首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
El Nino衰减年西北太平洋热带气旋(Tropical cyclone,TC)活动表现出多样性,给TC活动的气候预测带来挑战。采用美国联合台风预警中心的热带气旋最佳路径数据和欧洲中期预报中心提供的ERA-5再分析资料,对1970—2018年的El Nino衰减年7—10月的西北太平洋TC生成频数进行合成分析,发现其与气候态没有显著的差异,但在单个年份,存在着较大的正、负异常。为此,将El Nino衰减年分为TC生成频数偏少(负异常)和偏多(正异常)两种情形,对比两种情形的TC活动和大尺度环境要素特征。结果表明,TC生成频数偏少的情形,TC生成频数的异常减少主要发生在西北太平洋东部海域,即(15°~25°N,140°~150°E)和(5°~25°N,150°~170°E),与垂直风切变增大、对流层中层相对湿度和低层绝对涡度减少有关;TC生成频数偏多的情形,TC生成频数的异常增加主要发生在南海和菲律宾群岛附近,即(15°~25°N,110°~120°E)和(5°~25°N,120°~130°E),对流层中层相对湿度增加的贡献最大,其次是上升运动增强和绝对涡度增大;对比两种情形发现,TC生成频数偏多的情形,广东和福建沿岸的东南风异常引导气流有利于菲律宾群岛附近生成的TC登陆中国大陆。  相似文献   

2.
应用中国《台风年鉴》资料、欧洲中心40年月平均再分析资料和NOAA的逐月海温资料,研究了西北太平洋(5°—30°N,110°E—180°)风速垂直切变异常对热带气旋(TC)活动年际变化的影响。研究发现,西北太平洋所有TC、风暴以上级别的TC(TSTY,即达到热带风暴级别及以上的所有TC)和所有台风(WTY,包括台风、强台风和超强台风)年频数与西北太平洋风速垂直切变都显著负相关。西北太平洋风速垂直切变大小对生成源地在南海(5°—30°N,110°—120°E)TC和西北太平洋西部海域(5°—30°N,120°—150°E)TC的影响较小,而对西北太平洋东部海域(5°—30°N,150°E—180°)生成的TC影响最大:即西北太平洋风速垂直切变负异常年,有利于西北太平洋东部海域TC生成发展,使得负异常年较正异常年TC频数偏多和源地平均位置偏东;并且风速垂直切变的变化对TC频数和生成源地影响的显著性,随着TC强度的增加而增加。对TSTY生成环境场的进一步分析表明,西北太平洋风速垂直切变偏小年,季风槽偏强位置偏东,它的东端位于宽阔的太平洋洋面,与弱风速垂直切变区相配合,暖的海温加上低层强烈的正涡度和强烈辐合,且相应的高层有强的气流辐散区,这些环境场都有利于TSTY在主要源地尤其是西北太平洋东部海域生成,这是风速垂直切变偏小年TSTY偏多和生成源地偏东的重要原因。  相似文献   

3.
使用Emanuel和Nolan完善的潜在生成指数(GPI)的计算方法,利用美国联合台风警报中心提供的热带气旋(TC)资料和欧洲中期数值天气预报中心提供的全球ERA-40再分析资料,比较了1970-2001年西北太平洋海域的TC生成频数和GPI的气候特征,分析了包含于GPI中的环境要素对西北太平洋TC频数年代际变化空间分布的影响.结果表明:GPI能近似地表述西北太平洋TC频数的季节变化和空间分布.各环境要素对TC、较弱类TC和较强类TC生成频数的影响有显著差异,相对湿度随着TC强度的增强而减弱,风速垂直切变则相反.西北太平洋TC频数年代际变化空间分布的正异常主要分布于130°E以东,(15°N,140°E)附近最大的正异常频数中心主要受绝对涡度和相对湿度正异常变化的影响;负的风速垂直切变和正的相对湿度异常变化引起了(10~15°N,160°E)附近的TC频数正异常.  相似文献   

4.
利用NOAA CMAP 1979—2010年逐月再分析降水资料、1978—2010年逐月ERSST资料和NCEP 850 h Pa再分析风场资料,研究了春季中国大陆的降水特征,及影响其降水的关键时段和关键海温区。结果表明,春季中国大陆降水偏多年和偏少年频次与强度都相当,年际变化明显。20世纪80年代前期降水偏多,80年代后期至90年代末降水偏少,2000年后至今降水偏多;降水主要有2个周期频段:8~10和3~4年。确定影响春季中国大陆降水的3个关键海温区:海区1:75°—180°E,30°S—30°N;海区2:150°—120°W,30°—60°N;海区3:180°E—130°W,20°S—20°N。不同海区海温在不同时期对中国大陆不同地区春季降水的影响有所不同。  相似文献   

5.
对1961—2010年南海和西北太平洋不同时段生成热带气旋(tropical cyclone,TC)频数的时空分布及水汽条件对其产生的影响进行了分类研究。结果表明,可以将TC活动划分为活跃期(6—11月)和平静期(上年12—当年5月)两个时段。在TC活跃期和平静期,南海和西北太平洋上TC频数的EOF第一特征向量都表现为一致的增加或减少。活跃期EOF的第二特征向量表现为南海与西北太平洋中西部的TC频数存在相反的变化趋势,平静期EOF的第二特征向量则表现为130°E以西海域的TC频数与130~150°E范围内生成热带气旋存在相反的变化趋势。活跃期和平静期西北太平洋TC的生成频数与水汽通量散度均存在显著的负相关;而在活跃期南海TC频数与水汽通量散度仅在南海中北部有弱的负相关,在平静期南海东部到菲律宾附近海域有显著的负相关。因此,水汽条件的影响使得在活跃期南海和西北太平洋TC高频年中,南海北部和西北太平洋中东部TC频数明显偏多,而平静期高频年中,南海东部以及西北太平洋中西部TC频数明显偏多。  相似文献   

6.
应用NOAA气候预测中心提供的热带大气季节内振荡(MJO)客观业务指数及中国气象局上海台风研究所提供的西北太平洋热带气旋(TC)最佳路径资料集,定量统计榆验了MJO对夏季西北太平洋TC活动的调制作用.结果表明:MJO对TC的生成、强度、路径和登陆活动都有显著的调节作用.当高空辐合中心位于120°E~160°E(MJO位相3~5)时,西北太平洋TC生成偏少,且生成位置偏北;而当高空辐合中心位于10°W~70°E(MJO位相8~10)时,西北太平洋TC生成偏多,且生成位置偏南;随着TC强度加强,能达到显著调节作用的MJO位相逐渐减少,当高空辐合辐散中心位于70°E(MJO位相10)时,对TC强度调制最显著.在路径调节方面,MJO位相1~4和10时,TC活跃于菲律宾以东的西北太平洋上,主要路径为西北偏北行,可能登陆华东、华北;而位相5~8时,TC主要活跃在菲律宾附近及以西到南海,以偏西行路径为主,可能登陆华南.MJO对登陆华南TC也有显著影响.该定量统计检验结果可为TC活动季节内预测提供依据.  相似文献   

7.
江淮梅雨与梅雨期西北太平洋热带气旋的关系   总被引:3,自引:2,他引:1  
朱哲  钟中  哈瑶 《气象科学》2017,37(4):522-528
基于梅雨综合指数,本文对1955—2010年江淮梅雨与梅雨期西北太平洋TC的变化关系及成因进行统计分析研究。结果表明:梅雨强弱与梅雨期TC频数存在显著的负相关,达到-0.41。同时,挑选出强梅雨年和弱梅雨年,发现强、弱梅雨异常年的TC特征差异显著,表现在:强梅雨年TC生成较少,以西、西北行为主,主要影响我国南部地区;弱梅雨年TC生成偏多,以转向路径为主,影响我国东南沿海众多省份。此外,两者通过大气环流场相互影响,梅雨期季风槽的位置与强度影响TC生成频数与源地,TC的活动又反作用于梅雨期的环流形式与水汽输送。  相似文献   

8.
利用美国联合台风预警中心的热带气旋(TC)数据以及日本JRA-25全球再分析等资料,分析了6—10月西太平洋上空3支越赤道气流的年际变化对西北太平洋(WNP)热带气旋(TC)生成数量和位置的影响。相关分析结果表明:越赤道气流主要影响140 °E以东TC的生成数量,越赤道气流越强,在该海域生成的TC越多。通过合成分析讨论了越赤道气流强弱对WNP大气低层的风场、垂直风切变、高空散度、低层涡度以及OLR的影响,结果表明:在140 °E以东的热带WNP,以上要素在越赤道气流偏强背景下的配置均有利于TC生成。同时,通过正压能量转换讨论了越赤道气流强弱对WNP TC生成的动力作用,指出在越赤道气流偏强年,季风槽东伸,东部的扰动容易从基本气流获得动能加强形成TC;在越赤道气流偏弱年,季风槽偏西,扰动动能增加的区域主要位于140 °E以西,导致东部海域较少生成TC。此外,无论在越赤道气流强年或者弱年,在TC生成之前的2~4 d均可发现有临近的越赤道气流突然加强的过程,这有可能是触发TC生成的动力因素之一。   相似文献   

9.
登陆中国大陆不同区间的热带气旋特征初步分析   总被引:3,自引:1,他引:2  
利用地理信息系统及程序计算得到了1949—2008年登陆中国大陆的热带气旋(TC)登陆点经纬度信息,在此基础上对登陆中国大陆的TC进行分析,最终选择110~122°E海岸线为研究区域,7—9月为研究时段,且将110~122°E海岸线以1°E为间隔划分为12段,分析这12段海岸线登陆TC的基本特征发现:118°E以东的区间TC登陆前后平均维持时间及登陆前平均强度基本上为大于118°E以西的区间,登陆后平均强度东西两段相差不大;定义了TC登陆前(后)破坏潜力指数TDP1(TDP2),TDP1(TDP2)最大值出现在区间[119,120°E)([110,111°E));ENSO事件对7—9月登陆110~122°E段的TC频数、平均登陆点位置影响并不明显,对各区间登陆TC的影响也不尽相同;各区间平均TDP1冷暖事件年对比差别较大,平均TDP2在暖事件年基本上比冷事件年大;1961—2008年,各区间对应的暴雨总站次,118°E以东的区间要远大于以西的区间,就空间分布而言,较大值的分布出现在区间[119,120°E),[110,111°E)。  相似文献   

10.
西北太平洋热带气旋降水特征分析   总被引:2,自引:4,他引:2  
利用1997—2006年GPCP(Global Precipitation Climatology Project)逐日卫星降水资料、上海台风研究所西北太平洋热带气旋资料,研究了近10年西北太平洋热带气旋降水的时空分布特征。发现整个西北太平洋区域多年平均TC(tropical cyclone)降水为175 mm,TC降水占总降水的比率为12%。年均TC降水场有两个极大值区域,分别位于菲律宾北部和菲律宾以东洋面。纬带平均的经向分布显示,总降水呈双峰分布,主、次峰值分别出现在6°N和35°N;而TC降水呈单峰分布,峰值出现在16°N。10年中TC降水以2004年最强;El Ni?o年TC降水在135°E以东偏多,而在南海中部和菲律宾至台湾等地区偏少;La Ni?a年TC降水在南海地区偏多,在菲律宾以东地区则显著偏少。  相似文献   

11.
Based on best track data of tropical cyclones(TCs) from the Japan Meteorological Agency, the characteristics of suddenly reversed TCs(SRTCs), which have turning angles usually approaching 180°, are statistically analyzed from 1949 to 2011 over the western North Pacific Ocean. The typical large-scale circulation patterns of SRTCs are investigated using reanalysis data and dynamical composite analysis. Results show that turnings mainly occur in low latitudes between 10°N and 20°N,and mainly west of 135°E. The majority of SRTCs reach their peak intensity at, or slightly before, the turning time and subsequently decrease at some variable rate. Specifically, SRTCs are divided into four types, each containing two groups(i.e.eight groups in total) in terms of the moving-direction changes. The moving speed of all SRTC types except the south–north type decreases to its lowest during the 24 h, corresponding to a significant reduction in the primary steering components.According to the analysis of the 13 typical flow patterns found in this study, we suggest that sudden track changes are caused by the reversal steering flow. The original balance of the background flow patterns are broken up by new systems, e.g. binary TCs or dispersion-induced anticyclones. Additionally, sudden track changes are often due to double ridge variations of the subtropical high or weakened/strengthened high pressure in the east and west, respectively.  相似文献   

12.
利用美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,简称NO-An)的逐日对外长波辐射(outgoing longwave radiation,简称OLR)场资料,欧洲中期天气预报中心(European Center for Medium—Range Weather Forecasting,简称ECMWF)逐日风场(850hPa)资料,以及美国联合台风预警中心(Joint Typhoon Warning Center,简称JTWC)的热带气旋(tropicalcy—clone,简称TC)数据,参考Wheeler and Hendon(2004)提出的季节内振荡(Madden—Julianoscilla.tion,简称MJO)指数,通过多元EOF方法定义热带准双周振荡(quasi—biweekly oscillation,简称QBW)指数,诊断分析了西北太平洋地区QBW不同位相对于TC路径的影响。结果表明,TC主要生成在QSW对流湿位相中,集中位置随QBW向西北的传播而向西北移动。在QSW位相phasel中,南海上空盛行QBW反气旋性环流,西太副高西伸,其西南侧偏东南气流受QBW反气旋性环流东北侧气流抑制,生成在副高南侧的TC首先在副高南侧偏东气流的引导下移动至近海,在西南季风以及副高西侧偏南气流作用下顺时针北折,因此在140°E以西转折类路径的TC比例最高;而在phase3中,西太副高偏东,南海上空盛行QBW气旋性环流,西太副高西南侧气流强度受QBW气旋东北侧气流影响增强,季风槽偏东,140°E以东转折类的TC比例最高。本文还对TC个例中的QBW流场形势进行了分析,发现当QBW气旋或反气旋环流中心同TC中心一致时,热带气旋路径会发生突然的右折。  相似文献   

13.
文章分析了1949—2010年发生在西北太平洋上的热带气旋的空间分布特征。并利用趋势分析、小波分析和滑动t检验方法分析了热带气旋的年际变化特征、季节变化特征、周期特征和突变特征。结果表明:西北太平洋热带气旋多生成于5~25°N,110~170°E的海域。频数的年际变化存在三个阶段,月际变化明显,集中出现在7—10月。整个时域上10~15a的波动明显,并经历了三次突变过程。62a间强热带风暴生成最多,台风次之,热带风暴最少。热带气旋强度的年变化不明显。热带气旋强度越强,频数最大值的月份出现越晚。亚洲季风和西太平洋副高对热带气旋的产生起很大的作用。  相似文献   

14.
Based on the satellite data from the National Oceanic and Atmospheric Administration and the NCEP/NCAR reanalysis data, the variation of the intensity of convection over the Intertropical Convergence Zone(ITCZ) in summer and its impacts on tropical cyclones are studied. In this paper, an intensity index of the ITCZ is proposed according to Outgoing Longwave Radiation(OLR) in the region of(5°–20°N, 120°–150°E) in the western North Pacific(WNP). Then strong and weak ITCZ years are classified and different variables during the strong/weak ITCZ years are analyzed. The composite results show that the ITCZ anomaly is connected to the general atmospheric circulation and SST distribution. In the strong ITCZ years, the subtropical anticyclone weakens and shifts northward. Besides, there is salient cyclonic anomaly at the low level and anticyclonic anomaly at the high level. SST patterns in the preceding winter resemble to those of La Nina. It could persist into the succeeding summer. However, it is opposite in the weak ITCZ years. The impact of the ITCZ anomaly on the tropical cyclone(TC) formation and track is also discussed. There are more TCs over the WNP(5°–20°N, 120°–150°E) in the strong ITCZ years and there is a significant increase in the northward recurving TCs. In the weak ITCZ years, fewer TCs occur and the frequency of the northwestward track is higher.  相似文献   

15.
Yao  Xiuping  Zhao  Dajun  Li  Ying 《Acta Meteorologica Sinica》2020,34(1):150-162

We used tropical cyclone (TC) best track data for 1949–2016, provided by the Shanghai Typhoon Institute, China Meteorological Administration (CMA-STI), and a TC size dataset (1980-2016) derived from geostationary satellite infrared images to analyze the statistical characteristics of autumn TCs over the western North Pacific (WNP). We investigated TC genesis frequency, location, track density, intensity, outer size, and landfalling features, as well as their temporal and spatial evolution characteristics. On average, the number of autumn TCs accounted for 42.1% of the annual total, slightly less than that of summer TCs (42.7%). However, TCs classified as strong typhoons or super typhoons were more frequent in autumn than in summer. In most years of the 68-yr study period, there was an inverse relationship between the number of autumn TCs and that of summer TCs. The genesis of autumn TCs was concentrated at three centers over the WNP: the first is located near (14°N, 115°E) over the northeastern South China Sea and the other two are located in the vast oceanic area east of the Philippines around (14°N, 135°E) and (14°N, 145°E), respectively. In terms of intensity, the eight strongest TCs during the study period all occurred in autumn. It is revealed that autumn TCs were featured with strong typhoons and super typhoons, with the latter accounting for 28.1% of the total number of autumn TCs. Statistically, the average 34-knot radius (R34) of autumn TCs increased with TC intensity. From 1949 to 2016, 164 autumn TCs made landfall in China, with an average annual number of 2.4. Autumn TCs were most likely to make landfall in Guangdong Province, followed by Hainan Province and Taiwan Island.

  相似文献   

16.
The extratropical transitions(ETs)of tropical cyclones(TCs)over China and the ocean east to 150°E are investigated by the use of best-track data and JRA-25 reanalysis spanning 1979-2008.The ET events occurring north of 25°N and in the warm season(from May to October)are extracted from the reanalysis to emphasize the interaction between TC and midlatitude circulation.Statistical analysis shows that 18.5%of the warm-season TCs go through land ETs north of 25°N in the western North Pacific.And 20.5%of the ET events occur over the ocean east of 150°E.Most(62.2%)ET TCs over China gradually die out after ET,but more(70.7%)ocean ET cases have post-ET reintensification.The evolutions in cyclone phase space and the composite fields for land and ocean ETs,as well as the ET cases with and without post-ET reintensification,are further analyzed.It is found that most TCs with ET over China and those without post-ET reintensification evolve along the typical ET phase path as follows:emergence of thermal asymmetry→losing upper-level warm core→losing lower-level cold core→evolving as extratropical cyclone.The TCs undergoing ETs over ocean and those with post-ET reintensification form a high-level cold core before the ET onset.The TCs with land ET have long distance between the landing TC and a high-level trough.That makes the TC maintain more tropical features and isolates the TC flow from the upstream and downstream jets of the midlatitude trough.The structure of circulation leads to weak development of baroclinicity in land ET.On the contrary,shorter distance between ocean TC and high-level trough makes the high-level trough absorb the TC absolutely.Under that baroclinicity-favorable environment,strong cold advection makes the TC lose its high-level warm core before ET onset.The composite fields confirm that the TC with ocean ET has stronger baroclinic features.Generally,the TC at land ET onset is located to the south of the ridge of the subtropical high,which tends to prevent the TCs from interacting with midlatitude circulation.But for the ocean ET,the situation is just the opposite.Similar analyses are also carried out for the TCs with and without post-ET reintensification over both land and ocean east of 150°E.The results further prove that the TC with stronger baroclinic characteristics,especially in the circumstance favorable to its interaction with high-level midlatitude systems,has more opportunity to reintensify as an extratropical cyclone after ET.  相似文献   

17.
利用热带气旋最佳路径资料、气象站点风雨资料,结合我国县级热带气旋灾害损失数据,初步分析了我国沿海主要省份热带气旋风雨因子的基本值,包括风雨因子评估起点及权重系数。以过程最大日最大风速(MMW)为风因子,过程雨量(AP)和过程最大日雨量(MP)为雨因子,共挑选出1 563个热带气旋样本,经过统计分析,确定MMW、AP、MP基本值分别为9 m/s、70 mm、50 mm。在此基础上进一步分析了1971—2010年沿海主要省份满足风雨因子基本值条件的热带气旋样本数的分布情况,以及仅由风因子主导、雨因子主导和风雨因子共同主导的样本数及所占比例的空间分布。采用基于致灾程度的客观分析方法来获取风雨因子权重系数以及风雨因子各等级区间的权重系数,以此为下一步分析热带气旋风雨因子危险性特征奠定基础。   相似文献   

18.
The intraseasonal oscillation(ISO) of the South China Sea(SCS, 105-120°E, 5-20°N) convection and its influences on the genesis and track of the western North Pacific(WNP) tropical cyclones(TCs) were explored, based on the daily average of NCEP/NCAR reanalysis data, the OLR data and the western North Pacific tropical cyclone best-track data from 1979 to 2008. The mechanism of the influences of ISO on TC movement and the corresponding large-scale circulation were discussed by a trajectory model. It was found as follows.(1) During the SCS summer monsoon, the SCS convection exhibits the ISO features with active phases alternating with inactive phases. The monsoon circulation patterns are significantly different during these two phases. When the SCS convection is active(inactive), the SCS-WNP monsoon trough stretches eastward(retreats westward) due to the activity(inactivity) of SCS monsoon, and the WNP subtropical high retreats eastward(stretches westward), which enhances(suppresses) the monsoon circulation.(2) The amount of TC genesis in the active phase is much more than that in the inactive phase. A majority of TCs form west of 135 °E during the active phases but east of 135 °E in the inactive phases.(3) The TCs entering the area west of 135 °E and south of 25 °N would move straight into the SCS in the active phase, or recurve northward in the inactive phase.(4) Simulation results show that the steering flow associated with the active(inactive)phases is in favor of straight-moving(recurving) TCs. Meanwhile, the impacts of the locations of TC genesis on the characteristics of TC track cannot be ignored. TCs that occurred father westward are more likely to move straight into the SCS region.  相似文献   

19.
55-year (1949 - 2003) data sets are used to study the statistical characteristics in intensity change of the tropical cyclones (TC) over the western North Pacific. According to the mathematical meaning of average value and standard deviation, the abruptly intensifying, gradually intensifying, stable intensity, gradually weakening and abruptly weakening of TC intensity are defined and the statistical characteristics, such as inter-decadal variation, inter-annual variation, inter-monthly variation, and regional distribution, etc. are analyzed. Main results are as follows: (1) From 1949 to 2003, there were 1886 TCs, averaging at 34.29 TCs per year. After 1995, the number of TCs dropped dramatically with less than 30 per year. 3.56% of the total were abruptly intensifying samples, and 3.31% were weakening samples. (2) For the annual mean, all but the stable group tend to decrease with the shift of decades as far as the overall change of the 6-h isallobaric process is concerned. (3) The abruptly intensifying TC seldom occurs over mid- and high-latitude area (north of 30°N) and low-latitude area and sometimes occurs around the islands and continent. Basically there is no gradually intensifying of TC over mid- and high- latitude area (north of 30°N and west of 125°E), in offshore Chinese waters. The gradually weakening and abruptly weakening TCs usually occur offshore China, west of 125 °E, but seldom over low-latitude area (0 - 5°N).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号