首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small uitramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-PI-OI-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and iow-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limabe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basaits. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts.  相似文献   

2.
Experimental studies were carried out to evaluate phase relationsinvolving titanite–F–Al-titanite solid solutionin the system CaSiO3–Al2SiO5–TiO2–CaF2. Theexperiments were conducted at 900–1000°C and 1·1–4·0GPa. The average F/Al ratio in titanite solid solution in theexperimental run products is 1·01 ± 0·06,and XAl ranges from 0·33 ± 0·02 to 0·91± 0·05, consistent with the substitution [TiO2+]–1[AlF2+]1.Analysis of the phase relations indicates that titanite solidsolutions coexisting with rutile are always low in XAl, whereasthe maximum XAl of titanite solid solution occurs with fluoriteand either anorthite or Al2SiO5. Reaction displacement experimentswere performed by adding fluorite to the assemblage anorthite+ rutile = titanite + kyanite. The reaction shifts from 1·60GPa to 1·15 ± 0·05 GPa at 900°C, from1·79 GPa to 1·375 ± 0·025 GPa at1000°C, and from 1·98 GPa to 1·575 ±0·025 GPa at 1100°C. The data show that the activityof CaTiSiO4O is very close to the ideal molecular activity model(XTi) at 1100°C, but shows a negative deviation at 1000°Cand 900°C. The results constrain  相似文献   

3.
Phase Relations on the Actinolite-Pargasite Join   总被引:1,自引:0,他引:1  
Phase relations along the join Ca2Mg4Fe2+Si8O22 (OH)2 (Actinolite)-NaCa2Mg3?2Fe0?82+AlSi6Al2O22(OH)2 (Pargasite) have been studied at PH2O = 1 kb andthe oxygen fugacities defined by the iron-wustite(IW) buffer. Actinolite and bornblende are separated by a solvus and thefield of actinolite+hornblende+vapor is present in the regionbetween Ac85Pa15 and Ac55 Pa45 at 680 ?C. Complete miscibilityis achieved at 720 ?C. At temperatures higher than the solvusthere is a continuous solid solution series between the twoend members. The stability field of amphibole solid solutiongradually increases with increasing pargasite content in actinolite.The phase assemblages at temperatures higher than those of asolid solution series between the two end members change withincreasing pargasite content in the bulk composition as follows;Act+Cpx+Qz+V, ActHbl+Cpx+Opx+Qz+V, Hbl+Cpx+Opx+Pl+V and Hbl+Cpx+Pl+Ol+V. In comparison with the Fe-free system, the extent of the miscibilitygap between actinolite and hornblende is reduced by an increasein the Fe2+ content. The present study should provide an adequatebasis for the interpretation of actinolite-hornblende pairsin metamorphic rocks.  相似文献   

4.
Mineralogical assemblages developed in the non-calcareous manganiferoussediments in India and subjected to regional metamorphism underchlorite to sillimanite grade conditions have been studied indetail. Based on a series of idealized reactions compatiblewith the recorded assemblages in the system Mn-Fe-Si-O, formany of which there is unambiguous textural evidence in therocks, a combined schematic petrogenetic grid consistent withtopological and thermodynamic considerations has been constructed. The inferred petrogenetic grid, coupled with the mineralogicaland textural evidence present in the manganiferous assemblagesand the enclosing rock formations, can be reconciled with thefollowing: (1) The mineralogical reactions attending regionalmetamorphism of the manganiferous sediments buffered the compositionof the coexisting fluid phase. (2) Due to the closed natureof the system as a whole and also due to lack of communicationbetween the different parts thereof, local variations in theinitial proportions of the non-volatile to volatile phases andtheir compositions led to the development of contrasting sequencesof mineralogical reactions and, therefore, fo2-T gradients evenwithin the same metamorphic grade. (3) Rhodonite, developedas a prograde reaction product in the garnet to sillimanitegrade conditions, was converted to rhodonite-pyroxmangite mixture/intergrowthduring cooling. Compositional variance, resulting from the substitution of Mnby Fe and incorporation of components such as Mg, Ca in thephases, would tend to shift the univariant reaction curves inthe grid towards opposite directions and/or split them intomultivariant intervals in fo2-T space without altering the generalstyle of the topology or the principal deductions made therefrom.  相似文献   

5.
There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small ultramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-Pl-Ol-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and low-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limahe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basalts. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts.  相似文献   

6.
We document experiments on a natural metapelite in the range650–775°C, 6–14 kbar, 10 wt % of added water,and 700–850°C, 4–10 kbar, no added water. Staurolitesystematically formed in the fluid-present melting experimentsabove 675°C, but formed only sporadically in the fluid-absentmelting experiments. The analysis of textures, phase assemblages,and variation of phase composition and Fe–Mg partitioningwith P and T suggests that supersolidus staurolite formed at(near-) equilibrium during fluid-present melting reactions.The experimental results are used to work out the phase relationsin the system K2O–Na2O–FeO–MgO–Al2O3–SiO2–H2Oappropriate for initial melting of metapelites at the upperamphibolite facies. The PT grid developed predicts theexistence of a stable PT field for supersolidus staurolitethat should be encountered by aluminous Fe-rich metapelitesduring fluid-present melting at relatively low temperature andintermediate pressures (675–700°C, 6–10 kbarfor XH2O = 1, in the KNFMASH system), but not during fluid-absentmelting. The implications of these findings for the scarcityof staurolite in migmatites are discussed. KEY WORDS: metapelites; migmatites; partial melting; PT grid; staurolite  相似文献   

7.
本文对满洲里地区灵泉盆地、包格德乌拉盆地及额尔古纳地区上护林盆地和恩和盆地及周边的原确定为古生代和中
生代的花岗质岩石进行了岩石学和锆石LA-ICP-MS U-Pb 年代学研究,以便揭示研究区中生代的构造演化历史。研究区内
12 个代表性花岗岩中的锆石均呈自形-半自形晶,显示出典型的岩浆生长环带,结合其较高的Th/U比值(0.31~3.63),暗
示其为岩浆成因。测年结果表明,该区中生代花岗质岩浆活动可划分成以下三期:(1)中三叠世岩浆活动,可进一步划分
成241 Ma 和229 Ma 两期岩浆事件,241 Ma 黑云母正长花岗岩和229 Ma 正长花岗岩的存在可能与古亚洲洋闭合后的伸展环
境有关;(2)早- 中侏罗世岩浆事件,可进一步划分成(180±5)Ma 和(171±2)Ma 两期岩浆事件,黑云母二长花岗岩-
正长花岗岩组合,结合其斑岩型Mo 矿的存在,反映研究区处于活动陆缘的构造背景,可能与蒙古- 鄂霍茨克洋的俯冲作用
有关;(3)早白垩世早期岩浆活动,可进一步划分成(140~150)Ma 和(134±2)Ma 两期岩浆事件,前者与区域内发育的
吉祥峰组火山岩形成时代相近,后者的火口充填型产状表明它们应是该期岩浆事件演化晚期的产物,该期岩浆事件在松辽
盆地以东地区的缺乏暗示它们形成于伸展环境,并与蒙古-鄂霍茨克缝合带的演化有关。  相似文献   

8.
李鑫  刘强  樊燏  章军锋 《地球科学》2019,44(12):4152-4156
在碰撞造山带构造演化过程中,中下地壳深熔作用对于深部地壳物理性质与化学成分具有重要控制作用.作为深熔作用的"见证者",纳米花岗岩包裹体是寄主岩石部分熔融作用的产物,能够为确定陆壳岩石中天然熔体特征及分析熔融机制提供关键信息.在喜马拉雅东构造结南迦巴瓦岩群的代表性岩石单元(泥质片麻岩与长英质片麻岩)中,石榴石与锆石中常包含有典型的纳米花岗岩包裹体,其代表性子矿物组合为钾长石+斜长石+石英±黑云母,这是在黑云母脱水熔融过程中、寄主片麻岩中熔体被主要转熔矿物(如石榴石等)捕获所形成一类特殊包裹体.在观测基础上,采用高温高压与高温常压手段,对纳米花岗岩包裹体进行均一化实验并获得均一化玻璃质熔体.成分分析表明,均一化熔体成分以过铝质花岗岩为主,其主/微量元素特征能够有效反演部分熔融作用的演化过程.因此,纳米花岗岩包裹体的天然观测与实验研究对于确定天然熔体特征与深入剖析碰撞造山带的地壳深熔作用具有重要启示意义.   相似文献   

9.
The phase relations of quaternary systems are generally represented by projections onto ternary compositional planes. Such projections often obscure relationships that would only be evident in a three-dimensional tetrahedral plot. The tetrahedral plot requires that compositions of the minerals and melts be transformed into Cartesian coordinates. It is shown here how this transformation is carried out. The application is demonstrated by tetrahedral plots of experimental melt compositions of partially molten lherzolite. Furthermore, the plot can be used to evaluate whether or not a particular basaltic composition represents a primary melt. The methods are applicable to any four-component system.  相似文献   

10.
This study assesses temperatures of formation of common granulitesby combining experimental constraints on the P–T stabilityof granulite-facies mineral associations with a garnet–orthopyroxene(Grt–Opx) thermobarometry scheme based on Al-solubilityin Opx, corrected for late Fe–Mg exchange. We appliedthis scheme to 414 granulites of mafic, intermediate and aluminousbulk compositions. Our findings suggest that granulites aremuch hotter than traditionally assumed and that the P–Tconditions of the amphibolite–granulite transition portrayedin current petrology textbooks are significant underestimatesby over 100°C. For aluminous and intermediate granulites,mean corrected temperatures based on our method are 890 ±17 and 841 ± 11°C, respectively (uncertainties reportedas 95% confidence limits on the mean), consistent with minimumtemperatures for orthopyroxene production by fluid-absent partialmelting in these bulk compositions. In contrast, mean temperaturesbased on Grt–Opx Fe–Mg exchange equilibria, usingthe same thermodynamic data, are 732 ± 22 and 723 ±11°C, respectively, well below the minimum temperaturesfor Opx stability. For mafic granulites, the mean correctedtemperature using our method is 816 ± 12°C, similarto the mean temperature of 793 ± 13°C from Fe–Mgexchange. Reasons for the differences between the mafic granulitesand aluminous–intermediate granulites are unclear butmay be due to the lower Al concentrations in Opx in the maficrocks and possible deficiencies in the thermodynamic modellingof these low concentrations. We discuss a number of well-knowngranulite terrains in the context of our findings, includingthe Adirondacks, the Acadian granulites of New England, theincipient charnockites of southern India and Sri Lanka, andthe Kerala Khondalite Belt. Our findings carry implicationsfor thermotectonic models of granulite formation. A computerprogram to perform our thermobarometry calculations, RCLC, isavailable from the Journal of Petrology website at http://www.petrology.oupjournals.orgor from the authors at http://www.geo.ucalgary.ca/~pattison/drm_pattison-rclc.htm. KEY WORDS: granulite-facies metamorphism; thermobarometry; garnet; orthopyroxene  相似文献   

11.
The Campanian Ignimbrite is a > 200 km3 trachyte–phonolitepyroclastic deposit that erupted at 39·3 ± 0·1ka within the Campi Flegrei west of Naples, Italy. Here we testthe hypothesis that Campanian Ignimbrite magma was derived byisobaric crystal fractionation of a parental basaltic trachyandesiticmelt that reacted and came into local equilibrium with smallamounts (5–10 wt%) of crustal rock (skarns and foid-syenites)during crystallization. Comparison of observed crystal and magmacompositions with results of phase equilibria assimilation–fractionationsimulations (MELTS) is generally very good. Oxygen fugacitywas approximately buffered along QFM + 1 (where QFM is the quartz–fayalite–magnetitebuffer) during isobaric fractionation at 0·15 GPa ( 6km depth). The parental melt, reconstructed from melt inclusionand host clinopyroxene compositions, is found to be basaltictrachyandesite liquid (51·1 wt% SiO2, 9·3 wt%MgO, 3 wt% H2O). A significant feature of phase equilibria simulationsis the existence of a pseudo-invariant temperature, 883 °C,at which the fraction of melt remaining in the system decreasesabruptly from 0·5 to < 0·1. Crystallizationat the pseudo-invariant point leads to abrupt changes in thecomposition, properties (density, dissolved water content),and physical state (viscosity, volume fraction fluid) of meltand magma. A dramatic decrease in melt viscosity (from 1700Pa s to 200 Pa s), coupled with a change in the volume fractionof water in magma (from 0·1 to 0·8) and a dramaticdecrease in melt and magma density acted as a destabilizingeruption trigger. Thermal models suggest a timescale of 200kyr from the beginning of fractionation until eruption, leadingto an apparent rate of evolved magma generation of about 10–3km3/year. In situ crystallization and crystal settling in density-stratifiedregions, as well as in convectively mixed, less evolved subjacentmagma, operate rapidly enough to match this apparent volumetricrate of evolved magma production. KEY WORDS: assimilation; Campanian Ignimbrite; fractional crystallization; magma dynamics; phase equilibria  相似文献   

12.
A worldwide database of over 13,800 integrated U–Pb and Hf-isotope analyses of zircon, derived largely from detrital sources, has been used to examine processes of crustal evolution on a global scale, and to test existing models for the growth of continental crust through time. In this study we introduce a new approach to quantitatively estimating the proportion of juvenile material added to the crust at any given time during its evolution. This estimate is then used to model the crustal growth rate over the 4.56 Ga of Earth's history. The modelling suggests that there was little episodicity in the production of new crust, as opposed to peaks in magmatic ages. The distribution of age-Hf isotope data from zircons worldwide implies that at least 60% of the existing continental crust separated from the mantle before 2.5 Ga. However, taking into consideration new evidence coming from geophysical data, the formation of most continental crust early in Earth's history (at least 70% before 2.5 Ga) is even more probable. Thus, crustal reworking has dominated over net juvenile additions to the continental crust, at least since the end of the Archean. Moreover, the juvenile proportion of newly formed crust decreases stepwise through time: it is about 70% in the 4.0–2.2 Ga time interval, about 50% in the 1.8–0.6 Ga time interval, and possibly less than 50% after 0.6 Ga. These changes may be related to the formation of supercontinents.  相似文献   

13.
Aluminum silicate triple-point occurrences are common in metamorphicrocks of northern New Mexico. The three polymorphs show extensivesolid solution, with Fe and Mn substituting for Al. Mineraltextures, the spatial distribution of phases, and the systematicpartitioning of Fe and Mn indicate that the kyanite-andalusite-sillimaniteassemblages crystallized in equilibrium. The compositions ofminerals in the three-phase assemblage vary across the studyarea, recording regional variations in the pressures and temperaturesof metamorphism. The highest-pressure rocks, exposed at RioMora, contain kyanite at higher elevations and sillimanite atlower elevations. A sub-horizontal isograd separates the twominerals. Kyanite and sillimanite have nearly identical Fe contentwhich varies systematically with XFe2O3 in hematite or ilmenite.Andalusite occurs only along a single manganiferous layer, incrystals rich in MnAlSiO5 and saturated in FeAlSiO5. Triple-pointassemblages can be found wherever the folded manganiferous layercrosses the unfolded kyanite-sillimanite isograd. The TruchasRange, preserving slightly lower pressures of metamorphism,shows kyanite-andalusite-sillimanite in rocks with titaniferoushematite. Andalusite is enriched in Fe relative to kyanite andsillimanite, but no polymorphs contain Mn. Rocks with lowerXFe2O3 in hematite have kyanite and sillimanite without andalusite,whereas rocks with pure hematite contain only andalusite. Theshallowest erosional levels are preserved in the western PicurisRange where the three polymorphs occur as pure minerals in ilmenite-bearingrocks. Hematitic samples contain only andalusite which showsextensive solid solution of both Fe and Mn. The assemblage kyanite-andalusite-sillimanite is not invariant.Iron and manganese both add degrees of freedom. These transitionmetals have stabilized the three-phase assemblage, in apparentchemical equilibrium, across a P-T interval of 500-540 ?C, 3?8-4?6kb in rocks from New Mexico. The saturation level of FeAlSiO5in andalusite does not vary with Mn content but does vary withpressure and temperature. Calculations indicate that a 2-3 kbdecrease in pressure or a 25-50 ?C increase in temperature resultsin a 1 mole per cent increase in XFeAlSiO5 in iron-saturatedandalusite.  相似文献   

14.
对东北牡丹江海浪、鸡西鸡林、东宁老黑山三处亚碱性玄武岩类进行了柏A卜”Ar定年和元素与Sr-Nd-Pb同位素组成研究,结果显示,始新世海浪(玄武)安山岩属钙碱性系列,相对富硅碱,贫铁钙,高度富集Rb、Ba、Sr,亏损Th、U、Nb、Ta,富集LREE及极低的HREE含量,与五大连池钾质火山岩相近的同位素组成(^206Pb/^204Pb=16.56~16.66,^207Pb/^204Pb=15.44—15.47,^208Pb/^204Pb=36.80—36.95;ISr=0.704882~0.705564;εNd=-4.05~2.29),表明来源于较厚的、受交代作用影响的含石榴石富集(LoMu)岩石圈地幔;中中新世鸡林拉斑玄武岩分布极为局限,辉石斑晶发育骸晶结构,富铁、钙、钛,不亏损Nb、Ta,富集Ba、Sr,REE相对平坦,HREE高于OIB,Sr、Nd同位素组成相似于Samoa岛玄武岩,显示源区除软流圈成分外,还有EMII富集组分的加入;晚中新世老黑山拉斑玄武岩,低碱低钾,LREE轻度富集,Nb、Ta不明显亏损,同位素比值与镜泊湖一带中新世碱性玄武岩范围一致,主要来源于软流圈并与富集岩石圈(EMI)发生过相互作用。地幔源区经历了古近纪富集地幔源到中新世软流圈组分增多的演化。东北新生代拉斑玄武岩不同的地球化学特征为认识大陆拉斑玄武岩成因的多样性提供了有益启示。  相似文献   

15.
Geochemistry of Adakites from the Philippines: Constraints on Their Origins   总被引:1,自引:0,他引:1  
Abstract. We have identified in the Philippine Archipelago 230 samples of Late Miocene to Quaternary intermediate and evolved magmatic rocks or glasses, the compositions of which plot within the adakitic field defined by Defant and Drum-mond (1990) using Sr/Y ratios versus Y contents. These rocks belong to four different subductions, along the Manila Trench (Batan, Northern Luzon, Central Luzon), the Negros and Sulu Trenches (Negros and Western Mindano), the Cotobato Trench (Southern Mindanao) and the Philippine Trench (Eastern Mindanao). Lavas from Central Mindanao overlie the deep remnants of the Molucca Sea Plate, and were emplaced in a post-collision setting.
All these samples show a significant depletion in Y and HREE with respect to their "normal" calc-alkaline equivalents, suggesting that garnet was either a residual phase during partial melting or a fractionating mineral during differentiation or assimilation coupled with fractional crystallisation (AFC). However, only 19 samples out of our set (i.e., 8 %) display very high Sr/Y ratios (100–250). Our preferred model for the genesis of these "typical adakites" is ca. 20 % partial melting of subducted altered oceanic metabasalts converted to eclogite. This melting process could have been triggered by water from the underlying serpentinites. Most of the samples, termed "intermediate adakites", display major and trace element chemical features intermediate between those of the former group and those of normal calc-alkaline lavas. We show that magma mixing between slab-derived adakitic magmas and mafic mantle-derived melts accounts for most of the trends linking typical and intermediate adakites, although an additional contribution of mantle is required in some cases.  相似文献   

16.
Small-scale heterogeneity in the deep mantle is concentrated in the upper-mantle transi-tion zone(TZ),in the depth range 410-660 km and also at the bottom 250 km D region.This encour-ages a more detailed investigation of the potential for seismic reflectivity imaging by modelling hetero-geneous structures in mantle convection models including phase transitions of the TZ and D regions.We applied finite elements with variable spacing near the boundary layers in 2-D cylindrical geometry that allow for sufficie...  相似文献   

17.
Trachybasalt scoria from a cinder cone near the Mexican volcanicfront contain phenocrysts of olivine with chromite inclusions,apatite, augite and hornblende, with microphenocrysts of plagioclase.The water-saturated phase relations reproduce the phenocrystassemblage between 1040°C and 970°C with water contentsof between 2·5 and 4·5% (50–150 MPa). Theabsence of biotite phenocrysts in the scoria places a tightconstraint on the pressure–temperature conditions of phenocrystequilibration, as there is only a small zone where biotite doesnot accompany hornblende in the experiments. Diluting the fluidphase with CO2 changes the composition of the olivine, indicatingthat CO2 was only a minor component of the fluid of the scoria.Hornblende is stable to 1040°C at oxygen fugacities of NNO+ 2 (where NNO is the nickel–nickel oxide buffer), butat lower oxygen fugacities, the upper limit is 990°C. Thereis a progressive increase in crystallinity in experimental runsas both pressure and temperature decrease. Isobaric plots ofcrystallinity show that the onset of hornblende crystallizationinvolves a reaction relation, and also results in a marked  相似文献   

18.
Suprasolidus phase relations at pressures from 8 to 30 kb andtemperatures from 950 to 1380C have been determined experimentallyfor a glassy armalcolite–phlogopite lamproite from thechilled margin of a medium–grained lamproite from SmokyButte, Montana: The armalcolite-phlogopite lamproite has microphenocrystsof olivine in a groundmass of phlogopite, sanidine, armalcolite,clinopyroxene, chromite, priderite, apatite, and abundant glass.The lamproite is SiO2-rich and has high F/H2O relative to lamproitesthat have been investigated in previous experimental studies.Our data show that with decreasing temperature from the liquidusat pressures above 12 kb, melt coexists successively with:olivine; orthopyroxene + clinopyroxene; orthopyroxene + clinopyroxene+ phlogopite; clinopyroxene +phlogopite; and clinopyroxene +orthopyroxene + K-richterite. Below 12 kb, the assemblage successionis: olivine; olivine + clinopyroxene; olivine + clinopyroxene+ phlogopite; and olivine +clinopyroxene + phlogopite + armalcolite.The main difference from the natural paragenesis is that therock does not contain any orthopyroxene—a feature thatis rather remarkable inasmuch as it has 16% normative hypersthene—andthe rock differs also in that it contains sanidine and priderite.In the experiments, sanidine is observed only as ghostlike domainsin some of the glass and appears to have formed during quenching. The solid phases crystallized experimentally are generally compositionallysimilar to the minerals in the rock. These similarities andthe experimental phase relations support the concept of a rapidinitial magma ascent with only a small temperature drop andcrystallization of olivine, but not of orthopyroxene. At lowerpressures, less than 12 kb, it appears that the magma ascendedmore slowly with a larger temperature drop suggested by thesimilarity of the experimentally determined sequence of assemblagesto the paragenesis of the rock. No quasi-invariant multiphase-saturation point was found suchas might be indicative of pressure and temperature conditionsfor formation of the lamproite magma by eutectic-type partialmelting of a mantle source. The occurrence of olivine, orthopyroxene,and clinopyroxene near the liquidus, and the high proportionof normative hypersthene in the melt suggest that lherzoliteor harzburgite was probable in the magma source rock. The highSiO2 and MgO contents of the Smoky Butte lamproites may indicatethat orthopyroxene was a source mineral even though it did notcrystallize under near-surface conditions. The curve definingthe appearance of phlogopite appears at progressively lowertemperatures from the liquidus as pressure increases, so itwould appear that either phlogopite was not the mantle K-reservoir,or it was entirely consumed during the partial melting process.The composition of the near-liquidus glass in the experimentsis likely to be the composition of the bulk rock less the verysmall amounts of olivine + clinopyroxene + orthopyroxene crystallizedwithin a few degrees below the liquidus. From the inferred compositionof this glass, anhydrous phlogopite is a potential mineral.The principal variable that determines whether phlogopite crystallizesas a near-liquidus mineral is F/H2O; low values of this ratiopromote the presence of phlogopite as a near-liquidus mineralwhereas high values deter its crystallization. The common practiceof adding H2O but not F in experiments to compensate for degassingmay obscure the role of phlogopite in the evolution of lamproitemagmas.  相似文献   

19.
The solid Mn content of sediments at a site in the Panama Basin (5°21′N 81°56′W) decreases from 3.9% in the interfacial sediment to 1% at 1.5 cm and <0.2% below 5 cm. These conditions provide an opportunity to examine the influence of Mn oxides on the metal adsorption characteristics of natural marine sediments.The adsorption of 14 metals on interfacial sediment and sediment from depths of 0.5 to 3 cm and 15 to 19 cm from the Panama Basin site was studied, and distribution coefficients (KD) were determined. A comparison of the KD values for a variety of samples containing different Mn contents (i.e., Panama Basin sediments, MANOP site H interfacial sediment, red clay, and buserite) indicates that an increase in the solid Mn content enhances the ability of the particles to bind certain metals (e.g., Zn, Pb, Co, Cd, and Ba) while the binding ability for other metals (e.g., Cs, Be, Sc, Pu, Sn, and Fe) is not significantly affected. For the Panama Basin sediment, the KD values for Ni, Co, Cd, Ba, and Mn for the Mn enriched interfacial sediment are 5 to 23 times greater than the KD values for the Mn depleted deep sediment. The KD values for Cs, Be, Sc, Pu, and Fe for the two types of sediment are essentially the same. The correlation between the Mn content and the binding ability of the sediment for particular metals coincides with the Mn-metal correlations observed in bulk compositional data for ferromanganese nodules and sediments. This implies that the observed metal enrichments in nodules or hemipelagic sediments are most likely caused by preferential adsorption of the metals by Mn enriched phases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号