共查询到20条相似文献,搜索用时 12 毫秒
1.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
Crack nucleation has been the subject of important contributions in the last two last decades. However, it seems that few attention has been granted to the case of saturated porous media. This is the question addressed in the present paper which is devoted to nucleation in traction mode. From a physical point of view, nucleation is a sudden phenomenon, so that the material response is both adiabatic and undrained. In the spirit of the variational approach, the nucleated crack is viewed as the final state of a region of space in which the material undergoes a full damage process. In traction mode, the opening of a saturated crack in undrained condition induces a drop of fluid pressure. In case of low fluid compressibility, the presence of the fluid delays the brittle failure usually associated with nucleation, as long as the fluid pressure remains above the saturation vapor pressure. Nucleation is therefore possible only if a partial vaporization of the fluid takes place. 相似文献
3.
It is well known that the Babuska–Brezzi stability criterion or the Zienkiewicz–Taylor patch test precludes the use of the finite elements with the same low order of interpolation for displacement and pore pressure in the nearly incompressible and undrained cases, unless some stabilization techniques are introduced for dynamic analysis of saturated porous medium where coupling occurs between the displacement of solid skeleton and pore pressure. The numerical manifold method (NMM), where the interpolation of displacement and pressure can be determined independently in an element for the solution of u–p formulation, is derived based on triangular mesh for the requirement of high accurate calculations from practical applications in the dynamic analysis of saturated porous materials. The matrices of equilibrium equations for the second‐order displacement and the first‐order pressure manifold method are given in detail for program coding. By close comparison with widely used finite element method, the NMM presents good stability for the coupling problems, particularly in the nearly incompressible and undrained cases. Numerical examples are given to illustrate the validity and stability of the manifold element developed. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
4.
A time‐domain viscous‐spring transmitting boundary is presented for transient dynamic analysis of saturated poroelastic media with linear elastic and isotropic properties. The u–U formulation of Biot equation in cylindrical coordinate is adopted in the derivation. By this general viscous‐spring boundary, the effective stress and pore fluid pressure on the truncated boundary of the computational area are replaced by a set of continuously distributed spring and dashpot elements, of which the parameters are defined assuming an infinite permeability and considering the two dilatational waves. Numerical examples demonstrate good absorption of both the two cylindrical dilatational waves by the proposed ‘drained’ boundary. For general two‐dimensional wave propagation problems, acceptable accuracy can still be achieved by setting the proposed boundary relatively far away from the scatter. Numerical comparison shows that the results obtained by using this boundary are more accurate for all permeability values than those by the traditional viscous‐spring or viscous boundaries established for u–U formulation. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
Fushen Liu 《国际地质力学数值与分析法杂志》2020,44(12):1634-1655
The paper presents an embedded strong discontinuity approach to simulate single hydraulic fracture propagation in the poroelastic medium under plane-strain conditions. The method enriches the strain field with the discontinuous deformation mode and allows the fracture to be modeled inside elements. The Mode-I fracture initiation and propagation are described by the trilinear cohesive law, which is implemented by the penalty method. The enhanced permeability inside the fractured elements is dependent on the fracture aperture. Hydraulic fracture propagation is driven by the high pressure gradient near the fracture. Fluid transfer between the fracture and bulk rock is automatically captured within the poroelastic framework. The numerical framework is verified by the comparisons with the asymptotic analytical solutions for single hydraulic fracture propagation. 相似文献
6.
The present study investigates propagation of a cohesive crack in non‐isothermal unsaturated porous medium under mode I conditions. Basic points of skeleton deformation, moisture, and heat transfer for unsaturated porous medium are presented. Boundary conditions on the crack surface that consist of mechanical interaction of the crack and the porous medium, water, and heat flows through the crack are taken into consideration. For spatial discretization, the extended finite element method is used. This method uses enriched shape functions in addition to ordinary shape functions for approximation of displacement, pressure, and temperature fields. The Heaviside step function and the distance function are exploited as enrichment functions for representing the crack surfaces displacement and the discontinuous vertical gradients of the pressure and temperature fields along the crack, respectively. For temporal discretization, backward finite difference scheme is applied. Problems solved from the literature show the validity of the model as well as the dependency of structural response on the material properties and loading. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
In the present work, stationary discontinuities and fluttery instabilities of wave propagation in saturated poro‐elastoplastic media are analysed in the frame of Biot theory. The generalized Biot formulations are particularly employed for simulating non‐linear coupled hydro‐mechanical behaviour of the media. Inertial coupling effect between the solid and the fluid phases of the media is also taken into account. The non‐associated Drucker–Prager criterion to describe non‐linear constitutive behaviour of pressure dependent elasto‐plasticity for the solid skeleton of the media is particularly considered. With omission of compressibility of solid grains and the pore fluid, the critical conditions of stationary discontinuities and flutter instabilities occurring in wave propagation are given in explicit forms. It is shown that when the stationary discontinuity is triggered at the surface of discontinuity there still may exist real wave speeds. The wave speeds across the stationary discontinuity surface entirely cease to be real only in non‐associated plasticity, certain ranges of value of Poisson's ratio and when compression stress normal to the surface of discontinuity dominates the stress state at the surface. It is also indicated that the fluttery instabilities, under which some wave speeds cease to be real even in strain hardening stage, may occur prior to stationary discontinuities only for non‐associated plasticity under certain conditions. These conditions are: (1) both the porosity and the Poisson's ratio possess relatively low values and (2) the deviatoric part of the effective stress normal to the surface of discontinuity is compressive. A region in the porosity–Poisson's ratio plot, in which fluttery instabilities are possible to occur, is given. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
8.
Acta Geotechnica - The assumed enhanced strain (AES) method is developed to simulate cohesive fracture propagation in the partially saturated porous media which includes the solid skeleton and the... 相似文献
9.
10.
General coupling extended multiscale FEM for elasto‐plastic consolidation analysis of heterogeneous saturated porous media 下载免费PDF全文
This paper presents a general coupling extended multiscale FEM (GCEMs) for solving the coupling problem of elasto‐plastic consolidation of heterogeneous saturated porous media. In the GCEMs, the numerical multiscale base functions for the solid skeleton and fluid phase of the coupling system are all constructed on the basis of the equivalent stiffness matrix of the unit cell, which not only contain the interaction between the solid and fluid phases but also consider the time effect. Furthermore, in order to improve the computational accuracy for two‐dimensional problems, a multi‐node coarse element strategy for the GCEMs is proposed, and a two‐scale iteration algorithm for the elasto‐plastic consolidation analysis is developed. Some one‐dimensional and two‐dimensional homogeneous and heterogeneous numerical examples are carried out to validate the proposed method through the comparison with the coupling multiscale FEM and standard FEM. Numerical results show that the newly developed GCEMs can almost preserve the same convergent property as the standard FEM and also possesses the advantages of high computational efficiency. In addition, the GCEMs can be easily applied to other coupling multifield and multiphase transient problems. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
为有效模拟裂缝性页岩储层中水力裂缝随机扩展过程,基于单元节点的拓扑数据结构,利用网格节点分裂方式,建立了一种基于有限元网格嵌入零厚度内聚力单元的水力裂缝随机扩展新方法。利用KGD模型解析解和2种室内试验,验证了新方法的准确性和有效性。同时,通过数值算例研究了水平地应力差和储层非均质性对水力裂缝随机扩展过程的影响。研究表明:(1)该方法弥补了ABAQUS平台内置的内聚力单元无法有效模拟水力裂缝随机扩展的不足;(2)在较高水平地应力差下页岩储层非均质性越强,与水力裂缝相交的高角度天然裂缝越容易开启。所建方法能准确地描述复杂水力裂缝的随机扩展行为,可为裂缝性页岩储层的数值模拟提供新手段。 相似文献
12.
模拟裂隙多孔介质中变饱和渗流的广义等效连续体方法 总被引:2,自引:0,他引:2
描述了一种计算裂隙多孔介质中变饱和渗流的广义等效连续体方法。这种方法忽略裂隙的毛细作用,设定一个与某孔隙饱和度相对应的综合饱和度极限值,并假定:(1)如果裂隙多孔介质的综合饱和度小于该极限值,水只在孔隙中存在并流动,而裂隙中则没有水的流动;(2)如果综合饱和度等于或大于该极限值,水将进入裂隙,并在裂隙内运动。分析比较了等效连续体模型的不同计算方法,并给出了一个模拟裂隙岩体中变饱和渗流与传热耦合问题的应用算例。结果表明,所述方法具有一般性,可以有效地模拟裂隙多孔介质中变饱和渗流的基本特征。 相似文献
13.
A phase-field approach for fluid-driven fracture propagation in porous media with varying constant compatible stress boundary conditions is discussed and implemented. Since crack opening displacement, fracture path, and stress values near the fracture are highly dependent on the given boundary conditions, it is crucial to take into account the impact of in situ stresses on fracturing propagation for realistic applications. We illustrate several numerical examples that include the effects of different boundary conditions on the fracture propagation. In addition, an example using realistic boundary conditions from a reservoir simulator is included to show the capabilities of our computational framework. 相似文献
14.
多孔介质中悬浮颗粒迁移和沉积特性的研究对地下污染物净化、石油开采、核废料处置、水土保持等有很重要的意义。对4种不同浓度的悬浮颗粒在3种不同的渗流速度下进行室内试验,研究悬浮颗粒的浓度对其迁移和沉积特性的影响。结果表明,在一定的悬浮颗粒浓度下,随着渗流速度的增加,穿透曲线中的悬浮颗粒的相对浓度也增大。同时,渗流速度一定时,悬浮颗粒的浓度存在一个临界值,小于该临界值,穿透曲线中的相对浓度随悬浮颗粒的浓度增大而增大;大于该临界值时,相对浓度随悬浮颗粒的浓度增大而减小。另外,悬浮颗粒的临界浓度是与渗流速度相关的,随着渗流速度增加,悬浮颗粒的临界浓度也逐渐增大 相似文献
15.
In a cracked material, the stress intensity factors (SIFs) at the crack tips, which govern the crack propagation and are associated with the strength of the material, are strongly affected by the crack inclination angle and the orientation with respect to the principal direction of anisotropy. In this paper, a formulation of the boundary element method (BEM), based on the relative displacements of the crack tip, is used to determine the mixed‐mode SIFs of isotropic and anisotropic rocks. Numerical examples of the application of the formulation for different crack inclination angles, crack lengths, and degree of material anisotropy are presented. Furthermore, the BEM formulation combined with the maximum circumferential stress criterion is adopted to predict the crack initiation angles and simulate the crack propagation paths. The propagation path in cracked straight through Brazilian disc specimen is numerically predicted and the results of numerical and experimental data compared with the actual laboratory observations. Good agreement is found between the two approaches. The proposed BEM formulation is therefore suitable to simulate the process of crack propagation. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
The homogenization method is used to determine the formulation of the behaviour of both saturated and unsaturated porous media. This approach makes it possible to assess the validity of the effective stress concept as a function of the properties of the porous media at the microscopic scale. Furthermore, the influence of the morphologies of the solid and fluid phases on the macroscopic behaviour is studied. The strain induced by drying is examined as a function of the morphological properties. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
17.
在非饱和多孔介质渗流分析中,近饱和条件下物理模型与数值模型之间的差异会导致数值不稳定问题。为解决这一问题,并保证模拟结果的可靠性,提出了3种方法,并在有限元分析程序U-DYSAC2中分别进行了程序代码的实施。通过数值试验与试验数据的比较,证实了在近饱和条件下土-水特征曲线和水力传导函数的高非线性可引起数值收敛性、稳定性和精度问题,而且在不同条件下含水率和基质吸力的预测结果差异明显。在3种方法中,修正的Van Genuchten模型(MVGM)方法对含水率的预测较为准确,而Line方法对基质吸力的预测较为合理。因此,解决在分析近饱和条件下非饱和多孔介质渗流问题时,为获得接近真实的模拟结果,采用合适的数值方法进行预测是非常关键的。 相似文献
18.
In this paper, a series of multimaterial benchmark problems in saturated and partially saturated two‐phase and three‐phase deforming porous media are addressed. To solve the process of fluid flow in partially saturated porous media, a fully coupled three‐phase formulation is developed on the basis of available experimental relations for updating saturation and permeabilities during the analysis. The well‐known element free Galerkin mesh‐free method is adopted. The partition of unity property of MLS shape functions allows for the field variables to be extrinsically enriched by appropriate functions that introduce existing discontinuities in the solution field. Enrichment of the main unknowns including solid displacement, water phase pressure, and gas phase pressure are accounted for, and a suitable enrichment strategy for different discontinuity types are discussed. In the case of weak discontinuity, the enrichment technique previously used by Krongauz and Belytschko [Int. J. Numer. Meth. Engng., 1998; 41:1215–1233] is selected. As these functions possess discontinuity in their first derivatives, they can be used for modeling material interfaces, generating only minor oscillations in derivative fields (strain and pressure gradients for multiphase porous media), as opposed to unenriched and constrained mesh‐free methods. Different problems of multimaterial poro‐elasticity including fully saturated, partially saturated one, and two‐phase flows under the assumption of fully coupled extended formulation of Biot are examined. As a further development, problems involved with both material interface and impermeable discontinuities, where no fluid exchange is permitted across the discontinuity, are considered and numerically discussed. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
In this contribution an algorithm for parameter identification of geometrically linear Terzaghi–Biot‐type fluid‐saturated porous media is proposed, in which non‐uniform distributions of the state variables such as stresses, strains and fluid pore pressure are taken into account. To this end a least‐squares functional consisting of experimental data and simulated data is minimized, whereby the latter are obtained with the finite element method. This strategy allows parameter identification based on in situ experiments. In order to improve the efficiency of the minimization process, a gradient‐based optimization algorithm is applied, and therefore the corresponding sensitivity analysis for the coupled two‐phase problem is described in a systematic manner. For illustrative purpose, the performance of the algorithm is demonstrated for a slope stability problem, in which a quadratic Drucker–Prager plasticity model for the solid and a linear Darcy law for the fluid are combined. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
20.
Based on the Biot theory, the exact solutions for one‐dimensional transient response of single layer of fluid‐saturated porous media and semi‐infinite media are developed, in which the fluid and solid particles are assumed to be compressible and the inertial, viscous and mechanical couplings are taken into account. First, the control equations in terms of the solid displacement u and a relative displacement w are expressed in matrix form. For problems of single layer under homogeneous boundary conditions, the eigen‐values and the eigen‐functions are obtained by means of the variable separation method, and the displacement vector u is put forward using the searching method. In the case of nonhomogeneous boundary conditions, the boundary conditions are first homogenized, and the displacement field is constructed basing upon the eigen‐functions. Making use of the orthogonality of eigen‐functions, a series of ordinary differential equations with respect to dimensionless time and their corresponding initial conditions are obtained. Those differential equations are solved by the state‐space method, and the series solutions for three typical nonhomogeneous boundary conditions are developed. For semi‐infinite media, the exact solutions in integral form for two kinds of nonhomogeneous boundary conditions are presented by applying the cosine and sine transforms to the basic equations. Finally, three examples are studied to illustrate the validity of the solutions, and to assess the influence of the dynamic permeability coefficient and the fluid inertia to the transient response of porous media. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献