首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Cosmogenic He, Ne, and Ar were measured in the iron meteorites Grant (IIIAB) and Carbo (IID) to re‐determine their preatmospheric geometries and exposure histories. We also investigated the influence of sulphur‐ and/or phosphorus‐rich inclusions on the production rates of cosmogenic Ne. Depth profiles measured in Grant indicate a preatmospheric center location 117 mm left from the reference line and 9 mm below bar B, which is clearly different (?10 cm) from earlier results (?165 mm left from the reference line on bar F). For Carbo the preatmospheric center location was found to be 120 mm right of the reference line and 15 mm above bar J, which is in agreement with literature data. The new measurements indicate a spherical preatmospheric shape for both meteorites and, based on literature 36C1 data, the radii were estimated to be about 32 cm and 70 cm for Grant and Carbo, respectively. We demonstrate that minor elements like S and P have a significant influence on the production rates of cosmogenic Ne. In our samples, containing on average 0.5% S and/or P, about 20% of 21Ne was produced from these minor elements. Using measured 21Ne concentrations and endmember 22Ne/21Ne ratios for Fe + Ni and S + P, respectively, we show that it is possible to correct for 21Ne produced from S and/or P. The thus corrected data are then used to calculate new 41K‐40K exposure ages—using published K data—which results in 564 ± 78 Ma for Grant and 725 ± 100 Ma for Carbo. The correction always lowers the 21Ne concentrations and consequently decreases the 41K‐40K exposure ages. The discrepancies between 36Cl‐36Ar and 41K‐40K ages are accordingly reduced. The existence of a significant long‐term variation of the GCR, which is based on a former 30–50% difference between 41K‐40K and 36Cl‐36Ar ages, may warrant re‐investigation.  相似文献   

2.
We measured the concentrations and isotopic compositions of He, Ne, and Ar in bulk samples and metal separates of 14 ordinary chondrite falls with long exposure ages and high metamorphic grades. In addition, we measured concentrations of the cosmogenic radionuclides 10Be, 26Al, and 36Cl in metal separates and in the nonmagnetic fractions of the selected meteorites. Using cosmogenic 36Cl and 36Ar measured in the metal separates, we determined 36Cl‐36Ar cosmic‐ray exposure (CRE) ages, which are shielding‐independent and therefore particularly reliable. Using the cosmogenic noble gases and radionuclides, we are able to decipher the CRE history for the studied objects. Based on the correlation 3He/21Ne versus 22Ne/21Ne, we demonstrate that, among the meteorites studied, only one suffered significant diffusive losses (about 35%). The data confirm that the linear correlation 3He/21Ne versus 22Ne/21Ne breaks down at high shielding. Using 36Cl‐36Ar exposure ages and measured noble gas concentrations, we determine 21Ne and 38Ar production rates as a function of 22Ne/21Ne. The new data agree with recent model calculations for the relationship between 21Ne and 38Ar production rates and the 22Ne/21Ne ratio, which does not always provide unique shielding information. Based on the model calculations, we determine a new correlation line for 21Ne and 38Ar production rates as a function of the shielding indicator 22Ne/21Ne for H, L, and LL chondrites with preatmospheric radii less than about 65 cm. We also calculated the 10Be/21Ne and 26Al/21Ne production rate ratios for the investigated samples, which show good agreement with recent model calculations.  相似文献   

3.
Abstract— The noble gases He, Ne, Ar, Kr, and Xe were measured in 27 individual Antarctic micrometeorites (AMMs) in the size range 60 to 250 μm that were collected at the Dome Fuji Station. Eleven of the AMMs were collected in 1996 (F96 series) and 16 were collected in 1997 (F97 series). One of the F97 AMMs is a totally melted spherule, whereas all other particles are irregular in shape. Noble gases were extracted using a Nd‐YAG continuous wave laser with an output power of 2.5‐3.5 W for ?5 min. Most particles released measurable amounts of noble gases. 3He/4He ratios are determined for 26 AMMs ((0.85‐9.65) × 10?4). Solar energetic particles (SEP) are the dominant source of helium in most AMMs rather than solar wind (SW) and cosmogenic He. Three samples had higher 3He/4He ratios compared to that of SW, showing the presence of spallogenic 3He. The Ne isotopic composition of most AMMs resembled that of SEP as in the case of helium. Spallogenic 21Ne was detected in three samples, two of which had extremely long cosmic‐ray exposure ages (> 100 Ma), calculated by assuming solar cosmic‐ray (SCR) + galactic cosmic‐ray (GCR) production. These two particles may have come to Earth directly from the Kuiper Belt. Most AMMs had negligible amounts of cosmogenic 21 Ne and exposure ages of <1 Ma. 40Ar/36Ar ratios for all particles (3.9–289) were lower than that of the terrestrial atmosphere (296), indicating an extraterrestrial origin of part of the Ar with a very low 40Ar/36Ar ratio plus some atmospheric contamination. Indeed, 40Ar/36Ar ratios for the AMMs are higher than SW, SEP, and Q‐Ar values, which is explained by the presence of atmospheric 40Ar. The average 38Ar/36Ar ratio of 24 AMMs (0.194) is slightly higher than the value of atmospheric or Q‐Ar, suggesting the presence of SEP‐Ar which has a relatively high 38Ar/36Ar ratio. According to the elemental compositions of the heavy noble gases, Dome Fuji AMMs can be classified into three groups: chondritic (eight particles), air‐affected (nine particles), and solar‐affected (eight particles). The eight AMMs classified as chondritic preserve the heavy noble gas composition of primordial trapped component due to lack of atmospheric adsorption and solar implantation. The average of 129Xe/132Xe ratio for the 16 AMMs not affected by atmospheric contamination (1.05) corresponds to the values in matrices of carbonaceous chondrites (?1.04). One AMM, F96DK038, has high 129Xe/132Xe in excess of this ratio. Our results imply that most Dome Fuji AMMs originally had chondritic heavy noble gas compositions, and carbonaceous chondrite‐like objects are appropriate candidate sources for most AMMs.  相似文献   

4.
Abstract— Cosmic‐ray exposure ages calculated from cosmogenic noble gas nuclides are reported for 57 enstatite (E) chondrites, 43 of them were measured for the first time. With a total of 62 individual E chondrites (literature and this data, corrected for pairing) the observed spectrum of ages ranges between 0.07 and 66 Ma. Three clusters seem to develop at about 3.5, 8, and 25 Ma, respectively. Since the uncertainty of ages is estimated to be ~20% (in contrast to 10 to 15% for ordinary chondrites) and the number of examined samples is still comparatively small, these peaks have to be confirmed by more measurements. Regarding the two subgroups, EH and EL chondrites, no systematic trend is apparent in the distribution of cosmic‐ray exposure ages. Several E chondrites yield significantly lower 38Ar ages compared to those calculated from cosmogenic 3He and 21Ne. For these E chondrites, we suggest a reduction of cosmogenic 38Ar as a result of weathering. In order to prove the possible influence of terrestrial alteration on the cosmogenic noble gas record of E‐chondritic material, we simulated terrestrial weathering in an experiment of 12 weeks duration. The treatment showed that a significant amount of cosmogenic 38Ar is lost on Earth by the influence of water.  相似文献   

5.
Abstract– The interior texture and chemical and noble gas composition of 99 cosmic spherules collected from the meteorite ice field around the Yamato Mountains in Antarctica were investigated. Their textures were used to classify the spherules into six different types reflecting the degree of heating: 13 were cryptocrystalline, 40 were barred olivine, 3 were porphyritic A, 24 were porphyritic B, 9 were porphyritic C, and 10 were partially melted spherules. While a correlation exists between the type of spherule and its noble gas content, there is no significant correlation between its chemical composition and noble gas content. Fifteen of the spherules still had detectable amounts of extraterrestrial He, and the majority of them had 3He/4He ratios that were close to that of solar wind (SW). The Ne isotopic composition of 28 of the spherules clustered between implantation‐fractionated SW and air. Extraterrestrial Ar, confirmed to be present because it had a 40Ar/36Ar ratio lower than that of terrestrial atmosphere, was found in 35 of the spherules. An enigmatic spherule, labeled M240410, had an extremely high concentration of cosmogenic nuclides. Assuming 4π exposure to galactic and solar cosmic rays as a micrometeoroid and no exposure on the parent body, the cosmic‐ray exposure (CRE) age of 393 Myr could be computed using cosmogenic 21Ne. Under these model assumptions, the inferred age suggests that the particle might have been an Edgeworth‐Kuiper Belt object. Alternatively, if exposure near the surface of its parent body was dominant, the CRE age of 382 Myr can be estimated from the cosmogenic 38Ar using the production rate of the 2π exposure geometry, and implies that the particle may have originated in the mature regolith of an asteroid.  相似文献   

6.
Renazzo‐type carbonaceous (CR) chondrites are accretionary breccias that formed last. As such they are ideal samples to study precompaction exposures to cosmic rays. Here, we present noble gas data for 24 chondrules and 3 dark inclusion samples (DIs) from Shi?r 033 (CR2). The meteorite was selected based on the absence of implanted solar wind noble gases and an anomalous oxygen isotopic composition of the DIs; the oxygen isotopes match those in CV3 and CO3 chondrites. Our samples contain variable mixtures of galactic cosmic ray (GCR)‐produced cosmogenic noble gases and trapped noble gases of presolar origin. Remarkably, all chondrules have cosmogenic 3He and 21Ne concentrations up to 4.3 and 7.1 times higher than the DIs, respectively. We derived an average 3He‐21Ne cosmic ray exposure (CRE) age for Shi?r 033 of 2.03 ± 0.20 Ma (2 SD) and excesses in cosmogenic 3He and 21Ne in chondrules (relative to the DIs) in the range (in 10?8 cm3STP/g) 3.99–7.76 and 0.94–1.71, respectively. Assuming present‐day GCR flux density, the excesses translate into average precompaction 3He‐21Ne CRE ages of 3.1–27.3 Ma depending on the exposure geometry. The data can be interpreted assuming a protracted storage of a single chondrule generation prior to the final assembly of the Shi?r 033 parent body in a region of the disk transparent to GCRs.  相似文献   

7.
Abstract– Bunburra Rockhole is the first meteorite fall photographed and recovered by the Desert Fireball Network in Australia. It is classified as an ungrouped achondrite similar in mineralogical and chemical composition to eucrites, but it has a distinct oxygen isotope composition. The question is if achondrites like Bunburra Rockhole originate from the same parent body as the howardite‐eucrite‐diogenite (HED) meteorites or from several separate, differentiated parent bodies. To address this question, we measured cosmogenic radionuclides and noble gases in the Bunburra Rockhole achondrite. The short‐lived radionuclides 22Na and 54Mn confirm that Bunburra Rockhole is a recent fall. The concentrations of 10Be, 26Al and 36Cl as well as the 22Ne/21Ne ratio indicate that Bunburra Rockhole was a relatively small object (R approximately 15 cm) in space, consistent with the photographic fireball observations. The cosmogenic 38Ar concentration yields a cosmic‐ray exposure (CRE) age of 22 ± 3 Myr, whereas 21Ne and 3He yield approximately 30% and approximately 60% lower ages, respectively, due to loss of cosmogenic He and Ne, mainly from plagioclase. With a CRE age of 22 Myr, Bunburra Rockhole is the first anomalous eucrite that overlaps with the main CRE peak of the HED meteorites. The radiogenic K‐Ar age of 4.1 Gyr is consistent with the U‐Pb age, while the young U,Th‐He age of approximately 1.4 Gyr indicates that Bunburra Rockhole lost radiogenic 4He more recently.  相似文献   

8.
Abstract— Calcium‐aluminum‐rich inclusions (CAIs) were among the first solids in the solar system and were, similar to chondrules, created at very high temperatures. While in chondrules, trapped noble gases have recently been detected, the presence of trapped gases in CAIs is unclear but could have important implications for CAI formation and for early solar system evolution in general. To reassess this question, He, Ne, and Ar isotopes were measured in small, carefully separated and, thus, uncontaminated samples of CAIs from the CV3 chondrites Allende, Axtell, and Efremovka. The 20Ne/22Ne ratios of all CAIs studied here are <0.9, indicating the absence of trapped Ne as, e.g., Ne‐HL, Ne‐Q, or solar wind Ne. The 21Ne/22Ne ratios range from 0.86 to 0.72, with fine‐grained, more altered CAIs usually showing lower values than coarse‐grained, less altered CAIs. This is attributed to variable amounts of cosmogenic Ne produced from Na‐rich alteration phases rather than to the presence of Ne‐G or Ne‐R (essentially pure 22Ne) in the samples. Our interpretation is supported by model calculations of the isotopic composition of cosmogenic Ne in minerals common in CAIs. The 36Ar/38Ar ratios are between 0.7 and 4.8, with fine‐grained CAIs within one meteorite showing higher ratios than the coarse‐grained ones. This agrees with higher concentrations of cosmogenic 36Ar produced by neutron capture on 35Cl with subsequent β?‐decay in finer‐grained, more altered, and thus, more Cl‐rich CAIs than in coarser‐grained, less altered ones. Although our data do not strictly contradict the presence of small amounts of Ne‐G, Ne‐R, or trapped Ar in the CAIs, our noble gas signatures are most simply explained by cosmogenic production, mainly from Na‐, Ca‐, and Cl‐rich minerals.  相似文献   

9.
Abstract— We measured abundances and isotopic compositions of noble gases in metal and schreibersite of the Acuña (IIIAB) iron meteorite. The concentrations of noble gases in Acuña metal are very low compared to those reported so far for other iron meteorites. The isotopic ratios of He, Ne and Ar indicate that they are mostly of cosmogenic origin. Cosmogenic components are even present in Kr and Xe, which could not have been produced from Fe, Ni and P and are probably due to the spallation of trace elements of higher masses. The high 4He/21Ne ratio of 420 in Acuña metal indicates that the samples were at a deep position within a very large meteoroid. The exposure ages of Acuña were estimated to be 50–200 Ma from 3He, 21Ne and 38Ar abundances and by utilizing the diagrams of production rates vs. the 4He/21Ne ratio based on the Signer-Nier model. The low exposure age of Acuña may indicate a history different from that of other IIIAB irons whose exposure ages cluster at ~670 Ma. Otherwise, Acuña may be one of the samples with the low production rate, which can not be estimated from the diagrams of the Signer-Nier model.  相似文献   

10.
Abstract— The Monahans H‐chondrite is a regolith breccia containing light and dark phases and the first reported presence of small grains of halite. We made detailed noble gas analyses of each of these phases. The 39Ar‐40Ar age of Monahans light is 4.533 ± 0.006 Ma. Monahans dark and halite samples show greater amounts of diffusive loss of 40Ar and the maximum ages are 4.50 and 4.33 Ga, respectively. Monahans dark phase contains significant concentrations of He, Ne and Ar implanted by the solar wind when this material was extant in a parent body regolith. Monahans light contains no solar gases. From the cosmogenic 3He, 21Ne, and 38Ar in Monahans light we calculate a probable cosmic‐ray, space exposure age of 6.0 ± 0.5 Ma. Monahans dark contains twice as much cosmogenic 21Ne and 38Ar as does the light and indicates early near‐surface exposure of 13–18 Ma in a H‐chondrite regolith. The existence of fragile halite grains in H‐chondrites suggests that this regolith irradiation occurred very early. Large concentrations of 36Ar in the halite were produced during regolith exposure by neutron capture on 35Cl, followed by decay to 36Ar. The thermal neutron fluence seen by the halite was (2–4) × 1014 n/cm2. The thermal neutron flux during regolith exposure was ~0.4‐0.7 n/cm2/s. The Monahans neutron fluence is more than an order of magnitude less than that acquired during space exposure of several large meteorites and of lunar soils, but the neutron flux is lower by a factor of ≤5. Comparison of the 36Arn/21Necos ratio in Monahans halite and silicate with the theoretically calculated ratio as a function of shielding depth in an H‐chondrite regolith suggests that irradiation of Monahans dark occurred under low shielding in a regolith that may have been relatively shallow. Late addition of halite to the regolith can be ruled out. However, irradiation of halite and silicate for different times at different depths in an extensive regolith cannot be excluded.  相似文献   

11.
Abstract— Several solar gas rich lunar soils and breccias have trapped 40Ar/36Ar ratios >10, although solar Ar is expected to yield a ratio of <0.01. Radiogenic 40Ar produced in the lunar crust from 40K decay was outgassed into the lunar atmosphere, ionized, accelerated in the electromagnetic field of the solar wind, and reimplanted into lunar surface material. The 40Ar loss rate depends on the decreasing abundance of 40K. In order to calibrate the time dependence of the 40Ar/36Ar ratio in lunar surface material, the period of reimplantation of lunar atmospheric ions and of solar wind Ar was determined using the 235U‐136Xe dating method that relies on secondary cosmic‐ray neutron‐induced fission of 235U. We identified the trapped, fissiogenic, and cosmogenic noble gases in lunar breccia 14307 and lunar soils 70001‐8, 70181, 74261, and 75081. Uranium and Th concentrations were determined in the 74261 soil for which we obtain the 235U‐136Xe time of implantation of 3.25+0.38‐0.60 Ga ago. On the basis of several cosmogenic noble gas signatures we calculate the duration of this near surface exposure of 393 ± 45 Ma and an average shielding depth below the lunar surface of 73 ± 7 g/cm2. A second, recent exposure to solar and cosmic‐ray particles occurred after this soil was excavated from Shorty crater 17.2 ± 1.4 Ma ago. Using a compilation of all lunar data with reliable trapped Ar isotopic ratios and pre‐exposure times we infer a calibration curve of implantation times, based on the trapped40 Ar/36Ar ratio. A possible trend for the increase with time of the solar 3He/4He and 20Ne/22Ne ratios of about 12%/Ga and about 2%/Ga, respectively, is also discussed.  相似文献   

12.
Abstract– We present the results of a noble gas (He, Ne, Ar) and cosmogenic radionuclide (10Be, 26Al, 36Cl) analysis of two chondritic fragments (#A100, L4 and #25, H5) found in the Almahata Sitta strewn field in Sudan. We confirm their earlier attribution to the same fall as the ureilites dominating the strewn field, based on the following findings: (1) both chondrite samples indicate a preatmospheric radius of approximately 300 g cm?2, consistent with the preatmospheric size of asteroid 2008 TC3 that produced the Almahata Sitta strewn field; (2) both have, within error, a 21Ne/26Al‐based cosmic ray exposure age of approximately 20 Ma, identical to the reported ages of Almahata Sitta ureilites; (3) both exhibit hints of ureilitic Ar in the trapped component. We discuss a possible earlier irradiation phase for the two fragments of approximately 10–20 Ma, visible only in cosmogenic 38Ar. We also discuss the approximately 3.8 Ga (4He) and approximately 4.6 Ga (40Ar) gas retention ages, measured in both chondritic fragments. These imply that the two chondrite fragments were incorporated into the ureilite host early in solar system evolution, and that the parent asteroid from which 2008 TC3 is derived has not experienced a large break‐up event in the last 3.8 Ga.  相似文献   

13.
Abstract— We present an isotope study of noble gases in Divnoe, an anomalous meteorite, and also Rb-Sr and K-Ar dating of this meteorite. The relatively young Rb-Sr age obtained (3.39 Ga) seems doubtful and, most probably, results from weathering or contamination. The ancient K-Ar age (4.67+0.20–0.40), together with clear excess of 129Xe, allows the suggestion of very early formation of the Divnoe meteorite. Concentrations and isotope ratios of noble gases in Divnoe are: 17.9 ≤ 3He ≤ 29.0 × 10?8; 20Ne = 6.22 × 10?8; 2.44 ≤ 36Ar ≤ 5.10 × 10?8; 130Xe = 41.3 × 10?12 cm3/g; 0.079 ≤ 3He/4He ≤ 0.193; 20Ne/22Ne = 0.860; 21Ne/22Ne = 0.927; 3.47 ≤ 40Ar/36Ar ≤ 9.47; 2.22 ≤ 36Ar/38Ar ≤ 3.27; 129Xe/132Xe = 1.09. The exposure age calculated from cosmogenic 3He, 21Ne, and 38Ar is 17.9 ± 0.9 Ma. On the basis of the isotope data for the noble gases and O, and abundances of K, Rb, and Sr, an attempt was made to estimate the relationship of Divnoe to other meteorite types. The O-isotope characteristics of Divnoe are clearly distinct from those of ordinary chondrites, acapulcoites/lodranites, and SNC meteorites (Petaev et al., 1994, Clayton, 1993). In plots of 136Xe vs. 129Xe/130Xe, the Divnoe data fall outside of the data fields for carbonaceous and enstatite chondrites. The light noble gas data, especially the 40Ar/38Ar ratio, and the 40Ar, 38Ar, 3He, and 4He contents of Divnoe differ significantly from those of all meteorite types except diogenites. The K, Rb, and Sr abundances in Divnoe are substantially lower than in most other meteorites. In the concentrations of these elements, as well as in the REE pattern, the Divnoe meteorite is similar only to diogenites. Divnoe probably should be treated as a restite remaining after partial melting of the chondritic mantle of a parent asteroid body.  相似文献   

14.
Abstract— We report noble gas data for the second chassignite, Northwest Africa (NWA) 2737, which was recently found in the Moroccan desert. The cosmic ray exposure (CRE) age based on cosmogenic 3He, 21Ne, and 38Ar around 10–11 Ma is comparable to the CRE ages of Chassigny and the nakhlites and indicates ejection of meteorites belonging to these two families during a discrete event, or a suite of discrete events having occurred in a restricted interval of time. In contrast, U‐Th/He and K/Ar ages <0.5 Ga are in the range of radiometric ages of shergottites, despite a Sm‐Nd signature comparable to that of Chassigny and the nakhlites (Misawa et al. 2005). Overall, the noble gas signature of NWA 2737 resembles that of shergottites rather than that of Chassigny and the nakhlites: NWA 2737 does not contain, in detectable amount, the solar‐like xenon found in Chassigny and thought to characterize the Martian mantle nor apparently fission xenon from 244Pu, which is abundant in Chassigny and some of the nakhlites. In contrast, NWA 2737 contains Martian atmospheric noble gases trapped in amounts comparable to those found in shergottite impact glasses. The loss of Martian mantle noble gases, together with the trapping of Martian atmospheric gases, could have occurred during assimilation of Martian surface components, or more likely during shock metamorphism, which is recorded in the petrology of this meteorite.  相似文献   

15.
Abstract— We present the concentrations and isotopic compositions of He, Ne, and Ar for nonmagnetic fractions and bulk samples of 17 H chondrites which were recently investigated for their 36Cl‐36Ar cosmic‐ray exposure ages (Graf et al., 2001). All selected meteorites are observed falls with cosmic‐ray exposure ages close to the 7 Ma peak. The rare gas data are consistent with 10Be and 36C1 production rates in the metal phase. Remarkably, only 1 out of the 17 H chondrites, Bath, shows clear indications for a complex exposure history. Based on rare gas concentrations and 36Cl‐36Ar exposure ages, 21Ne production rates as a function of 22Ne/21 Ne and a mean 38Ar production rate are determined. The results confirm model calculations which predict that the relationship between 21Ne production rates and 22Ne/21Ne is ambiguous for high shielding. Besides the mean 38Ar production rate we also give production rate ratios P(38Ar from Ca)/P(38Ar from Fe). They vary between 10 and 77, showing no significant correlation with 38Ar concentrations or 22Ne/21Ne. By investigating the metal separates, Graf et al. (2001) found significant 3He deficits for 6 out of the 17 meteorites. For the nonmagnetic fractions and bulk samples investigated here, the data points in a 3He/21Ne vs. 22Ne/21Ne diagram plot in the area defined by most of the H chondrites. This means that 3He deficits in the metal phase are much more pronounced than in silicate minerals and we will argue that 3H diffusive losses in meteorites should be the rule rather than the exception. The 21Ne exposure ages, calculated on the basis of modeled 21Ne production rates, confirm the assumption by Graf et al. (2001) that the H5 chondrites with low 3He/38Ar in the metal formed in a separate event than those with normal 3He/38Ar ratios. The data can best be interpreted by assuming that the prominent 7 Ma exposure age peak of the H chondrites is due to at least two events about 7.0 and 7.6 Ma ago.  相似文献   

16.
Abstract— From November 1998 to January 1999, the 39th Japanese Antarctic Research Expedition (JARE) conducted a large‐scale micrometeorite collection at 3 areas in the meteorite ice field around the Yamato Mountains, Antarctica. The Antarctic micrometeorites (AMMs) collected were ancient cosmic dust particles. This is in contrast with the Dome Fuji AMMs, which were collected previously from fresh snows in 1996 and 1997 and which represent modern micrometeorites. To determine the noble gas concentrations and isotopic compositions of individual AMMs, noble gas analyses were carried out using laser‐gas extraction for 35 unmelted Yamato Mountains AMMs and 3 cosmic spherules. X‐ray diffraction analyses were performed on 13 AMMs before the noble gas measurement and mineral compositions were determined. AMMs are classified into 4 main mineralogical groups, defined from the heating they suffered during atmospheric entry. Heating temperatures of AMMs, inferred from their mineral compositions, are correlated with 4He concentrations and reflect the effect of degassing during atmospheric entry. Jarosite, an aqueous alteration product, is detected for 4 AMMs, indicating the aqueous alteration during long‐time storage in Antarctic ice. Jarosite‐bearing AMMs have relatively low concentrations of 4He, which is suggestive of loss during the alteration. High 3He/4He ratios are detected for AMMs with high 20Ne/4He ratios, showing both cosmogenic 3He and preferential He loss. SEP (solar energetic particles)‐He and Ne, rather than the solar wind (SW), were dominant in AMMs, presumably showing a preferential removal of the more shallowly implanted SW by atmospheric entry heating. The mean 20Ne/22Ne ratio is 11.27 ± 0.35, which is close to the SEP value of 11.2. Cosmogenic 21Ne is not detected in any of the particles, which is probably due to the short cosmic ray exposure ages. Ar isotopic compositions are explained by 3‐component mixing of air, Q, and SEP‐Ar. Ar isotopic compositions can not be explained without significant contributions of Q‐Ar. SEP‐Ne contributed more than 99% of the total Ne. As for 36Ar and 38Ar, the abundance of the Q component is comparable to that of the SEP component. 84Kr and 132Xe are dominated by the primordial component, and solar‐derived Xe is almost negligible.  相似文献   

17.
We analyzed He and Ne in chromite grains from the regolith breccia Ghubara (L5), to compare it with He and Ne in sediment‐dispersed extraterrestrial chromite (SEC) grains from mid‐Ordovician sediments. These SEC grains arrived on Earth as micrometeorites in the aftermath of the L chondrite parent body (LCPB) breakup event, 470 Ma ago. A significant fraction of them show prolonged exposure to galactic cosmic rays for up to several 10 Ma. The majority of the cosmogenic noble gases in these grains were probably acquired in the regolith of the LCPB (Meier et al. 2010 ). Ghubara, an L chondritic regolith breccia with an Ar‐Ar shock age of 470 Ma, is a sample of that regolith. We find cosmic‐ray exposure ages of up to several 10 Ma in some Ghubara chromite grains, confirming for the first time that individual chromite grains with such high exposure ages indeed existed in the LCPB regolith, and that the >10 Ma cosmic‐ray exposure ages found in recent micrometeorites are thus not necessarily indicative of an origin in the Kuiper Belt. Some Ghubara chromite grains show much lower concentrations of cosmogenic He and Ne, indicating that the 4π (last‐stage) exposure age of the Ghubara meteoroid lasted only 4–6 Ma. This exposure age is considerably shorter than the 15–20 Ma suggested before from bulk analyses, indicating that bulk samples have seen regolith pre‐exposure as well. The shorter last‐stage exposure age probably links Ghubara to a small peak of 40Ar‐poor L5 chondrites of the same exposure age. Furthermore, and quite unexpectedly, we find a Ne component similar to presolar Ne‐HL in the chromite grains, perhaps indicating that some presolar Ne can be preserved even in meteorites of petrologic type 5.  相似文献   

18.
Abstract– We have determined the elemental abundances and the isotopic compositions of noble gases in a bulk sample and an HF/HCl residue of the Saratov (L4) chondrite using stepwise heating. The Ar, Kr, and Xe concentrations in the HF/HCl residue are two orders of magnitude higher than those in the bulk sample, while He and Ne concentrations from both are comparable. The residue contains only a portion of the trapped heavy noble gases in Saratov; 40 ± 9% for 36Ar, 58 ± 12% for 84Kr, and 48 ± 10% for 132Xe, respectively. The heavy noble gas elemental pattern in the dissolved fraction is similar to that in the residue but has high release temperatures. Xenon isotopic ratios of the HF/HCl residue indicate that there is no Xe‐HL in Saratov, but Ne isotopic ratios in the HF/HCl residue lie on a straight line connecting the cosmogenic component and a composition between Ne‐Q and Ne‐HL. This implies that the Ne isotopic composition of Q has been changed by incorporating Ne‐HL (Huss et al. 1996) or by being mass fractionated during the thermal metamorphism. However, it is most likely that the Ne‐Q in Saratov is intrinsically different from this component in other meteorites. The evidence of this is a lack of correlation between the isotopic ratio of Ne‐Q and petrologic types of meteorites (Busemann et al. 2000). A neutron capture effect was observed in the Kr isotopes, and this process also affected the 128Xe/132Xe ratio. The 3He and 21Ne exposure ages for the bulk sample are 33 and 35 Ma, respectively.  相似文献   

19.
The Mifflin meteorite fell on the night of April 14, 2010, in southwestern Wisconsin. A bright fireball was observed throughout a wide area of the midwestern United States. The petrography, mineral compositions, and oxygen isotope ratios indicate that the meteorite is a L5 chondrite fragmental breccia with light/dark structure. The meteorite shows a low shock stage of S2, although some shock‐melted veins are present. The U,Th‐He age is 0.7 Ga, and the K‐Ar age is 1.8 Ga, indicating that Mifflin might have been heated at the time of the 470 Ma L‐chondrite parent body breakup and that U, Th‐He, and K‐Ar ages were partially reset. The cosmogenic radionuclide data indicate that Mifflin was exposed to cosmic rays while its radius was 30–65 cm. Assuming this exposure geometry, a cosmic‐ray exposure age of 25 ± 3 Ma is calculated from cosmogenic noble gas concentrations. The low 22Ne/21Ne ratio may, however, indicate a two‐stage exposure with a longer first‐stage exposure at high shielding. Mifflin is unusual in having a low radiogenic gas content combined with a low shock stage and no evidence of late stage annealing; this inconsistency remains unexplained.  相似文献   

20.
Abstract– We analyzed cosmogenic He and Ne in more than 60 individual chondrules separated from small chips from the carbonaceous chondrites Allende and Murchison. The goal of this work is to search for evidence of an exposure of chondrules to energetic particles—either solar or galactic—prior to final compaction of their host chondrites and prior to the exposure of the meteoroids to galactic cosmic rays (GCR) on their way to Earth. Production rates of GCR‐produced He and Ne are calculated for each chondrule based on major element composition and a physical model of cosmogenic nuclide production in carbonaceous chondrites ( Leya and Masarik 2009 ). All studied chondrules in Allende show nominal exposure ages identical to each other within uncertainties of a few hundred thousand years. Allende chondrules therefore show no signs of a precompaction exposure. The majority of the Murchison chondrules (the “normal” chondrules) also have nominal exposure ages identical within a few hundred thousand years. However, roughly 20% of the studied Murchison chondrules (the “pre‐exposed” chondrules) contain considerably or even much higher concentrations of cosmogenic noble gases than the normal chondrules, equivalent to exposure ages to GCR at present‐day fluxes in a 4π irradiation of up to about 30 Myr. The data do not allow to firmly conclude whether these excesses were acquired by an exposure of the pre‐exposed chondrules to an early intense flux of solar energetic particles (solar cosmic rays) or rather by an exposure to GCR in the regolith of the Murchison parent asteroid. However, we prefer the latter explanation. Two major reasons are the GCR‐like isotopic composition of the excess Ne and the distribution of solar flare tracks in Murchison samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号