首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have undertaken an extensive study of X-ray data from the accreting millisecond pulsar XTE J1751 − 305 observed by RXTE and XMM–Newton during its 2002 outburst. In all aspects this source is similar to the prototypical millisecond pulsar SAX J1808.4 − 3658, except for the higher peak luminosity of 13 per cent of Eddington, and the optical depth of the hard X-ray source, which is larger by a factor ∼2. Its broad-band X-ray spectrum can be modelled by three components. We interpret the two soft components as thermal emission from a colder  ( kT ∼ 0.6 keV)  accretion disc and a hotter (∼1 keV) spot on the neutron star surface. We interpret the hard component as thermal Comptonization in plasma of temperature ∼40 keV and optical depth ∼1.5 in a slab geometry. The plasma is heated by the accretion shock as the material collimated by the magnetic field impacts on to the surface. The seed photons for Comptonization are provided by the hotspot, not by the disc. The Compton reflection is weak and the disc is probably truncated into an optically thin flow above the magnetospheric radius. Rotation of the emission region with the star creates an almost sinusoidal pulse profile with an rms amplitude of 3.3 per cent. The energy-dependent soft phase lags can be modelled by two pulsating components shifted in phase, which is naturally explained by a different character of emission of the optically thick spot and optically thin shock combined with the action of the Doppler boosting. The observed variability amplitude constrains the hotspot to lie within 3°–4° of the rotational pole. We estimate the inner radius of the optically thick accreting disc to be about 40 km. In that case, the absence of emission from the antipodal spot, which can be blocked by the accretion disc, gives the inclination of the system as ≳70°.  相似文献   

3.
We present phase resolved optical spectroscopy and photometry of V4580 Sagittarii, the optical counterpart to the accretion powered millisecond pulsar SAX J1808.4−3658, obtained during the 2008 September/October outburst. Doppler tomography of the N  iii λ4640.64 Bowen blend emission line reveals a focused spot of emission at a location consistent with the secondary star. The velocity of this emission occurs at  324 ± 15 km s−1  ; applying a ' K -correction', we find the velocity of the secondary star projected on to the line of sight to be  370 ± 40 km s−1  . Based on existing pulse timing measurements, this constrains the mass ratio of the system to be  0.044+0.005−0.004  , and the mass function for the pulsar to be  0.44+0.16−0.13 M  . Combining this mass function with various inclination estimates from other authors, we find no evidence to suggest that the neutron star in SAX J1808.4−3658 is more massive than the canonical value of  1.4 M  . Our optical light curves exhibit a possible superhump modulation, expected for a system with such a low mass ratio. The equivalent width of the Ca  ii H and K interstellar absorption lines suggest that the distance to the source is ∼2.5 kpc. This is consistent with previous distance estimates based on type-I X-ray bursts which assume cosmic abundances of hydrogen, but lower than more recent estimates which assume helium-rich bursts.  相似文献   

4.
5.
We present a precise timing analysis of the accreting millisecond pulsar XTE J1814−338 during its 2003 outburst, observed by RXTE . A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period,   P orb= 15 388.7229(2)  s, and of the projected semimajor axis,   a sin  i / c = 0.390633(9)  light-second. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency  (ν= 314.356 108 79(1) Hz)  and the first estimate of the spin frequency derivative of this source while accreting     . This spin-down behaviour arises when both the fundamental frequency and the second harmonic are taken into consideration. We discuss this in the context of the interaction between the disc and the quickly rotating magnetosphere, at accretion rates sufficiently low to allow a threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. We also present indications of a jitter of the pulse phases around the mean trend, which we argue results from movements of the accreting hotspots in response to variations of the accretion rate.  相似文献   

6.
We analysed Rossi X-ray Timing Explorer Proportional Counter Array observations of a recent outburst of the X-ray pulsar XMMU J054134.7−682550. We calculated the pulse frequency history of the source. We found no sign of a binary companion. The source spins up when the X-ray flux is higher, with a correlation between the spin-up rate and X-ray flux, which may be interpreted as a sign of an accretion disc. On the other hand, the source was found to have an almost constant spin frequency when the X-ray flux is lower without any clear sign of a spin-down episode. The decrease in pulsed fraction with decreasing X-ray flux was interpreted as a sign of accretion geometry change, but we did not find any evidence of a transition from accretor to propeller regimes. The source was found to have variable pulse profiles. Two peaks in pulse profiles were usually observed. We studied the X-ray spectral evolution of the source throughout the observation. Pulse-phase-resolved analysis does not provide any further evidence for a cyclotron line, but may suggest a slight variation of intensity and width of the 6.4 keV iron line with phase.  相似文献   

7.
The optical counterpart of the transient, millisecond X-ray pulsar SAX J1808.4–3658 was observed in four colours ( BVRI ) for five weeks during the 2005 June–July outburst. The optical fluxes declined by ∼2 mag during the first 16d and then commenced quasi-periodic secondary outbursts, with time-scales of several days, similar to those seen in 2000 and 2002. The broad-band spectra derived from these measurements were generally consistent with emission from an X-ray heated accretion disc. During the first 16d decline in intensity the spectrum became redder. We suggest that the primary outburst was initiated by a viscosity change driven instability in the inner disc and note the contrast with another accreting millisecond pulsar, XTE J0929−314, for which the spectrum becomes bluer during the decline. On the night of 2005 June 5 (HJD 245 3527) the I -band flux was ∼0.45-mag brighter than on the preceding or following nights whereas the BV and R bands showed no obvious enhancement. A type I X-ray burst was detected by the Rossi X-ray Timing Explorer spacecraft during this I -band integration. It seems unlikely that reprocessed radiation from the burst was sufficient to explain the observed increase. We suggest that a major part of the I -band excess was due to synchrotron emission triggered by the X-ray burst. Several other significant short duration changes in V − I were detected. One occurred at about HJD 245 3546 in the early phase of the first secondary outburst and may be due to mass-transfer instability or to another synchrotron emission event.  相似文献   

8.
We present Very Large Telescope (VLT) low-resolution spectroscopy of the neutron star X-ray transient XTE J2123−058 during its quiescent state. Our data reveal the presence of a K7V companion which contributes 77 per cent to the total flux at λ 6300 and orbits the neutron star at     . Contrary to other soft X-ray transients (SXTs), the H α emission is almost exactly in antiphase with the velocity curve of the optical companion. Using the light-centre technique we obtain     and hence     This, combined with a previous determination of the inclination angle     yields     and     . M 2 agrees well with the observed spectral type. Doppler tomography of the H α emission shows a non-symmetric accretion disc distribution mimicking that seen in SW Sex stars. Although we find a large systemic velocity of −     this value is consistent with the galactic rotation velocity at the position of J2123−058, and hence a halo origin. The formation scenario of J2123−058 is still unresolved.  相似文献   

9.
We present phase resolved optical spectroscopy and X-ray timing of the neutron star X-ray binary EXO 0748−676 after the source returned to quiescence in the autumn of 2008. The X-ray light curve displays eclipses consistent in orbital period, orbital phase and duration with the predictions and measurements before the return to quiescence. Hα and He  i emission lines are present in the optical spectra and show the signature of the orbit of the binary companion, placing a lower limit on the radial velocity semi-amplitude of   K 2 > 405 km s−1  . Both the flux in the continuum and the emission lines show orbital modulations, indicating that we observe the hemisphere of the binary companion that is being irradiated by the neutron star. Effects due to this irradiation preclude a direct measurement of the radial velocity semi-amplitude of the binary companion; in fact, no stellar absorption lines are seen in the spectrum. Nevertheless, our observations place a stringent lower limit on the neutron star mass of   M 1 > 1.27 M  . For the canonical neutron star mass of   M 1= 1.4 M  , the mass ratio is constrained to  0.075 < q < 0.105  .  相似文献   

10.
11.
We report on the properties of a 99.3-d periodic modulation in the X-ray transient XTE J1716−389. We associate this source with the transient KS J1716−389, first detected by the Mir /Kvant module in 1994. The spectral characteristics of XTE J1716−389, a high intrinsic absorption column, strong emission features and a power-law spectrum, make it very similar to the class of highly absorbed X-ray binaries detected by INTEGRAL . We associate the 99.3-d periodic behaviour with the geometrical obscuration that results from a precessing circumbinary disc that is moving in and out of the field of view, comparable to what has been proposed for SS 433. We therefore propose that XTE J1716−389 is a high-mass X-ray binary with a supergiant companion that is similar not only to SS 433, but also to the new class of highly obscured X-ray binaries, suggesting that SS 433 is a member of much wider population that is now being detected by INTEGRAL .  相似文献   

12.
13.
We present Swift observations of the black hole X-ray transient, GRO J1655−40, during the recent outburst. With its multiwavelength capabilities and flexible scheduling, Swift is extremely well suited for monitoring the spectral evolution of such an event. GRO J1655−40 was observed on 20 occasions and data were obtained by all instruments for the majority of epochs. X-ray spectroscopy revealed spectral shapes consistent with the 'canonical' low/hard, high/soft and very high states at various epochs. The soft X-ray source (0.3–10 keV) rose from quiescence and entered the low/hard state, when an iron emission line was detected. The soft X-ray source then softened and decayed, before beginning a slow rebrightening and then spending ∼3 weeks in the very high state. The hard X-rays (14–150 keV) behaved similarly but their peaks preceded those of the soft X-rays by up to a few days; in addition, the average hard X-ray flux remained approximately constant during the slow soft X-ray rebrightening, increasing suddenly as the source entered the very high state. These observations indicate (and confirm previous suggestions) that the low/hard state is key to improving our understanding of the outburst trigger and mechanism. The optical/ultraviolet light curve behaved very differently from that of the X-rays; this might suggest that the soft X-ray light curve is actually a composite of the two known spectral components, one gradually increasing with the optical/ultraviolet emission (accretion disc) and the other following the behaviour of the hard X-rays (jet and/or corona).  相似文献   

14.
15.
16.
We analysed simultaneous archival XMM–Newton and Rossi X-ray Timing Explorer observations of the X-ray binary and black hole candidate Swift J  1753.5−0127  . In a previous analysis of the same data, a soft thermal component was found in the X-ray spectrum, and the presence of an accretion disc extending close to the innermost stable circular orbit was proposed. This is in contrast with the standard picture in which the accretion disc is truncated at large radii in the low/hard state. We tested a number of spectral models and found that several of them fit the observed spectra without the need of a soft disc-like component. This result implies that the classical paradigm of a truncated accretion disc in the low/hard state cannot be ruled out by these data. We further discovered a broad iron emission line between 6 and 7 keV in these data. From fits to the line profile we found an inner disc radius that ranges between ∼6 and 16 gravitational radii, which can be in fact much larger, up to ∼250 gravitational radii, depending on the model used to fit the continuum and the line. We discuss the implications of these results in the context of a fully or partially truncated accretion disc.  相似文献   

17.
We carried out spectroscopic observations of the candidate black hole binary GX 339−4 during its low–hard and high–soft X-ray states. We have found that the spectrum is dominated by emission lines of neutral elements with asymmetric, round-topped profiles in the low–hard state. In the high–soft state, however, the emission lines from both neutral and ionized elements have unambiguously resolved double-peaked profiles. The detection of double-peaked emission lines in the high–soft state, with a larger peak separation for higher ionization lines, indicates the presence of an irradiatively heated accretion disc. The round-topped lines in the low–hard state are probably caused by a dense matter outflow from an inflated non-Keplerian accretion disc. Our data do not show velocity modulations of the line centres caused by the orbital motion of the compact object, neither do the line basewidths show substantial variations in each observational epoch. There are no detectable absorption lines from the companion star. All these features are consistent with those of a system with a low-mass companion star and low orbital inclination.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号