首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
This paper presents an elasto‐plastic model for non‐linear analyses of cement‐treated sand. Various laboratory tests were systematically carried out to investigate the pre‐peak and post‐peak behaviours of a cement‐treated sand. On the basis of these experimental results, the new model was built within the framework of a relatively simple elasto‐plastic theory. Two failure criteria are employed to express tensile and shear failure characteristics observed in the experimental results of the cement‐treated sand. The proposed model can describe strain‐hardening and strain‐softening responses under both failure modes. In the strain‐softening rules, the smeared crack concept is used, and a characteristic length is considered to avoid the issue of mesh‐size dependency. Since the failure criterion and strain‐hardening/softening rules are based on the experimental evidences, the model is relatively easy to understand and the parameters used in the model have clear physical meaning. The proposed model was applied to simulate the behaviour of cement‐treated sand in various laboratory tests, allowing for a reasonable comprehensive evaluation. It was demonstrated that the proposed model is suitable for describing both the tensile and shear failure behaviours of cement‐treated sand. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
3.
The paper mainly concerns the mechanical response of 2D dry dense sand specimens under shock loading. The problem is numerically analysed by means of a SEM dynamic code, within which an already conceived non‐local viscoplastic constitutive model characterized by a non‐associated flow rule and by an anisotropic strain hardening has been implemented. In particular the strain localization and time dependency of the material mechanical response are taken into consideration. Both rapid/static loading and dynamic histories are numerically simulated. In the first case, the time dependency of the material mechanical response can be captured by neglecting inertial effects, while in the second one the two factors are superimposed and the propagation of the stress waves within the specimen is discussed. The interest of these analyses derives from the fact that the diffusion phenomenon takes place within a specimen already localized. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The cohesive‐frictional nature of cementitious geomaterials raises great interest in the discrete element method (DEM) simulation of their mechanical behavior, where a proper bond failure criterion is usually required. In this paper, the failure of bond material between two spheres was investigated numerically using DEM that can easily reproduce the failure process of brittle material. In the DEM simulations, a bonded‐grain system (composed of two particles and bond material in between) was discretized as a cylindrical assembly of very fine particles connecting two large end spheres. Then, the bonded‐grain system was subjected to compression/tension, shear, rolling and torsion loadings and their combinations until overall failure (peak state) was reached. Bonded‐grain systems with various sizes were employed to investigate bond geometry effects. The numerical results show that the compression strength is highly affected by bond geometry, with the tensile strength being dependent to a lesser degree. The shear, rolling and torsion strengths are all normal force dependent; i.e., with an increase in the normal force, these strengths first increase at a declining rate and then start to decrease upon the normal force exceeding a critical value. The combined actions of shear force, rolling moment and torque lead to a spherical failure envelope in a normalized loading space. The fitted bond geometry factors and bond failure envelopes obtained numerically in this three‐dimensional study are qualitatively consistent with those in previous two‐dimensional experiments. The obtained bond failure criterion can be incorporated into a future bond contact model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a synthesis of the works performed by various teams from France, Italy and Canada around the question of second‐order work criterion. Because of the non‐associative character of geomaterials plastic strains, it is now recognized that a whole bifurcation domain exists in the stress space with various possible modes of failure. In a first part these failure modes are observed in lab experimental tests and in discrete element modelling. Then a theoretical study of second‐order work allows to establish a link with the kinetic energy, giving a basis to explain the transition from a prefailure (quasi)static regime to a postfailure dynamic regime. Eventually the main features of geomaterials failure are obtained by applying second‐order work criterion to five different constitutive rate‐independent models—three being phenomenological and two micromechanical. As a whole this paper tries to gather together all the elements for a proper understanding and use of second‐order work criterion in geomechanics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
During several triaxial compression experiments on plastic hardening, softening, and failure properties of dense sand specimens, it was found on various stress paths that the size of the failure surface was not constant. Instead, it changed depending on the current state of hydrostatic pressure. This finding is in contrast to the standard opinion consisting of the fact that the failure surface remains constant, once it has been reached during an experiment or in situ. In general, the behaviour of cohesionless granular‐material‐like sand is somehow characterised in between fluid and solid, where the solid behaviour results from the angle of internal friction and the confining pressure. Although the friction angle is an intrinsic material property, the confining pressure varies with the boundary conditions, thus defining different solid properties like plastic hardening, softening, and also failure. Based on our findings, it was the goal of the present contribution to introduce an improved setting for the plastic strain hardening and softening behaviour including the newly found yield properties at the limit state. For the identification of the material parameters, a complete triaxial experimental analysis of the tested sand is given. The overall elasto‐plasticity concept is validated by numerical computations of several laboratory foundation‐ and slope‐failure experiments. The performance of the proposed approach is compared with the standard concept of a constant failure surface, where the corresponding yield surfaces are understood as contours of equivalent plastic work or plastic strain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Damage in the form of cracks is predicted to assess the susceptibility of a tunnel to failure due to a blast. The material‐point method is used in conjunction with a decohesive failure model as the basis for the numerical simulations. The assumption of a cylindrical charge as the source for the blast allows the restriction of plane strain and two‐dimensional analyses. In the simulation, a further restriction of a single pressure pulse is used as the source of stress waves that are reflected and refracted after reaching the free surface of the tunnel wall. Three critical zones of significant cracking in the vicinity of a tunnel are identified as potential contributors to tunnel failure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A literature review has shown that there exist adequate techniques to obtain ground reaction curves for tunnels excavated in elastic‐brittle and perfectly plastic materials. However, for strain‐softening materials it seems that the problem has not been sufficiently analysed. In this paper, a one‐dimensional numerical solution to obtain the ground reaction curve (GRC) for circular tunnels excavated in strain‐softening materials is presented. The problem is formulated in a very general form and leads to a system of ordinary differential equations. By adequately defining a fictitious ‘time’ variable and re‐scaling some variables the problem is converted into an initial value one, which can be solved numerically by a Runge–Kutta–Fehlberg method, which is implemented in MATLAB environment. The method has been developed for various common particular behaviour models including Tresca, Mohr–Coulomb and Hoek–Brown failure criteria, in all cases with non‐associative flow rules and two‐segment piecewise linear functions related to a principal strain‐dependent plastic parameter to model the transition between peak and residual failure criteria. Some particular examples for the different failure criteria have been run, which agree well with closed‐form solutions—if existing—or with FDM‐based code results. Parametric studies and specific charts are created to highlight the influence of different parameters. The proposed methodology intends to be a wider and general numerical basis where standard and newly featured behaviour modes focusing on obtaining GRC for tunnels excavated in strain‐softening materials can be implemented. This way of solving such problems has proved to be more efficient and less time consuming than using FEM‐ or FDM‐based numerical 2D codes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The dry‐stone retaining walls (DSRW) have been tipped as a promising solution for sustainable development. However, before recently, their behavior is relatively obscure. In this study, discrete element method (DEM) approach was applied to simulate the plane strain failure of these walls. A commercial DEM package (PFC2D™) was used throughout this study. The authors used a fully discrete approach; thus, both the wall and the backfill were modeled as discrete elements. The methodology for obtaining the micromechanical parameters was discussed in detail; this includes the three mechanical sub‐systems of DSRWs: wall, backfill and interface. The models were loaded progressively until failure, and then the results were compared with the full‐scale experimental results where the walls were loaded, respectively, with hydrostatic load and backfill. Despite its complexity and its intensive calculation time, DEM model can then be used to validate a more simplified approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Strain‐softening in geomaterials often leads to ill‐posed boundary‐valued problems (BVP), which cannot be solved with finite element methods without introducing some kind of regularization such as nonlocal plasticity. Hereafter we propose to apply spectral analysis for testing the performance of nonlocal plasticity in regularizing ill‐posed BVP and producing mesh‐independent solutions when local plasticity usually fails. The spectral analysis consists of examining the eigenvalues and eigenvectors of the global tangential stiffness matrix of the incremental equilibrium equations. Based on spectral analysis, we propose a criterion for passing or failing the test of constitutive regularization in the context of BVP. If the eigenvalues of the tangential operator are all positive then the regularization succeeds, otherwise it fails and may not prevent artificial mesh‐dependent solutions from appearing. The approach is illustrated in the particular case of a biaxial compression with strain‐softening plasticity. In this particular case, local softening plasticity is found to produce negative eigenvalues in the tangential stiffness matrix, which indicates ill‐posed BVP. In contrast, nonlocal softening plasticity always produces positive eigenvalues, which regularizes ill‐posed BVP. The dominant eigenvectors, which generate localized deformation patterns, have a bandwidth independent of mesh size, provided that the mesh is fine enough to capture localization. These mesh‐independent eigenmodes explain why nonlocal plasticity produces numerical solutions that are mesh‐independent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A new numerical approach is proposed in this study to model the mechanical behaviors of inherently anisotropic rocks in which the rock matrix is represented as bonded particle model, and the intrinsic anisotropy is imposed by replacing any parallel bonds dipping within a certain angle range with smooth‐joint contacts. A series of numerical models with β = 0°, 15°, 30°, 45°, 60°, 75°, and 90° are constructed and tested (β is defined as the angle between the normal of weak layers and the maximum principal stress direction). The effect of smooth‐joint parameters on the uniaxial compression strength and Young's modulus is investigated systematically. The simulation results reveal that the normal strength of smooth‐joint mainly affects the behaviors at high anisotropy angles (β > 45°), while the shear strength plays an important role at medium anisotropy angles (30°–75°). The normal stiffness controls the mechanical behaviors at low anisotropy angles. The angle range of parallel bonds being replaced plays an important role on defining the degree of anisotropy. Step‐by‐step procedures for the calibration of micro parameters are recommended. The numerical model is calibrated to reproduce the behaviors of different anisotropic rocks. Detailed analyses are conducted to investigate the brittle failure process by looking at stress‐strain behaviors, increment of micro cracks, initiation and propagation of fractures. Most of these responses agree well with previous experimental findings and can provide new insights into the micro mechanisms related to the anisotropic deformation and failure behaviors. The numerical approach is then applied to simulate the stress‐induced borehole breakouts in anisotropic rock formations at reduced scale. The effect of rock anisotropy and stress anisotropy can be captured. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The smooth‐joint contact model based on distinct element method has been widely used to represent discontinuity in the simulation of fractured rock mass, but there is rare efficient guidance for the selection of proper parameters of smooth‐joint contact model, which is the basement for using this model properly. In this paper, the effect of smooth joint parameters on the macroscopic properties and failure mechanism of jointed rock under triaxial compression test is investigated. The numerical results reveal that the friction coefficient of smooth joint plays a dominant role in controlling mechanical behaviors. The stiffness of smooth joint has a relative small influence on the mechanical behaviors. Poisson ratio decreases with the reduction of normal stiffness but increases with the reduction of shear stiffness. The reduction of smooth joint strength, which is determined by normal strength, cohesion, and friction angle of smooth joint, contributes to the breakage of bonded smooth joint and ultimately decreases the strength of the specimen. We proposed a detailed calibration process for smooth‐joint contact model according to the relationship between smooth‐joint parameters and mechanical properties. By following this process, the numerical results are validated against corresponding experimental results and good agreement between them can be found in stress‐strain curves and failure modes of different joint orientations. Further analyses from the microperspective are performed by looking at transmission of contact force, the nature and distribution of microcracks, and the particle displacement to show the failure process and failure modes.  相似文献   

13.
A new phenomenological macroscopic constitutive model for the numerical simulation of quasi‐brittle fracture and ductile concrete behavior, under general triaxial stress conditions, is presented. The model is particularly addressed to simulate a wide range of confinement stress states, as also, to capture the strong influence of the mean stress value in the concrete failure mechanisms. The model is based on a two‐surface damage‐plastic formulation. The mechanical behavior in different domains of the stress space is separately described by means of a quasi‐brittle or ductile material response:

14.
Rock slope failure is a complex process that usually involves both opening/sliding along pre‐existing discontinuities as well as fracturing of intact rock bridges. Discontinuity persistence is an important factor governing rock slope instabilities. However, traditional slope failure analysis assumes persistent discontinuities, and rock slope fails along a predefined persistent continuous potential failure surface because of the limitations of the analysis tools. This paper proposes the numerical manifold method (NMM) incorporated with a Mohr–Coulomb criterion‐based fracturing algorithm to simulate the progressive failure of rock slopes with non‐persistent joints. Detailed fracturing algorithm is first presented. Then, the NMM enabling fracturing is calibrated through simulating an edge‐cracked plate and the Brazilian test. Lastly, the developed code is applied to investigate the failure process of rock slopes involving non‐persistent joints. Numerical results indicate that the proposed method can capture the opening/sliding along existing discontinuities, the fracturing in intact rock bridges and the final kinematic release. Progressive slope failure is well exhibited. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The development of a new constitutive model would normally require a new procedure to be established for derivation of the incremental response. However, for models generated within the framework of hyperplasticity (using single, multiple or continuous yield surfaces), this derivation can be carried out using standard procedures. In this paper we present first the unified incremental response for a model using a single internal variable for general loading conditions. Next, we develop and explore three different numerical techniques for implementation of this procedure. One of the approaches, which seems superior, is extended to the multi‐surface hyperplastic formulation. Finally, to allow integration of continuous hyperplastic models within the same multi‐surface hyperplastic setting, the issue of discretization of the continuous field of yield surfaces is addressed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The bifurcation and instability conditions in geomechanics are closely related to the elasto‐plastic behaviour. In this paper the potential of a multimechanism elasto‐plastic model to predict various modes of failure is examined. First, a brief overview for the essential aspects of the constitutive model and the development of the elasto‐plastic constitutive matrix for this model are presented. Then, numerical simulations of different drained and undrained paths in the axisymmetric and plane‐strain conditions for the Hostun sand are illustrated. These examples confirm the capacity of the model to reproduce instability and strain localization phenomena. The obtained response is in agreement with experimental observations, theoretical developments and numerical analyses existing in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
This paper generalizes the finite strain Coulomb solution of Vrakas and Anagnostou (Int J Numer Anal Meth Geomech 2014; 38(11): 1131–1148) for the classic tunnel mechanics problem of the ground response curve to elastoplastic grounds satisfying a non‐linear Mohr's failure criterion. A linear (Coulomb‐type) plastic potential function is used, leading to a non‐associated flow law, and edge plastic flow is considered in the plastic zone. The solution for a general non‐linear Mohr's failure criterion is semi‐analytical in that it requires the evaluation of definite integrals. In the special case of the Hoek–Brown criterion, however, these integrals are calculated analytically, resulting in a rigorous closed‐form series solution. The applicability of the derived solution is illustrated through the example of the Yacambú‐Quibor tunnel, where very large deformations were observed when crossing of weak graphitic phyllites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic‐reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5‐m tall, full‐scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well‐documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre‐localization constitutive models, including a family of three‐invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Geotechnical experiments show that Lode angle‐dependent constitutive formulations are appropriate to describe the failure of geomaterials. In the present study, we have adopted one such class of failure criteria along with a versatile constitutive relationship to theoretically analyze the effects of Lode angle on localized shear deformation or shear band formation in loose sand for both drained and undrained conditions. We determine the variation in the possible stress states for shear localization due to the introduction of Lode angle by considering the localized deformation as a bifurcation problem. Further, similar bifurcation analysis is performed for the stress states along a specific loading path, namely, plane strain compression at the constitutive level. In addition, the plane strain compression tests have been simulated as a boundary value finite element problem to see how Lode angle affects the post‐localization response. Results show that the inclusion of a Lode angle parameter within the failure criterion has considerable effects on the onset, plastic strain, and propagation of shear localization in loose sand specimens. For drained condition, we notice early inception of shear localization and multiple band formation when the Lode angle‐dependent failure criterion is used. Undrained localization characteristics, however, found to be independent of Lode angle consideration.  相似文献   

20.
A meso‐scale particle model is presented to simulate the expansion of concrete subjected to alkali‐aggregate reaction (AAR) and to analyze the AAR‐induced degradation of the mechanical properties. It is the first attempt to evaluate the deterioration mechanism due to AAR using the discrete‐element method. A three‐phase meso‐scale model for concrete composed of aggregates, mortar and the interface is established with the combination of a pre‐processing approach and the particle flow code, PFC2D. A homogeneous aggregate expansion approach is applied to model the AAR expansion. Uniaxial compression tests are conducted for the AAR‐affected concrete to examine the effects on the mechanical properties. Two specimens with different aggregate sizes are analyzed to consider the effects of aggregate size on AAR. The results show that the meso‐scale particle model is valid to predict the expansion and the internal micro‐cracking patterns caused by AAR. The two different specimens exhibit similar behavior. The Young's modulus and compressive strength are significantly reduced with the increase of AAR expansion. The shape of the stress–strain curves obtained from the compression tests clearly reflects the influence of internal micro‐cracks: an increased nonlinearity before the peak loading and a more gradual softening for more severely affected specimens. Similar macroscopic failure patterns of the specimens under compression are observed in terms of diagonal macroscopic cracks splitting the specimen into several triangular pieces, whereas localized micro‐cracks forming in slightly affected specimens are different from branching and diffusing cracks in severely affected ones, demonstrating different failure mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号