相似文献   

19.
New U–Pb Zircon SHRIMP ages of 1091 ± 7.1 Ma and 1093.1 ± 5.8 Ma have been determined for two discrete phases of the Munster Suite. The Munster Suite is a calc-alkaline mafic to intermediate suite of intrusive igneous rocks that form part of the southern-most tectonic Terrane of the Mesoproterozoic-aged Natal Metamorphic Belt. Previously published geochemical data indicate that the discrete phases of the Suite are consanguineous and that these rocks originated within an oceanic island arc environment. The new age determinations now show that the different phases are also coeval. Moreover, the ages also indicate that the intrusions were, within statistical error, coeval with S-type granites within the Terrane. This is interpreted to indicate that magmatic underplating provided both the magma by way of a number of progressively more evolved pulses to produce the Munster Suite, as well as the heat necessary for crustal melting to produce the S-type granites within an island arc environment. Therefore, these new age determinations indicate a period of crustal growth at circa 1090 Ma. This moreover, is a maximum constraint on the age of the northward-verging structures within the Margate Terrane.  相似文献   

20.
Antipin  V. S.  Kuzmin  M. I.  Odgerel  D.  Kousch  L. V.  Sheptyakova  N. V. 《Doklady Earth Sciences》2019,487(2):917-921
Doklady Earth Sciences - The early Mesozoic Baga-Khentei pluton is a part of the Daurian–Khentei batholite that was formed under the impact of the Mongolian plume on the lower horizons of the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号