首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several methods of time-transformations are presented to compute the relative motion of two gravitationally non-interacting space vehicles with increased accuracy. These methods are well suited for any eccentricities of the participating space vehicles which may be located at any distance.  相似文献   

2.
Relative motion improvements have traditionally focused on inserting additional force models into existing formulations to achieve greater fidelity, or complex expansions to admit eccentric orbits for propagation. A simpler approach may be numerically integrating the two satellite positions and then converting to a modified equidistant cylindrical frame for comparison in a Hill’s-like frame. Recent works have introduced some approaches for this transformation within the Hill’s construct, and examined the accuracy of the transformation. Still others have introduced transformations as they apply to covariance operations. Each of these has some orbital or force model limitations and defines an approximate circular reference dimension. We develop a precise transformation between the Cartesian and curvilinear frame along the actual satellite orbit and test the results for various orbital classes. The transformation has wide applicability.  相似文献   

3.
4.
The problem of finding natural bounded relative trajectories between the different units of a distributed space system is of great interest to the astrodynamics community. This is because most popular initialization methods still fail to establish long-term bounded relative motion when gravitational perturbations are involved. Recent numerical searches based on dynamical systems theory and ergodic maps have demonstrated that bounded relative trajectories not only exist but may extend up to hundreds of kilometers, i.e., well beyond the reach of currently available techniques. To remedy this, we introduce a novel approach that relies on neither linearized equations nor mean-to-osculating orbit element mappings. The proposed algorithm applies to rotationally symmetric bodies and is based on a numerical method for computing quasi-periodic invariant tori via stroboscopic maps, including extra constraints to fix the average of the nodal period and RAAN drift between two consecutive equatorial plane crossings of the quasi-periodic solutions. In this way, bounded relative trajectories of arbitrary size can be found with great accuracy as long as these are allowed by the natural dynamics and the physical constraints of the system (e.g., the surface of the gravitational attractor). This holds under any number of zonal harmonics perturbations and for arbitrary time intervals as demonstrated by numerical simulations about an Earth-like planet and the highly oblate primary of the binary asteroid (66391) 1999 KW4.  相似文献   

5.
It is shown that the equations of the general three-body problem take on a very symmetric form when one considers only their relative positions, rather than position vectors relative to some given coordinate system. From these equations one quickly surmises some well known classical properties of the three-body problem such as the first integrals and the equilateral triangle solutions. Some new Lagrangians with relative coordinates are also obtained. Numerical integration of the new equations of motion is about 10 percent faster than with barycentric or heliocentric coordinates.  相似文献   

6.
Encke's method as modified by Potter to increase the accuracy of orbit computations of gravitationally interacting bodies is applied to the problem of relative motion of non-interacting space vehicles. This technique is then combined with a simple transformation of the independent variable to arrive at a system of equations from which the relative motion may be determined with increased precision.  相似文献   

7.
We consider two spheroidal rigid bodies of comparable size constituting the components of an isolated binary system. We assume that (1) the bodies are homogeneous oblate ellipsoids of revolution, and (2) the meridional eccentricities of both components are small parameters.We obtain seven nonlinear differential equations governing simultaneously the relative motion of the two centroids and the rotational motion of each set of body axes. We seek solutions to these equations in the form of infinite series in the two meridional eccentricities.In the zero-order approximation (i. e., when the meridional eccentricities are neglected), the equations of motion separate into two independent subsystems. In this instance, the relative motion of the centroids is taken as a Kepler elliptic orbit of small eccentricity, whereas for each set of body axes we choose a composite motion consisting of a regular precession about an inertial axis and a uniform rotation about a body axis.The first part of the paper deals with the representation of the total potential energy of the binary system as an infinite series of the meridional eccentricities. For this purpose, we had to (1) derive a formula for representing the directional derivative of a solid harmonic as a combination of lower order harmonics, and (2) obtain the general term of a biaxial harmonic as a polynomial in the angular variables.In the second part, we expound a recurrent procedure whereby the approximations of various orders can be determined in terms of lower-order approximations. The rotational motion gives rise to linear differential equations with constant coefficients. In dealing with the translational motion, differential equations of the Hill type are encountered and are solved by means of power series in the orbital eccentricity. We give explicit solutions for the first-order approximation alone and identify critical values of the parameters which cause the motion to become unstable.The generality of the approach is tantamount to studying the evolution and asymptotic stability of the motion.Research performed under NASA Contract NAS5-11123.  相似文献   

8.
9.
This paper studies the relative orbital motion between arbitrary Keplerian trajectories. A closed-form vectorial solution to the nonlinear initial value problem that models this type of motion with respect to a noninertial reference frame is offered. Without imposing any particular conditions on the leader or the deputy satellites trajectories, exact expressions for the relative law of motion and relative velocity are obtained in a closed form. This solution allows the parameterization of the relative motion manifold and offers new methods to study its geometrical and topological properties. The result presented in this paper opens the way to obtain new classes of approximate solutions to the equations of relative motion with time, an eccentric or true anomaly as independent variables. Published in Russian in Solar System Research, 2009, Vol. 43, No. 1, pp. 44–55. The text was submitted by the autors in English.  相似文献   

10.
The analysis of relative motion of two spacecraft in Earth-bound orbits is usually carried out on the basis of simplifying assumptions. In particular, the reference spacecraft is assumed to follow a circular orbit, in which case the equations of relative motion are governed by the well-known Hill–Clohessy–Wiltshire equations. Circular motion is not, however, a solution when the Earth’s flattening is accounted for, except for equatorial orbits, where in any case the acceleration term is not Newtonian. Several attempts have been made to account for the \(J_2\) effects, either by ingeniously taking advantage of their differential effects, or by cleverly introducing ad-hoc terms in the equations of motion on the basis of geometrical analysis of the \(J_2\) perturbing effects. Analysis of relative motion about an unperturbed elliptical orbit is the next step in complexity. Relative motion about a \(J_2\)-perturbed elliptic reference trajectory is clearly a challenging problem, which has received little attention. All these problems are based on either the Hill–Clohessy–Wiltshire equations for circular reference motion, or the de Vries/Tschauner–Hempel equations for elliptical reference motion, which are both approximate versions of the exact equations of relative motion. The main difference between the exact and approximate forms of these equations consists in the expression for the angular velocity and the angular acceleration of the rotating reference frame with respect to an inertial reference frame. The rotating reference frame is invariably taken as the local orbital frame, i.e., the RTN frame generated by the radial, the transverse, and the normal directions along the primary spacecraft orbit. Some authors have tried to account for the non-constant nature of the angular velocity vector, but have limited their correction to a mean motion value consistent with the \(J_2\) perturbation terms. However, the angular velocity vector is also affected in direction, which causes precession of the node and the argument of perigee, i.e., of the entire orbital plane. Here we provide a derivation of the exact equations of relative motion by expressing the angular velocity of the RTN frame in terms of the state vector of the reference spacecraft. As such, these equations are completely general, in the sense that the orbit of the reference spacecraft need only be known through its ephemeris, and therefore subject to any force field whatever. It is also shown that these equations reduce to either the Hill–Clohessy–Wiltshire, or the Tschauner–Hempel equations, depending on the level of approximation. The explicit form of the equations of relative motion with respect to a \(J_2\)-perturbed reference orbit is also introduced.  相似文献   

11.
We discuss the determination of membership of 42 open clusters. Our analysis shows that Vasilevskis' mathematical model can be reasonably applied to this case. Our improved version of Sanders' method and our definition of cluster member based on the principles of discriminatory analysis effectively exclude stars of low probabilities. It is important in the study of open cluster to use only those with high probabilities. The effectiveness of the statistical method is closely related to the velocity distributions of the member and field stars. For fields where the error rate is high, it is better to combine other data than proper motion in determining membership.  相似文献   

12.

This study constitutes the second phase of an effort devoted to the relative motion of two spheroidal rigid bodies.

An isolated binary system was considered whose components are bodies: (1) of comparable size; (2) of constant density; and (3) having the shape of an oblate ellipsoid of revolution with small meridional eccentricity.

The equations that determine the relative motion of the centroids and the angular motion for the two sets of body axes constitute a simultaneous system of seven nonlinear, second-order differential equations, for which solutions were obtained as power series in the two meridional eccentricities.

A recurrent procedure was formulated to ascertain the various approximations in terms of lower order terms; it gave rise to linear differential equations with constant coefficients for the angular variables and to differential equations of the Hill type for the other coordinates. The zero-order approximation for the motion of the centroids was assumed to be a Kepler elliptic orbit of small eccentricity.

The following contributions were made:

  1. (1)

    The general solution to the zero-order approximation of the rotational motion was obtained in terms of elementary functions;

  2. (2)

    Certain functionals, related to the Kepler motion and depending on two parameters, were expressed in terms of the mean anomaly up to the sixth power of the orbital eccentricity in order to evaluate the lower order terms of the various approximations;

  3. (3)

    The secular terms were eliminated from the first-order approximation;

  4. (4)

    The second-order approximation was also obtained; and

  5. (5)

    An alternate procedure was suggested that might be more appropriate for achieving higher order approximations.

  相似文献   

13.
This paper develops a nonlinear analytic solution for satellite relative motion in J2-perturbed elliptic orbits by using the geometric method that can avoid directly solving the complex differential equations. The differential equinoctial elements (DEEs) are used to remove any singularities for zero-eccentricity or zero-inclination orbits. Based on the relationship between the relative states and the DEEs, state transition tensors (STTs) for transforming the osculating DEEs and propagating the mean DEEs have been derived. The formulation of these STTs has been split into a set of vector and matrix operations, which avoids directly expanding the complex second-order terms, and thus, the obtained STTs could be easy-to-understand and easy-to-code. Numerical results show that the proposed nonlinear solution is valid for zero-eccentricity and zero-inclination reference orbit and is more accurate than the previous linear or nonlinear methods for the long-term prediction of satellite relative motion.  相似文献   

14.
This paper develops a tensor and its inverse, for the analytical propagation of the position and velocity of a satellite, with respect to another, in an eccentric orbit. The tensor is useful for relative motion analysis where the separation distance between the two satellites is large. The use of nonsingular elements in the formulation ensures uniform validity even when the reference orbit is circular. Furthermore, when coupled with state transition matrices from existing works that account for perturbations due to Earth oblateness effects, its use can very accurately propagate relative states when oblateness effects and second-order nonlinearities from the differential gravitational field are of the same order of magnitude. The effectiveness of the tensor is illustrated with various examples.  相似文献   

15.
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy–Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4–0.45 in eccentricity and 40–45\(^\circ \) in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy–Wiltshire solution in curvilinear coordinates is also presented.  相似文献   

16.
While trajectory design for single satellite Earth observation missions is usually performed by means of analytical and relatively simple models of orbital dynamics including the main perturbations for the considered cases, most literature on formation flying dynamics is devoted to control issues rather than mission design. This work aims at bridging the gap between mission requirements and relative dynamics in multi-platform missions by means of an analytical model that describes relative motion for satellites moving on near circular low Earth orbits. The development is based on the orbital parameters approach and both the cases of close and large formations are taken into account. Secular Earth oblateness effects are included in the derivation. Modeling accuracy, when compared to a nonlinear model with two body and J2 forces, is shown to be of the order of 0.1% of relative coordinates for timescales of hundreds of orbits. An example of formation design is briefly described shaping a two-satellite formation on the basis of geometric requirements for synthetic aperture radar interferometry.  相似文献   

17.
18.
This paper studies the relative motion of satellite formation flying in arbitrary elliptical orbits with no perturbation. The trajectories of the leader and follower satellites are projected onto the celestial sphere. These two projections and celestial equator intersect each other to form a spherical triangle, in which the vertex angles and arc-distances are used to describe the relative motion equations. This method is entitled the reference orbital element approach. Here the dimensionless distance is defined as the ratio of the maximal distance between the leader and follower satellites to the semi-major axis of the leader satellite. In close formations, this dimensionless distance, as well as some vertex angles and arc-distances of this spherical triangle, and the orbital element differences are small quantities. A series of order-of-magnitude analyses about these quantities are conducted. Consequently, the relative motion equations are approximated by expansions truncated to the second order, i.e. square of the dimensionless distance. In order to study the problem of periodicity of relative motion, the semi-major axis of the follower is expanded as Taylor series around that of the leader, by regarding relative position and velocity as small quantities. Using this expansion, it is proved that the periodicity condition derived from Lawden’s equations is equivalent to the condition that the Taylor series of order one is zero. The first-order relative motion equations, simplified from the second-order ones, possess the same forms as the periodic solutions of Lawden’s equations. It is presented that the latter are further first-order approximations to the former; and moreover, compared with the latter more suitable to research spacecraft rendezvous and docking, the former are more suitable to research relative orbit configurations. The first-order relative motion equations are expanded as trigonometric series with eccentric anomaly as the angle variable. Except the terms of order one, the trigonometric series’ amplitudes are geometric series, and corresponding phases are constant both in the radial and in-track directions. When the trajectory of the in-plane relative motion is similar to an ellipse, a method to seek this ellipse is presented. The advantage of this method is shown by an example.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号