首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
藏南查拉普金矿床载金矿物特征与金的赋存状态   总被引:1,自引:0,他引:1  
黄铁矿和毒砂是卡林型和造山型金矿床重要的载金矿物。文章通过电子探针(EPMA)分析研究了藏南查拉普金矿床不同类型黄铁矿和毒砂中Au、As、S、Fe等元素的含量变化和分布规律,发现不同阶段的黄铁矿具有不同的结构特征和元素组成特点。沉积成岩期黄铁矿(Py1)主要呈草莓状、胶状,常构成环带状黄铁矿的核心,其中金的含量最高,显示了金在沉积成岩期的大量富集。热液期早阶段黄铁矿(Py2)主要呈自形-半自形的立方体,与Py1元素(S、Fe、As)组成相近,显示了一定的继承演化关系。热液期主阶段黄铁矿(Py3)与毒砂共生,多呈自形-半自形的五角十二面体、立方体,常包裹早期的黄铁矿形成环带结构。Py3中As的含量明显升高,其增加量近似等于S的减少量,说明As主要进入黄铁矿晶格替代了S的位置。各个阶段的黄铁矿和毒砂中Au的分布在EPMA微束的分辨率下均显示是不均匀的,Au在Py1和大部分Py2中主要以纳米级自然金(Au0)的形式存在;而在Py3中主要以(Au+)的形式存在,少部分以纳米级自然金(Au0)形式存在。Py1的结构及元素组成与典型卡林型金矿和造山型金矿沉积成岩期黄铁矿的特点相似,而Py3的大量发育则符合卡林型金矿的特征。  相似文献   

2.
陈博  侯泉林  冯宏业  郭虎  许英霞 《岩石学报》2019,35(7):2086-2104
阿沙哇义金矿位于中国新疆南天山造山带,属于著名的中亚南天山锑-汞-金成矿带的东延部分。该矿床严格受断裂所控制,以浸染状黄铁矿化、毒砂化为特征。矿化可分为三个阶段:早期无矿或贫矿石英阶段,中期石英多金属硫化物阶段,晚期石英-碳酸盐阶段。其中,中期是主要成矿阶段。成矿流体气相成分以H_2O为主,摩尔含量为75%~93%,其次为CO_2,摩尔含量为6%~25%,其余为CH_4、C_2H_6、H_2S、N_2和Ar;液相成分阳离子以Na~+为主,含少量K~+、Ca~(2+)离子,阴离子以Cl~-为主,SO~(2-)次之;矿石的Au含量与其流体的CO_2含量呈反相关,与K~+含量呈正相关。硫化物成分分析结果表明:(1)围岩地层和矿石中的黄铁矿和毒砂是重要的载金矿物,黄铁矿Au含量为0~0. 09%,平均值0. 03%;毒砂Au含量为0~0. 28%,平均值0. 07%;(2)黄铁矿和毒砂Au含量与其自形程度没有明显的相关性;(3)环带状黄铁矿较均质结构黄铁矿具有更高的Au含量;(4)岩体中的黄铁矿几乎不含Au。在成矿构造环境、成矿流体特征及演化、金矿富集机制、成矿温压条件等方面,该矿床与世界上大多数造山型金矿显示出一致性,成矿类型应属于剥蚀程度较浅的造山型金矿。断层阀作用控制的断层愈合-破裂导致的流体不混溶作用是本区金富集、沉淀的最重要机制,但流体混合机制对金的富集沉淀也发挥了作用。黄铁矿、毒砂发育及较多的含炭物质三者共存是本区寻找富矿的关键标志。  相似文献   

3.
Orogenic disseminated and Carlin gold deposits share much similarity in alteration and mineralization.The disseminated orogenic Zhenyuan Au deposit along the Ailaoshan shear zone,southeastern Tibet,was selected to clarify their difference.The alteration and mineralization from the different lithologies,including meta-quartz sandstone,carbonaceous slate,meta-(ultra)mafic rock,quartz porphyry and lamprophyre were researched.According to the mineral assemblage and replacement relationship in all types of host rocks,two reactions show general control on gold deposition:(1)replacement of earlier magnetite by pyrite and carbonaceous material;(2)alteration of biotite and phlogopite phenocrysts in quartz porphyry and lamprophyre into dolomite/ankerite and sericite.Despite the lamprophyre is volumetrically minor and much less fractured than other host rocks,it contains a large portion of Au reserve,indicating that the chemically active lithology has played a more important role in gold precipitation compared to structure.LA-ICP-MS analysis shows that Au mainly occurs as invisible gold in fine-grained pyrite disseminated in the host rocks,with Au content reaching to 258.95 ppm.The diagenetic core of pyrite in meta-quartz sandstone enriched in Co,Ni,Mo,Ag and Hg is wrapped by hydrothermal pyrite enriched in Cu,As,Sb,Au,Tl,Pb and Bi.Different host rock lithology has much impact on the alteration and mineralization features.Carbonate and sericite in altered lamprophyre show they have higher Mg than those developed in other of host rocks denoting that the carbonate and sericite incorporated Mg from phlogopite phenocrysts in the primary lamprophyre during alteration.The ore fluid activated the diagenetic pyrite in meta-quartz sandstone leading the hydrothermal pyrite enriched in Cu,Mo,Ag,Sb,Te,Hg,Tl,Pb and Bi,but the hydrothermal pyrite in meta-(ultra)mafic rock is enriched in Co and Ni as the meta-(ultra)mafic rock host rock contain high content of Co and Ni.However,Au and As shear similar range in both types of host rocks indicating that these two elements most likely come from the deep source fluid rather than the host rocks.It was shown in the disseminated orogenic gold deposit that similar hydrothermal alteration with mineral assemblage of carbonate(mainly dolomite and ankerite),sericite,pyrite and arsenopyrite develops in all types of host rocks.This is different from the Nevada Carlin type,in which alteration is mainly dissolution and silicification of carbonate host rock.On the other hand,Au mainly occur as invisible gold in both disseminated orogenic and Carlin gold deposits.  相似文献   

4.
Gold-bearing quartz lodes from the Egat gold mine, South Eastern Desert of Egypt, are associated with pervasively silicified, highly sheared ophiolitic metagabbro and island-arc metavolcanic rocks. The mineralized quartz veins and related alteration haloes are controlled by NNW-trending shear/fault zones. Microscopic and electron probe microanalyses (EPMA) data of the ore and gangue minerals reveal that fine-grained auriferous sulfarsenides represent early high-temperature (355–382 °C) phases, with formation conditions as (fS2?=??10, and fO2 around ?31). A late, low-temperature (302–333 °C) assemblage includes coarse pyrite, arsenopyrite, and free-milling gold grains (88–91 wt.% Au), with formation conditions as (fS2?=??8 and fO2 around ?30). Gold was impounded within early sulfarsenides, while free-milling gold blebs occur along microfractures in quartz veins and as inclusions in late sulfides. Infiltration of hydrothermal fluids under brittle–ductile shear conditions led to mobilization of refractory Au from early sulfarsenide phases and reprecipitated free gold, simultaneous with silicification of the host rocks. The positive correlation between Au and As favors and verifies the use of As as the best pathfinder for gold targets, along the NNW-trending shear zones.  相似文献   

5.
Vein-hosted mesothermal stibnite-gold mineralisation at the Hillgrove Au-Sb mine in northeastern New South Wales has a halo of veinlet and disseminated auriferous arsenopyrite and arsenian pyrite in metasedimentary and granitic host rocks. About 50–55% of the gold produced at Hillgrove occurs invisibly in arsenopyrite and pyrite. Gold losses of ∼20% into tailings are due to this mineral chemical factor. From PIXE probe analyses, it has been found that arsenopyrite contains 255–1500 ppm Au and pyrite 24–223 ppm Au, with Au contents of each mineral correlating moderately with As content. Arsenopyrite and pyrite also contain anomalous values of Cu, Ag and Sb, whereas paragenetically later stibnite contains little invisible gold, but minor Fe, As, Ag, Cu and Pb. The precipitation of invisible gold in arsenopyrite and pyrite by a possible (Fe, Au)3+= (As-S)3− substitution mechanism may have been facilitated by rapid, non-equilibrium conditions involving pressure decreases and wall rock reaction (sulphidation, carbonatisation), as a prelude to the main stage of stibnite and gold deposition. Received: 15 January 1999 / Accepted: 12 October 1999  相似文献   

6.
甘肃阳山金矿田载金矿物特征及金赋存状态研究   总被引:12,自引:6,他引:6  
毛世东  杨荣生  秦艳  郭俊华 《岩石学报》2009,25(11):2776-2790
采用电子探针分析,详细研究了甘肃阳山类卡林型金矿田原生矿石中不同成矿阶段载金矿物的Au、As、S、Fe等元素含量及其分布规律,确定含砷黄铁矿和毒砂是最重要的载金矿物,发现不同成矿阶段的黄铁矿具有不同的成分特点;沉积成岩期黄铁矿为草莓状、胶状,砷和金含量最低,分别为0.10%和0.08%;热液成矿期早阶段黄铁矿粒度较粗(0.40~1.00mm),是较高温度(270~300℃)下缓慢结晶的产物,其砷和金含量较低,分别为0.27%和0.09%;热液成矿期主阶段(包括M1,M2和M3亚阶段)黄铁矿粒度微细(0.05~0.20mm),是210~270℃条件下快速结晶的产物,砷和金含量最高,M1亚阶段分别为3.45%As和0.11%Au,M2亚阶段分别为3.88%As和0.14%Au.在含砷黄铁矿中,金可能有自然金和离子金两种存在方式.沉积成岩期和热液成矿期早阶段低砷黄铁矿中金主要以纳米级自然金(Au~0)颗粒形式分布,而在热液成矿期主阶段含砷黄铁矿中金主要以Au+的形式存在.当热液中As活度高时,含砷黄铁矿在快速生长条件下,其生长面的空穴和缺陷较多,有利于热液中Au(HS)~0络合物通过吸附反应直接进入含砷黄铁矿生长表面.此外,主阶段流体的硫化和沸腾作用均可导致H_2S的减少,有利于形成砷黄铁矿和Au沉淀富集.  相似文献   

7.
墨江金厂金镍矿床位于滇西南哀牢山造山带中段,是西南三江地区一个独特的金镍共生矿床。笔者通过野外地矿物主要为针镍矿、辉砷镍矿、锑硫镍矿、黄铁矿等。依据矿(化)脉切割关系、矿石结构构造及矿物共生组合,墨江金厂金镍矿床成岩-成矿期共发育4个世代黄铁矿。沉积变质期以草莓状黄铁矿和胶状黄铁矿为主,热液成矿期可划分为:早阶段石英-针镍矿-辉砷镍矿-锑硫镍矿-黄铁矿;主阶段石英-黄铁矿-毒砂-硫锑铜银矿-自然金;晚阶段方解石-石英-黄铁矿。对矿区赋金镍贯通性矿物黄铁矿进行详细的电子探针分析,结果显示4个世代黄铁矿微量元素有所差异。其中热液主阶段黄铁矿中含有Au、As、Sb、Pb、Zn、Cu、Co、Ni和Te,显示其流体成分复杂。不同阶段黄铁矿Ni含量不同,沉积变质期黄铁矿中Ni含量较低,为0.00%~0.82%,平均0.26%;热液早阶段黄铁矿中Ni含量最高,为0.43%~3.15%,平均1.38%;热液主阶段黄铁矿中Ni含量降低,为0.00%~0.99%,平均0.22%;热液晚阶段黄铁矿中Ni含量最低,为0.00%~0.09%,平均0.03%。研究结果表明墨江金厂金镍矿床中主要含金矿物和含镍矿物形成于热液期,含金矿物形成晚于含镍矿物。Ni在热液流体中的迁移能力与流体温度正相关,温度越高,Ni进入黄铁矿晶格的能力越强。基于上述金、镍成矿过程研究成果,并对比国内外热液镍矿床的地质-地球化学特征,推断墨江金厂金镍矿床是一个受岩浆热液改造的中-低温热液金镍矿床。  相似文献   

8.
The Zhuangzi Au deposit in the world-class Jiaodong gold province hosts visible natural gold, and pyrite as the main ore mineral, making it an excellent subject for deciphering the complex hydrothermal processes and mechanisms of gold precipitation. Three types of zoned pyrite crystals were distinguished based on textural and geochemical results from EPMA, SIMS sulfur isotopic analyses and NanoSIMS mapping. Py0 has irregular shapes and abundant silicate inclusions and was contemporaneous with the earliest pyrite–sericite–quartz alteration. It has low concentrations of As (0–0.3 wt.%), Au and Cu. Py1 precipitated with stage I mineralization shows oscillatory zoning with the bright bands having high As (0.4–3.9 wt.%), Au and Cu contents, whereas the dark bands have low contents of As (0–0.4 wt.%), Au and Cu. The oscillatory zoning represents pressure fluctuations and repeated local fluid phase separation around the pyrite crystal. The concentration of invisible gold in Py1 is directly proportional to the arsenic concentration. Py1 is partially replaced by Py2 which occurs with arsenopyrite, chalcopyrite and native gold in stage II. The replacement was likely the result of pseudomorphic dissolution–reprecipitation triggered by a new pulse of Au-rich hydrothermal fluids. The δ34S values for the three types of pyrite are broadly similar ranging from +?7.1 to +?8.8‰, suggesting a common sulfur source. Fluid inclusion microthermometry suggests that extensive phase separation was responsible for the gold deposition during stage II mineralization. Uranium–Pb dating of monazite constrains the age of mineralization to ca. 119 Ma coincident with a short compressional event around 120 Ma linked to an abrupt change in the drift direction of the subducting Pacific plate.  相似文献   

9.
The Bepkong gold deposit is located in the Wa–Lawra belt of the Paleoproterozoic Baoulé-Mossi domain of the West African Craton, in NW Ghana. It occurs in pelitic and volcano-sedimentary rocks, metamorphosed to greenschist facies, in genetic association with zones of shear interpreted to form during the regional D3 deformational event, denominated DB1 at the deposit scale. The ore zone forms a corridor-like body composed of multiple quartz ± carbonate veins surrounded by an alteration envelope, characterized by the presence of chlorite, calcite, sericite, quartz and disseminated pyrite, arsenopyrite plus subordinate pyrrhotite and chalcopyrite. The veins contain only small proportions of pyrite, whereas most of the sulphides, particularly arsenopyrite, occur in the altered host rock, next to the veins. Pyrite is also common outside of the ore zone. Gold is found in arsenopyrite, where it occurs as invisible gold and as visible – albeit micron-size – grains in its rims, and as free gold within fractures cross-cutting this sulphide. More rarely, free gold also occurs in the veins, in fractured quartz. In the ore zone, pyrite forms euhedral crystals surrounding arsenopyrite, but does not contain gold, suggesting that it formed at a late stage, from a gold-free hydrothermal fluid.  相似文献   

10.
The Lapa gold deposit contains reserves of 2.4 Mt at 6.5 g/t Au and is one of the few deposits located directly within the Cadillac–Larder Lake Fault Zone (CLLFZ), a first-order crustal-scale fault that separates the Archean Abitibi Subprovince from the Pontiac Subprovince to the south. Gold mineralization is predominantly hosted in highly strained and altered, upper greenschist–lower amphibolite facies mafic to ultramafic rocks of the Piché Group. Auriferous ore zones consist of finely disseminated auriferous arsenopyrite–pyrrhotite?±?pyrite and native gold disseminated in biotite- and carbonate-altered wall rocks. Native gold, which is also present in quartz ± dolomite–calcite veinlets, is locally associated with Sb-bearing minerals, especially at depth ≤1 km from surface where the deposit is characterized by a Au–Sb–As association. At vertical depth greater than 1 km, gold is associated with arsenopyrite and pyrrhotite (Au–As association). The mineralogy and paragenesis of the Lapa deposit metamorphosed ore and alteration assemblages record the superposition of three metamorphic episodes (M1, M2, and M3) and three gold mineralizing events. Spatial association between biotitized wall rocks and auriferous arsenopyrite indicates that arsenopyrite precipitation is concomitant with potassic alteration. The predominant Au–As association recognized across the deposit is related to gold in solid solution in arsenopyrite as part of a pre-M2 low-grade auriferous hydrothermal event. However, the occurrence of hornblende?+?oligoclase porphyroblasts overprinting the biotite alteration, and the presence of porous clusters and porphyroblasts of arsenopyrite with native gold and pyrrhotite indicate an auriferous metasomatic event associated with peak M2 prograde metamorphism. Late retrograde metamorphism (M3) overprints the hornblende–oligoclase M2 assemblage within the host rocks proximal to ore by an actinolite–albite assemblage by precipitation of free gold and Sb–sulfosalts at lower PT. The complex relationships between ore, structural features, and metamorphic assemblages at Lapa are related to the tectonometamorphic evolution of the Cadillac–Larder Lake Fault Zone at different times and crustal levels, and varying heat and fluid flow regimes. The Lapa deposit demonstrates that early, low-grade gold mineralization within the Cadillac–Larder Lake Fault Zone has benefited from late gold enrichment(s) during prograde and retrograde metamorphism, suggesting that multi-stage processes may be important to form gold-rich orogenic deposits in first order crustal-scale structures.  相似文献   

11.
The Sunrise Dam gold mine (11.1 Moz Au) is the largest deposit in the Archaean Laverton Greenstone Belt (Eastern Goldfields Province, Yilgarn Craton, Western Australia). The deposit is characterized by multiple events of fluid flow leading to repeated alteration and mineralization next to a major crustal-scale structure. The Au content of arsenian pyrite and arsenopyrite from four mineralizing stages (D1, D3, D4a, and D4b) and from different structural and lithostratigraphic environments was measured using in situ laser ablation inductively coupled plasma mass spectrometry. Pyrite contains up to 3,067 ppm Au (n = 224), whereas arsenopyrite contains up to 5,767 ppm (n = 19). Gold in arsenopyrite (D4a stage) was coprecipitated and remained as “invisible gold” (nanoparticles and/or lattice-bound) during subsequent deformation events. In contrast, gold in pyrite is present not only as “invisible gold” but also as micrometer-size inclusions of native gold, electrum, and Au(Ag)–tellurides. Pristine D1 and D3 arsenian pyrite contains relatively low Au concentrations (≤26 ppm). The highest Au concentrations occur in D4a arsenian-rich pyrite that has recrystallized from D3 pyrite. Textures show that this recrystallization proceeded via a coupled dissolution–reprecipitation process, and this process may have contributed to upgrading Au grades during D4a. In contrast, Au in D4b pyrite shows grain-scale redistribution of “invisible” gold resulting in the formation of micrometer-scale inclusions of Au minerals. The speciation of Au at Sunrise Dam and the exceptional size of the deposit at province scale result from multiple fluid flow and multiple Au-precipitating mechanisms within a single plumbing system.  相似文献   

12.
The Fairview and Sheba mines are two of the major gold mines in the Paleoarchean Barberton Greenstone Belt of Southern Africa. At these mines, gold is associated with quartz–carbonate ± rutile veins and occurs both as “invisible” gold finely dispersed in sulfides (primarily pyrite and arsenopyrite), and as visible electrum grains hosted in pyrite. Up to approximately 1000 ppm Au are contained in pyrite, and up to approximately 1700 ppm in arsenopyrite. Mapping of trace element distribution in sulfide minerals using electron microprobe and proton probe techniques revealed multiple events of ore formation and Au mineralisation. At Fairview mine, three stages of pyrite formation were identified, the last of which is associated with arsenopyrite, electrum and other sulfide minerals (sphalerite, chalcopyrite, galena, gersdorffite, and Sb-sulfides). At Sheba mine, pyrite was deposited in two stages, and electrum is associated with the second stage. At both mines, the last stage of sulfide formation is the main stage of Au deposition, and is associated with mobilisation of Au, As, Sb, Cu, Zn, and Ni. The host rock composition seems to have affected the composition of pyrite, since higher Ni and Co concentrations (up to 1.4 and 1.6 wt.%, respectively) have been measured in meta-(ultra)mafic host rocks in comparison with chert and metagreywacke. Arsenopyrite is chemically zoned, and has Sb- and S-rich cores and As- and Ni-rich rims. This zoning indicates variations in fluid compositions (decreasing Sb and increasing Ni), and crystallisation conditions (increasing As content for increasing temperature). Geothermometric estimates based on the As content of arsenopyrite (As ≤ 32 at.%) indicate temperatures up to ~ 420 °C for the crystal rims. Petrographic and cathodoluminescence observations of quartz associated with gold mineralisation show only local brittle deformation, and no plastic deformation. This supports the notion that the ore-transporting veins were emplaced late in the deformation history. Variations of cathodoluminescence of quartz are correlated with changing Al contents (Al ≤ 0.16 wt.%), and can be related to fluctuations in the pH of the mineralising fluids.  相似文献   

13.
安芳  朱永峰 《岩石学报》2010,26(8):2275-2286
京希-伊尔曼德金矿位于新疆北天山吐拉苏盆地的西北缘,赋存于泥盆纪-早石炭世火山-沉积地层底部的凝灰岩、凝灰质砂岩中,围岩经历了绢云母化、黄铁矿化、多期硅化和角砾化、碳酸盐化和重晶石化,金矿化与硅化围岩紧密伴生。矿体呈透镜状、层状和似层状,产状与围岩基本一致,主要由热液角砾岩型矿石组成,其热液演化期由四个阶段组成:I:硅化及绢云母化——在围岩凝灰岩和凝灰质砂岩中形成大量浸染状石英、绢云母和少量黄铁矿;II:角砾化及硅化——形成含金热液角砾岩a,角砾为早期蚀变围岩,胶结物为烟灰色玉髓状石英、黄铁矿、毒砂和少量金矿物;III:角砾化及硅化——形成含金热液角砾岩b,角砾为热液角砾岩a和蚀变围岩,胶结物为细粒石英、黄铁矿、毒砂和少量金矿物;IV:方解石-重晶石阶段——形成大量粗大的方解石-重晶石脉。京希-伊尔曼德金矿成矿流体本身富集V、Cr、Ni、Cu、Sb,且其中的Mn、Co、Zn、Bi以及大离子亲石元素LILE主要来自火山岩围岩。从成矿早期到晚期,成矿流体轻稀土元素逐渐富集、氧化性增强。水-岩体系氢、氧同位素组成模拟计算表明,京希-伊尔曼德金矿成矿流体主要为与区内火山岩再平衡的岩浆水,其中金浓度为1×10-6~2×10-6,形成该矿需要约1×108~0.5×108t岩浆热液,蚀变围岩和矿石中黄铁矿富集轻稀土元素。角砾化作用及其伴随的氧逸度升高是导致金沉淀的主要机制。  相似文献   

14.
Arsenian pyrite in the Shuiyindong Carlin-type gold deposit in Guizhou, China, is the major host for gold with 300 to 4,000 ppm Au and 0.65 to 14.1 wt.% As. Electron miroprobe data show a negative correlation of As and S in arsenian pyrite, which is consistent with the substitution of As for S in the pyrite structure. The relatively homogeneous distribution of gold in arsenian pyrite and a positive correlation of As and Au, with Au/As ratios below the solubility limit of gold in arsenian pyrite, suggest that invisible gold is likely present as Au1+ in a structurally bound Au complex in arsenian pyrite. Geochemical modeling using the laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of fluid inclusions for the major ore forming stage shows that the dominant Au species were Au(HS)2 (77%) and AuHS(aq)0 (23%). Gold-hydroxyl and Gold-chloride complexes were negligible. The ore fluid was undersaturated with respect to native Au, with a saturation index of −3.8. The predominant As species was H3AsO30 (aq). Pyrite in the Shuiyindong deposit shows chemical zonation with rims richer in As and Au than cores, reflecting the chemical evolution of the ore-bearing fluids. The early ore fluids had relatively high activities of As and Au, to deposit unzoned and zoned arsenian pyrite that host most gold in the deposit. The ore fluids then became depleted in Au and As and formed As-poor pyrite overgrowth rims on gold-bearing arsenian pyrite. Arsenopyrite overgrowth aggregates on arsenian pyrite indicate a late fluid with relatively high activity of As. The lack of evidence of boiling and the low iron content of fluid inclusions in quartz, suggest that iron in arsenian pyrite was most likely derived from dissolution of ferroan minerals in the host rocks, with sulfidation of the dissolved iron by H2S-rich ore fluids being the most important mechanism of gold deposition in the Shuiyindong Carlin-type deposit.  相似文献   

15.
湖南含砷金矿资源储量大,分布广,类型多.矿床中的砷矿物主要为毒砂,几乎所有金矿床中的毒砂都含Au(一般120×10-6~250×10-6),且比共生的黄铁矿含Au量高2~5倍,甚至1个数量级以上.毒砂中金的分布率高达64.3%~94.05%.毒砂的生成期有早、晚2期.化学成分为富S亏As型,并以富含微量元素Sb(Se)、Ni、Co而贫Mn及晶胞参数a0值增大等为标型特征.大多数含Au毒砂均含有相当数量的“不可见金”,即使利用电子探针也难以发现.初步认为毒砂中的“不可见金”多呈纳米级微细粒状存在.  相似文献   

16.
黔东南金成矿区位于江南造山带金成矿省的西南端,成矿条件优越。坑头金矿床是黔东南金成矿区的一个中型矿床,在其深部找矿中,发现除石英脉型矿体外,还存在蚀变岩型矿体。然而,这种蚀变岩型矿体的构造形态、蚀变类型、与石英脉型矿体之间关系和金的赋存状态尚不清楚。本研究与当前的勘查工作紧密结合,围绕石英脉型矿体和新发现的蚀变岩型矿体为研究切入点,借助微区分析技术(扫描电镜和电子探针)进行系统的“流体-蚀变-成矿”研究。蚀变矿物金红石矿物化学显示为热液成因,具有典型造山型金矿床的金红石标型特征。围岩的沉积-成岩过程(包括低级变质作用过程),主要形成了草莓状黄铁矿和含铁碳酸盐岩,为后期含金硫化物(黄铁矿和毒砂)的形成提供物质基础(如Fe)。金的成矿富集过程主要经历了绢云母+毒砂+黄铁矿+石英(Ser+Apy+Py+Qtz)阶段、黄铁矿+毒砂+石英(Py+Apy+Qtz)阶段和自然金+石英(Au0+Qtz)阶段。在Ser+Apy+Py+Qtz阶段,主要表现为含矿流体与围岩的初级交代,形成大量浸染状黄铁矿+毒砂的硫化带;Py+Apy+Qtz阶段主要为流体沿着剪切带再交代,形成蚀变岩型矿...  相似文献   

17.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

18.
丘岭金矿床是西秦岭地区重要的卡林型金矿之一, 金矿化赋存于上泥盆统南阳山组和下石炭统袁家沟组地层中, 容矿岩石的岩性为钙质粉砂岩、粉砂质页岩和泥质灰岩.金矿石中主要金属矿物为黄铁矿和毒砂, 非金属矿物则以石英、方解石和绢云母为主.通过对矿石矿物黄铁矿和毒砂的扫描电镜-能谱分析、电子探针分析和激光剥蚀电感耦合等离子体质谱分析, 对丘岭金矿床金的赋存形式和富集机理进行了较为详细的研究.结果表明, 丘岭金矿床中金主要以次显微不可见金的形式存在, 其次为显微可见金.次显微金包括: (1)固溶体金(Au+), 主要存在于环带状细粒黄铁矿的含砷增生边区域和毒砂中, 少量存在于环带状黄铁矿的核部不含砷区域; (2)纳米级自然金颗粒(Au0), 存在于粗晶黄铁矿中.环带状细粒黄铁矿核部的次显微金可能主要以胶体吸附的形式存在, 暗示容矿岩石在沉积成岩过程中有金的初步富集, 而环带状黄铁矿幔部和毒砂中的Au则主要来源于成矿流体, 以S和As的络合物形式搬运.显微可见金主要分布在细粒黄铁矿的晶体边缘和热液蚀变绢云母、石英及方解石中, 粒径通常小于3~5 μm, 其形成可能与成矿流体中金的局部过饱和及成矿流体对细粒黄铁矿和毒砂中次显微金的活化和再次富集有关.   相似文献   

19.
A lithogeochemical, mineral chemical, isotopic, and fluid inclusion study of barren, low-, and high-grade Au-mineralized samples from the shear zone-hosted Amantaytau gold deposit, Uzbekistan, shows that the local host rocks, Late Ordovician–Earlz Silurian carbonacous shales, are likely to have been an important source of Au, As, Ni, and S in the formation of the deposit. Syn-depositional pyrite in these shales contains on average 0.23 ppm Au, 1,083 ppm As, and 861 ppm Ni. The distribution of rare earth elements (REE) indicates a homogeneous source of light REE, whereas the heavy REE distribution reflects most likely primary variations in the sediments. The mineralized zone is marked by a positive Eu anomaly, which supports reducing conditions during the mineralization. A hydrothermal overprint by an aqueous–carbonic fluid is reflected in a high-grade Au-mineralized sample by δ13C values of ?13.0?‰ (V-PDB). The δ 34S values in pyrite (?0.13 to +7.30?‰ CDT) from barren and mineralized samples are consistent with marine sulfate being the principal source of the ore sulfur. Assuming a formation temperature of between 300 and 400 °C for the main stage of mineralization, as indicated by the alteration mineral assemblage, the calculated δ 18Ofluid is between 9.5 and 13.4?‰ V-SMOW, which points at a metamorphic origin of the ore fluid.  相似文献   

20.
Mineral assemblages and chemical compositions of ore minerals from the Boroo gold deposit in the North Khentei gold belt of Mongolia were studied to characterize the gold mineralization, and to clarify crystallization processes of the ore minerals. The gold deposit consists of low‐grade disseminated and stockwork ores in granite, metasedimentary rocks and diorite dikes. Moderate to high‐grade auriferous quartz vein ores are present in the above lithological units. The ore grades of the former range from about 1 to 3 g/t, and those of the latter from 5 to 10 g/t, or more than 10 g/t Au. The main sulfide minerals in the ores are pyrite and arsenopyrite, both of which are divisible into two different stages (pyrite‐I and pyrite‐II; arsenopyrite‐I and arsenopyrite‐II). Sphalerite, galena, chalcopyrite, and tetrahedrite are minor associated minerals, with trace amounts of bournonite, boulangerite, geerite, alloclasite, native gold, and electrum. The ore minerals in the both types of ores are variable in distribution, abundance and grain size. Four modes of gold occurrence are recognized: (i) “invisible” gold in pyrite and arsenopyrite in the disseminated and stockwork ores, and in auriferous quartz vein ores; (ii) microscopic native gold, 3 to 100 µm in diameter, that occurs as fine grains or as an interstitial phase in sulfides in the disseminated and stockwork ores, and in auriferous quartz vein ores; (iii) visible native gold, up to 1 cm in diameter, in the auriferous quartz vein ores; and (iv) electrum in the auriferous quartz vein ores. The gold mineralization of the disseminated and stockwork ores consists of four stages characterized by the mineral assemblages of: (i) pyrite‐I + arsenopyrite‐I; (ii) pyrite‐II + arsenopyrite‐II; (iii) sphalerite + galena + chalcopyrite + tetrahedrite + bournonite + boulangerite + alloclasite + native gold; and (iv) native gold. In the auriferous quartz vein ores, five mineralization stages are defined by the following mineral assemblages: (i) pyrite‐I; (ii) pyrite‐II + arsenopyrite; (iii) sphalerite + galena + chalcopyrite; (iv) Ag‐rich tetrahedrite‐tennantite + bournonite + geerite + native gold; and (v) electrum. The As–Au relations in pyrite‐II and arsenopyrite suggest that gold detected as invisible gold is mostly attributed to Au+1 in those minerals. By applying the arsenopyrite geothermometer to arsenopyrite‐II in the disseminated and stockwork ores, crystallization temperature and logfs2 are estimated to be 365 to 300 °C and –7.5 to –10.1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号