首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– The Hayabusa mission recently returned the first samples from an ordinary chondrite (OC) parent body. Olivine, low‐Ca pyroxene, and kamacite compositions fall within the known ranges of minerals from LL4 to LL6 chondrites. Hayabusa samples are being processed and stored in a pure N2 atmosphere. However, during recovery, prior to receiving, and during preliminary examination, some Hayabusa samples were briefly exposed to terrestrial atmosphere. Some of the minerals already identified in the Hayabusa samples (olivine, sulfides) are known to be among the most vulnerable to weathering reactions in moist, oxidizing terrestrial environments. Oxidation of Fe in metal, sulfides, and ferrous silicates is ubiquitous in naturally weathered OC finds, in samples of falls subjected to even a few decades of weathering before recovery, and in OC falls recovered and curated promptly after recovery. All prerecovery oxidation, hydrolysis, hydration, and product‐forming phenomena documented to affect OC finds have been documented to continue in OC samples in curatorial and laboratory settings, producing mineralogical and textural effects at scales easily discernable by electron microscopy, on timescales of decades. Hayabusa samples will be exposed to similar terrestrial conditions at times throughout sample processing, allocation, and examination. Maximizing the science yield from these important samples requires thorough understanding of how LL chondrite minerals like those in the Hayabusa samples react with terrestrial moisture and oxidants in support of proper planning for maintaining Hayabusa sample integrity after allocation, and for proper anticipation of the effects of inevitable exposure to Earth’s atmosphere during storage and examination in terrestrial analytical laboratories.  相似文献   

2.
Abstract— I have reinvestigated the mineralogy of the only carbonaceous chondrite (12037, 188) returned from the Moon and found saponite within, which comprises the first hydrous material returned from the Moon. That this phyllosilicate has survived impact onto the lunar surface suggests that asteroid and cometary impacts could have provided significant quantities of surviving clay (hydrous) minerals into the lunar regolith. The Bench Crater meteorite also provides a glimpse of the petrography of the ancient meteoroid complex, something not possible on the geologically active Earth.  相似文献   

3.
Shock metamorphism of the lunar samples is discussed. All types of lunar glasses formed by various-size collision-type impact are found as impact glass, ropy glass and agglutinates. The agglutinates bonded by crystal and glassy materials contain hydrogen and helium from the solar wind components. Lunar shocked minerals of plagioclase and silica show anomalous compositions and densities. There are typical two formation processes on planetary materials formed by shock events; that is (1) shocked quartz formed by silica-rich target rocks (esp. on evolved planets of the Earth and Mars), and (2) shocked silica with minor Al contents formed from plagioclase-rich primordial crusts of the Moon. The both shocked silica grows to coarse-grain normal crystals after high-temperature metamorphism which cannot distinguish the original main formation event of impact process.  相似文献   

4.
Abstract— Silica‐rich late‐stage crystallization pockets in the Martian meteorite Northwest Africa (NWA) 856 were investigated by transmission electron microscopy (TEM). The pockets occur as wedges between maskelynite laths or between maskelynite and pyroxene. They consist of elongated grains of cristobalite and quartz embedded in a silica‐rich glass. Interstitial to the amorphous phase and silica minerals, a number of small accessory minerals have been identified, typical for late‐stage crystallization products. They are ilmenite, tranquillityite, fayalite, troilite, baddeleyite, apatite, and chloroapatite. Cristobalite and quartz are shocked, as revealed by the occurrence of numerous amorphous lamellae. This assemblage suggests metastable dendritic crystallization under hydrous conditions. Cristobalite crystallization was probably facilitated by the presence of impurities such as Na or H2O. Our observations show that silica minerals can be formed under magmatic conditions on Mars.  相似文献   

5.
Abstract— Infrared diffuse reflectance spectra (2.53–25 μm) of some carbonaceous (C) chondrites were measured. The integrated intensity of the absorption bands near 3 μm caused by hydrous minerals were compared with the modal content of hydrous minerals for the meteorites. The CM and CI chondrites show larger values of the integrated intensity than those of the unique C chondrites Y82162, Y86720 and B7904, suggesting that the amount of hydrous minerals in the CM and CI chondrites is larger, which supports the contention that hydrous minerals were dehydrated by thermal metamorphism in the unique chondrites. Orgueil (CI) has the largest value of the integrated intensity among the C chondrites we measured and shows a sharp absorption band at 3685 cm?1 (2.71 μm) that is not seen in the spectra of the CM chondrites. There is an excellent correlation between the observed hydrogen content in C chondrites and the integrated intensity. The CM chondrites show a wide variation in the strength of absorption bands at 1470 cm?1 (6.8 μm), despite the similarity in absorption features near 3 μm for all CM chondrites. The 1470 cm?1 band could be due to the presence of some hydrocarbons but may also be a result of terrestrial alteration processes.  相似文献   

6.
Abstract— Infrared diffuse reflectance spectra were measured for several thermally metamorphosed carbonaceous chondrites with CI-CM affinities which were recently found from Antarctica. Compared with other CI or CM carbonaceous chondrites, these Antarctic carbonaceous chondrites show weaker absorption bands near 3 μm due to hydrous minerals, and weaker absorption bands near 6.9 μm due to carbonates, interpreted as thermal metamorphic features. These absorption bands also disappear in the spectra of samples of the Murchison (CM) carbonaceous chondrite heated above 500 °C, implying that the metamorphic temperatures of the Antarctic carbonaceous chondrites considered here were higher than about 500 °C. Model calculations were performed to study thermal metamorphism of carbonaceous chondrites in a parent body internally heated by the decay of the extinct nuclide 26Al. The maximum temperature of the interior of a body more than 20 km in radius is 500–700 °C for the bulk Al contents of CI and CM carbonaceous chondrites, assuming a ratio of 26Al/27Al = 5 × 10?6 which has been previously proposed for an ordinary-chondrite parent body. The metamorphic temperatures experienced by the Antarctic carbonaceous chondrites considered here may be attainable by an internally heated body with an 26Al/27Al ratio similar to that inferred for an ordinary-chondrite parent body.  相似文献   

7.
Abstract— Laboratory dissolution experiments using the LL6 ordinary chondrite Bensour demonstrate that meteoritic minerals readily react with distilled water at low temperatures, liberating ions into solution and forming reaction products. Three experiments were performed, all for 68 days and at atmospheric fO2 but using a range of water/rock ratios and different temperatures. Experiments 1 and 2 were batch experiments and undertaken at room temperature, whereas in experiment 3, condensed boiling water was dripped onto meteorite subsamples within a Soxhlet extractor. Solutions from experiment 1 were chemically analyzed at the end of the experiment, whereas aliquots were extracted from experiments 2 and 3 for analysis at regular intervals. In all three experiments, a very significant proportion of the Na, Cl, and K within the Bensour subsamples entered solution, demonstrating that chlorapatite and feldspar were especially susceptible to dissolution. Concentrations of Mg, Al, Si, Ca, and Fe in solution were strongly affected by the precipitation of reaction products and Mg and Ca may also have been removed by sorption. Calculations predict saturation of experimental solutions with respect to Al hydroxides, Fe oxides, and Fe (oxy)hydroxides, which would have frequently been accompanied by hydrous aluminosilicates. Some reaction products were identified and include silica, a Mg‐rich silicate, Fe oxides, and Fe (oxy)hydroxides. The implications of these results are that even very short periods of subaerial exposure of ordinary chondrites will lead to dissolution of primary minerals and crystallization of weathering products that are likely to include aluminosilicates and silicates, Mg‐Ca carbonates, and sulfates in addition to the ubiquitous Fe oxides and (oxy)hydroxides.  相似文献   

8.
There is a general belief that hydrous minerals cannot exist on Venus under current surface conditions. This view was challenged when Johnson and Fegley (2000, Icarus 146, 301-306) showed that tremolite (Ca2Mg5Si8O22(OH)2), a hydrous mineral, is stable against thermal decomposition at current Venus surface temperatures, e.g., 50% decomposition in 4 Ga at 740 K. To further explore hydrous mineral thermal stability on Venus, we experimentally determined the thermal decomposition kinetics of fluorine-bearing tremolite. Fluor-tremolite is thermodynamically more stable than OH-tremolite and should decompose more slowly. However how much slower was unknown. We measured the decomposition rate of fluorine-bearing tremolite and show that its decomposition is several times to greater than ten times slower than that of OH-tremolite. We also show that F-bearing tremolite is depleted in fluorine after decomposition and that fluorine is lost as a volatile species such as HF gas. If tremolite ever formed on Venus, it would probably also contain fluorine. The exceptional stability of F-bearing tremolite strengthens our conclusions that if hydrous minerals ever formed on Venus, they could still be there today.  相似文献   

9.
The Archimedean glass bead method for determining meteorite bulk density has become widely applied. We used well characterized, zero-porosity quartz and topaz samples to determine the systematic error in the glass bead method to support bulk density measurements of meteorites for our ongoing meteorite survey. Systematic error varies according to bead size, container size and settling method, but in all cases is less than 3%, and generally less than 2%. While measurements using larger containers (above 150 cm3) exhibit no discernible systematic error but much reduced precision, higher precision measurements with smaller containers do exhibit systematic error. For a 77 cm3 container using 40-80 μm diameter beads, the systematic error is effectively eliminated within measurement uncertainties when a “secured shake” settling method is employed in which the container is held securely to the shake platform during a 5 s period of vigorous shaking. For larger 700-800 μm diameter beads using the same method, bulk volumes are uniformly overestimated by 2%. Other settling methods exhibit sample-volume-dependent biases. For all methods, reliability of measurement is severely reduced for samples below ∼5 cm3 (10-15 g for typical meteorites), providing a lower-limit selection criterion for measurement of meteoritical samples.  相似文献   

10.
Abstract— The martian meteorite, Allan Hills (ALH) 84001, contains D‐rich hydrogen of plausible martian origin (Leshin et al., 1996). The phase identity of the host(s) of this hydrogen are not well known and could include organic matter (McKay et al., 1996), phlogopite (Brearley, 2000), glass (Mittlefehldt, 1994) and/or other unidentified components of this rock. Previous ion microprobe studies indicate that much of the hydrogen in ALH 84001 as texturally associated with concretions of nominally anhydrous carbonates, glass and oxides (Boctor et al., 1998; Sugiura and Hoshino, 2000). We examined the physical and chemical properties of the host(s) of this hydrogen by stepped pyrolysis of variously pre‐treated subsamples. A continuous‐flow method of water reduction and mass spectrometry (Eiler and Kitchen, 2001) was used to permit detailed study of the small amounts of this hydrogen‐poor sample available for study. We find that the host(s) of D‐rich hydrogen released from ALH 84001 at relatively low temperatures (?500 °C) is soluble in orthophosphoric and dilute hydrochloric acids and undergoes near‐complete isotopic exchange with water within hours at temperatures of 200 to 300 °C. These characteristics are most consistent with the carrier phase(s) being a hydrous salt (e.g., carbonate, sulfate or halide); the thermal stability of this material is inconsistent with many examples of such minerals (e.g., gypsum) and instead suggests one or more relatively refractory hydrous carbonates (e.g., hydromagnesite). Hydrous salts (particularly hydrous carbonates) are common on the Earth only in evaporite, sabkha, and hydrocryogenic‐weathering environments; we suggest that much (if not all) of the “martian” hydrogen in ALH 84001 was introduced in analogous environments on or near the martian surface rather than through biological activity or hydrothermal alteration of silicates in the crust.  相似文献   

11.
《Planetary and Space Science》2007,55(10):1310-1318
We present a method for labelling and locating organic material in extraterrestrial samples in order to determine its spatial arrangement in relation to inorganic components. We have taken a suite of meteorites including carbonaceous chondrites (CC) and Shergottite–Nakhlite–Chassignites (SNCs) and attempted to locate organic material within them by labelling with osmium tetroxide vapour impregnation. This technique is limited by the abundance of organic material within each sample, and the degree of terrestrial contamination, which may contribute additional organic components or surface contaminants that may mask indigenous organic components. Results confirm previous studies that phyllosilicates are key to organic matter accumulation in extraterrestrial environments.  相似文献   

12.
Abstract— Alteration of surficial suevites at Ries crater, Germany was studied by means of X‐ray diffraction and scanning electron microscopy. Here, we discuss the origin of hydrous silicate (clay) phases in these suevites that have been previously interpreted as resulting from post‐impact hydrothermal processes. The results of this study indicate that the dominant alteration phases are dioctahedral Al‐Fe montmorillonite and halloysite, which are typical low temperature clay minerals. We suggest that the surficial suevites are not altered by hydrothermal processes and that alteration occurred by low temperature subsurface weathering processes. If the surficial suevites were indeed hydrothermally modified during the early stages of post‐impact cooling, then the alteration was of limited character and is completely masked by later weathering.  相似文献   

13.
Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s?1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. We simulated Stardust Al foil capture conditions using a two‐stage light‐gas gun, and directly compared transmission electron microscope analyses of pre‐ and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact‐induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe‐ and Fe‐Si‐rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al‐bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state‐of‐the‐art scanning electron microscopy providing rapid, nondestructive initial mineral identifications in Stardust residues.  相似文献   

14.
Preflare current sheets in the solar atmosphere   总被引:1,自引:0,他引:1  
Neutral current sheets are expected to form in the solar atmosphere when photospheric motions or the emergence of new magnetic flux causes oppositely directed magnetic fields to be pressed together. Magnetic energy may thus be stored slowly in excess of the minimum energy associated with a purely potential field and released suddenly during a solar flare. For simplicity, we investigate the neutral sheet which forms between two parallel line dipoles when either the distance between them decreases or their dipole moments increase. It is found that, when the dipoles have approached by an amount equal to a tenth of their original separation distance, the stored energy is comparable with that released in a major flare. In addition, a similarity solution for one-dimensional magnetohydro-dynamic flow within such a neutral sheet is presented; it demonstrates that rapid conversion of magnetic energy into heat is possible provided conditions at the edge of the neutral sheet are changing sufficiently quickly.  相似文献   

15.
Thermodynamic data for several clays, zeolites, and MgSO4 salts were combined with calculated yearly mean temperatures and water-vapor pressures on the martian surface to predict mineral hydration states from low to middle latitudes. These predictions were used to evaluate whether the necessary amount and distribution of hydrous minerals were compatible with the Mars Odyssey observations of water-equivalent hydrogen (WEH). Our results indicate that zeolites like chabazite or clay minerals like Ca-montmorillonite would have to be unrealistically abundant in the martian soil (as much as 55 wt%) while Mg-sulfate hydrates at concentrations between 2 and 11 wt% could account for the WEH. However, the geographic distribution of WEH is incompatible with a uniformly distributed mineralogy in equilibrium with the annual mean P-T environment. A heterogeneous distribution of a mixture of different hydrous minerals, reflecting a heterogeneous Mars surface geology, may better explain a significant portion of the observed near-equatorial WEH.  相似文献   

16.
The Sutter's Mill meteorite fell in northern California on April 22, 2012. Several fragments of the meteorite were recovered, some of them shortly after the fall, others several days later after a heavy rainstorm. In this work, we analyzed several samples of four fragments―SM2, SM12, SM20, and SM30―from the Sutter's Mill meteorite with two infrared (IR) microscopes operating in the 4000–650 cm?1 (2.5–15.4 μm) range. Spectra show absorption features associated with minerals such as olivines, phyllosilicates, carbonates, and possibly pyroxenes, as well as organics. Spectra of specific minerals vary from one particle to another within a given stone, and even within a single particle, indicating a nonuniform mineral composition. Infrared features associated with aliphatic CH2 and CH3 groups associated with organics are also seen in several spectra. However, the presence of organics in the samples studied is not clear because these features overlap with carbonate overtone bands. Finally, other samples collected within days after the rainstorm show evidence for bacterial terrestrial contamination, which indicates how quickly meteorites can be contaminated on such small scales.  相似文献   

17.
We used thermochemical equilibrium calculations to predict stabilities of pure rock-forming hydrous silicates on Venus' surface as a function of elevation, atmospheric H2O and SO2concentrations, and oxygen fugacity (fO2). About 50 different hydrous silicates were included in our calculations. We find that many of these are unstable on Venus's surface because of the low atmospheric H2O content of 30–45 parts per million by volume (ppmv) and the high surface temperatures (660 K on Maxwell Montes to 740 K in the plains). Hydrous Fe2+-bearing silicates are unstable due to oxidation to magnetite and/or hematite at the fO2of the near-surface atmosphere. Ca-bearing hydrous silicates are unstable because of sulfatization to anhydrite. Some Fe-free micas (e.g., eastonite, eastonite–phlogopite micas), and some alkali amphiboles might be stable on Venus' surface, especially in the lower temperature highlands. We discuss hydrous mineral formation in the interior and on the surface of Venus. We review the literature on mica and amphibole thermal decomposition and find that dehydration of phlogopitic micas and fibrous amphiboles produces (metastable) dehydroxylated anhydrides that decompose to more stable minerals at temperatures hundreds of degrees higher than the onset of dehydroxylation. These observations raise the possibility that anhydrides formed from hydrous silicates, which may have been present during a wetter period in Venus' history, may persist somewhere on Venus' present surface. We discuss experiments that could be used on future spacecraft missions to detect hydroxyl in rocks and hydrous silicates on Venus. Finally, we review estimates of the amount of water and OH (hydroxyl) in the Earth's mantle. Based on this review, we suggest that even if no hydrous silicates are stable on Venus, significant amounts of water are plausibly present in surface rocks as OH in nominally anhydrous minerals.  相似文献   

18.
The study of carbon abundance and isotopic composition in extraterrestrial samples is fraught with problems related to contamination in the terrestrial environment and during sample handling. A stepped combustion method is described which demonstrates that progress can be made towards resolving the indigenous species from contamination which for the most part burns at low temperature (< 425 ± 25 ±C). The proposed method is not applicable to samples which have indigenous phases burning at low temperatures e.g. the C1 and C2 carbonaceous chondrites. A number of examples where its application is possible are given. Even meteorites collected immediately after their fall, such as Allende, contain a proportion of extraneous carbon which has deleterious effects on any bulk estimate of isotopic composition. “Falls” which have spent a considerable time in museum collections and “finds” (other than Antarctic samples) can be considered as grossly contaminated. Bulk isotope and carbon abundance measurements in the literature for most samples having less than 1 wt% C are thus of questionable value. Antarctic samples have much less contamination of an organic nature but all seem to contain a weathering component which can be easily recognised and hence disregarded in estimates of bulk composition. Stepped combustion, applied to an Apollo 11 lunar soil which has not been specially stored and which now contains, due to contamination, nearly twice as much carbon as when originally collected, can still afford data closely resembling those obtained from the sample when it was first returned to Earth.  相似文献   

19.
Al–Mg mineral isochron studies using secondary ion mass spectrometry (SIMS) have revealed the initial 26Al/27Al ratios, (26Al/27Al)0, for individual Ca-Al-rich inclusions (CAIs) in meteorites. We find that the relative sensitivity factors of 27Al/24Mg ratio for SIMS analysis of hibonite, one of the major constituent minerals of CAIs, exhibit variations based on their chemical compositions. This underscores the critical need for using appropriate hibonite standards to obtain accurate Al−Mg data. We measured the Al−Mg mineral isochron for hibonite in a fine-grained CAI (FGI) from the Northwest Africa 8613 reduced CV chondrite by SIMS using synthesized hibonite standards with 27Al/24Mg of ~30, ~100, and ~400. The obtained mineral isochron of hibonite in the FGI yields (26Al/27Al)0 of (4.73 ± 0.09) × 10−5, which is identical to that previously obtained from the mineral isochron of spinel and melilite in the same FGI (Kawasaki et al., 2020). The uncertainties of (26Al/27Al)0 indicate that the constituent minerals in the FGI formed within ~0.02 Myr in the earliest solar system. The disequilibrium O-isotope distributions of the minerals in the FGI suggest that the O-isotope compositions of the nebular gas from which they condensed underwent a transitional change from 16O-rich to 16O-poor within ~0.02 Myr in the earliest solar system. Once formed, the FGI may have been removed from the forming region within ~0.02 Myr and transported to the accretion region of the parent body.  相似文献   

20.
Martian meteorite Elephant Moraine A79001 (EET 79001) has received considerable attention for the unusual composition of its shock melt glass, particularly its enrichment in sulfur relative to the host shergottite. It has been hypothesized that Martian regolith was incorporated into the melt or, conversely, that the S‐enrichment stems from preferential melting of sulfide minerals in the host rock during shock. We present results from an electron microprobe study of EET 79001 including robust measurements of major and trace elements in the shock melt glass (S, Cl, Ni, Co, V, and Sc) and minerals in the host rock (Ni, Co, and V). We find that both S and major element abundances can be reconciled with previous hypotheses of regolith incorporation and/or excess sulfide melt. However, trace element characteristics of the shock melt glass, particularly Ni and Cl abundances relative to S, cannot be explained either by the incorporation of regolith or sulfide minerals. We therefore propose an alternative hypothesis whereby, prior to shock melting, portions of EET 79001 experienced acid‐sulfate leaching of the mesostasis, possibly groundmass feldspar, and olivine, producing Al‐sulfates that were later incorporated into the shock melt, which then quenched to glass. Such activity in the Martian near‐surface is supported by observations from the Mars Exploration Rovers and laboratory experiments. Our preimpact alteration model, accompanied by the preferential survival of olivine and excess melting of feldspar during impact, explains the measured trace element abundances better than either the regolith incorporation or excess sulfide melting hypothesis does.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号