首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
This paper is concerned with diffuse and other ensuing failure modes in geomaterials when tested under homogeneous states of shearing in various loading programs and drainage conditions. Material instability is indeed the basic property that accounts for the instability of an initially homogeneous deformation field leading to diffuse failure and strain localization in geomaterials. The former is normally characterized by a runaway type of failure accompanied with a sudden and violent collapse of the material in the absence of any localization phenomena. Against this backdrop, we present a brief overview of material instability in elastoplastic solids where one finds a rich source of theoretical concepts including bifurcation, strain localization, diffuse failure and second‐order work, as well as a considerable body of experiments. Some compelling laboratory experimental studies of material instability with focus to diffuse failure are then presented and interpreted based on the second‐order work. Finally, various material instability analyses using an elastoplastic constitutive and a general finite element analysis of the above‐mentioned laboratory experimental tests are presented as a boundary value problem. It is shown that instability can be captured from otherwise uniform stress, density and hydraulic states, whereas uniform deviatoric loads are being applied on the external boundaries of a specimen. Although the numerical simulations reproduce well the laboratory experimental results, they also highlight the hierarchy of failure modes where localization phenomena emerge in the post‐bifurcation regime as a result of a degradation of homogeneity starting from a diffuse mode signalled by a zero second‐order work. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Diffuse and localized failure modes: Two competing mechanisms   总被引:1,自引:0,他引:1  
The concept of failure is one of the most debated in soil mechanics, for two reasons essentially. First, this is a crucial issue in the engineering of structures and geotechnical project design. Second, this is still a challenging academic issue mobilizing significant scientific interest in the development of a unique framework to describe the different failure modes. In this respect, this paper revisits the localized failure mode, replacing the well‐known Rice criterion within the wider context of bifurcation. Considering a micro‐mechanical model, the main theoretical results are covered. In particular, it is established that localized failure is a particular case of failures observed within the so‐called bifurcation domain: the incremental strain within the localization band is associated with a vanishing value of the second‐order work. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a study is made of the generalization of constitutive models for geomaterials from two‐dimensional stress and strain states to three‐dimensional stress and strain states. Existing methods of model generalization are reviewed and their deficiencies are highlighted. A new method is proposed based on geometries of the model imprints on two normal planes. Using the proposed method, various three‐dimensional failure criterions suitable for geomaterials are implemented directly into a two‐dimensional model and the generalized model is identical to its original form for the axially symmetric condition. To demonstrate the application of the proposed method, the Modified Cam Clay model is extended using the Matsuoka–Nakai failure criterion. Simulations of soil behaviour for loading in the principal stress space are presented and analysed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Given the contrasting behaviour observed for geomaterials, for example, during landslides of the flow type, this contribution proposes an original constitutive model, which associates both an elasto‐plastic relation and a Bingham viscous law linked by a mechanical transition criterion. This last is defined as the second‐order work sign for each material point, which is a general criterion for divergence instabilities. Finite element method with Lagrangian integration points is chosen as a framework for implementing the new model because of its well‐known ability to deal with both solid and fluid behaviours in large deformation processes. A first boundary model considering a sample of initially stable soil, a slope and an obstacle is performed. The results show the power of the constitutive model because the consistent evolution of initiation, propagation and arrest of the mudflow is described. A parametric study is led on various plastic and viscous parameters to determine their influence on the flow development and arrest. Finally, forces against the obstacle are compared with good agreement with those of other authors for the same geometry and a pure viscous behaviour. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The cohesive‐frictional nature of cementitious geomaterials raises great interest in the discrete element method (DEM) simulation of their mechanical behavior, where a proper bond failure criterion is usually required. In this paper, the failure of bond material between two spheres was investigated numerically using DEM that can easily reproduce the failure process of brittle material. In the DEM simulations, a bonded‐grain system (composed of two particles and bond material in between) was discretized as a cylindrical assembly of very fine particles connecting two large end spheres. Then, the bonded‐grain system was subjected to compression/tension, shear, rolling and torsion loadings and their combinations until overall failure (peak state) was reached. Bonded‐grain systems with various sizes were employed to investigate bond geometry effects. The numerical results show that the compression strength is highly affected by bond geometry, with the tensile strength being dependent to a lesser degree. The shear, rolling and torsion strengths are all normal force dependent; i.e., with an increase in the normal force, these strengths first increase at a declining rate and then start to decrease upon the normal force exceeding a critical value. The combined actions of shear force, rolling moment and torque lead to a spherical failure envelope in a normalized loading space. The fitted bond geometry factors and bond failure envelopes obtained numerically in this three‐dimensional study are qualitatively consistent with those in previous two‐dimensional experiments. The obtained bond failure criterion can be incorporated into a future bond contact model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
It has been established that the second‐order work criterion is a general necessary condition for all instabilities by divergence in rate‐independent granular materials. The relation between the values of discrete second‐order work at the intergranular contact point level and its global macroscopic value is recalled at the beginning of this paper. Then, the basic purpose of the paper is tackled by an analysis of the main features of second‐order work criterion in relation with the granular microstructure. For that, it is considered a novel micromechanical model (the so‐called ‘H‐microdirectional model’), which has the property to involve three scales: grain scale, mesoscale with a specific granular configuration and continuum mechanics macroscale. Eventually, these exhibited features (a bifurcation stress domain and some instability cones) are qualitatively compared with the ones provided by direct numerical simulations issued from a discrete element model. The ultimate goal is to analyse what happens at the granular scale, when the macrosecond‐order work is vanishing at the macrolevel. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
岩土材料的强度往往表现出很强的各向异性,而已有的各向同性强度准则不能够描述这一特性。提出一个岩土材料的各向异性强度准则。为了描述材料的各向异性,引入了一个由应力张量和组构张量的联合不变量表达的各向异性参数。该参数可以描述加载方向和材料组构方向的夹角。强度准则是基于材料在子午面和偏平面上的破坏特性而建立的,这为描述广义的材料强度各向异性提供了方便。与原各向同性强度准则相比,各向异性强度准则只引入了两个新的模型参数,而且所有的模型参数都可以通过常规的室内试验结果确定。该准则的预测结果与砂土、黏土、天然黏土和岩石的试验结果比较表明,它能够很好地描述岩土材料强度的各向异性  相似文献   

8.
This paper extends the formulation of a recent yield and failure criterion [Mortara G. A new yield and failure criterion for geomaterials. Géotechnique 2008;58(2):125–32] by modifying its shape in the deviatoric representation. Such a modification improves the performance of the surface introducing a constitutive parameter associated to the variation of the Lode angle. The criterion is validated through the comparison with experimental data obtained from multiaxial tests on soils, rocks and concrete. A special form of the criterion will be also derived for numerical applications in order to remove singularities of the previous criterion.  相似文献   

9.
The volumetric compaction due to wetting processes is a phenomenon observed quite often in unsaturated soils. Under certain circumstances, saturation events can result into a sudden and unexpected collapse of the system. These phenomena are usually referred to as wetting‐induced collapses, without providing any detailed theoretical justification for this terminology. In order to predict in a general fashion the occurrence of coupled instabilities induced by saturation processes, a generalization of the theoretical approaches usually employed for saturated geomaterials is here provided. More specifically, this paper addresses the problem of hydro‐mechanical instability in unsaturated soils from an energy standpoint. For this purpose, an extension of the definition of the second‐order work is here suggested for the case of unsaturated porous media. On the basis of some examples of numerical simulations of laboratory tests, coupled hydro‐mechanical instabilities are then interpreted in the light of this second‐order energy measure. Finally, the implications of the theoretical results here presented are commented from a constitutive modelling perspective. Two possible alternative approaches to formulate incremental coupled constitutive relations are indeed discussed, showing how the onset of hydro‐mechanical instabilities can be predicted using an extended form of Hill's stability criterion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
基于非线性破坏准则的边坡稳定性极限分析   总被引:5,自引:0,他引:5  
张迎宾  李亮  赵炼恒  姚辉  任东亚 《岩土力学》2011,32(11):3312-3318
上限定理是求解岩土工程问题的有效工具。以上限定理为理论基础,分析边坡的稳定性问题,并考虑了岩土材料破坏准则的非线性特性。在非线性Mohr-Coulomb破坏准则下,采用条分法与极限分析上限法相结合的方法,对边坡稳定性进行分析。通过切线法引入非线性强度参数 、 ,推导了岩土材料在非线性破坏准则下的相关联流动法则,建立功能方程,推导了边坡直线滑裂面、折线滑裂面和光滑曲线滑裂面安全系数F的计算方程。采用数学规划法计算后与工程实际中常用的边坡稳定性分析方法进行对比,并获得安全系数F =1.0时的稳定性系数Ns。与已有的研究成果进行比较分析,结果表明了该方法的正确性及优越性  相似文献   

11.
This paper deals with the hydromechanical modelling of the initiation of failure in soils with particular reference to landslides. To this end, localized and diffused failure modes are simulated with a finite element model for coupled elasto-plastic variably saturated porous geomaterials, in which the material point instability is detected with the second-order work criterion based on Hill’s sufficient condition of stability. Three different expressions of the criterion are presented, in which the second-order work is expressed in terms of generalized effective stress, of total stress and thirdly by taking into account the hydraulic energy contribution for partially saturated materials. The above-mentioned computational framework has been applied to study two initial boundary value problems: shear failure of a plane strain compression test of globally undrained water-saturated dense sand (where cavitation occurs at strain localization) and isochoric grain matter, and the onset of a flowslide from southern Italy due to rainfall (Sarno-Quindici events, May 5–6 1998). It is shown that the second-order work criterion applied at the material point level detects the local material instability and gives a good spatial indication of the extent of the potentially unstable domains in both the localized and diffused failure mechanisms of the cases analyzed, is able to capture the instability induced by cavitation of the liquid water and gives results according to the time evolution of plastic strains and displacement rate.  相似文献   

12.
非线性破坏准则与岩土材料地基承载力研究   总被引:5,自引:0,他引:5  
杨小礼  郭乃正  李亮 《岩土力学》2005,26(8):1177-1183
根据线性Mohr-Coulomb破坏准则,前人运用极限平衡法、滑移线理论或极限分析等方法求解地基承载力问题,但实际上岩土在剪切破坏过程中破坏准则具有非线性。因此,为了研究非线性破坏准则对地基承载力的影响,基于上限定理,通过“切线法”引进变量,根据能量耗散情况,将承载力问题转变为非线性规划问题,运用“序列二次规划算法”求出地基承载力的最优解。数值计算结果表明,当非线性破坏准则转变为线性破坏准则时,非线性参数对地基承载力有重要影响。  相似文献   

13.
The present paper investigates bifurcation analysis based on the second‐order work criterion, in the framework of rate‐independent constitutive models and rate‐independent boundary‐value problems. The approach applies mainly to nonassociated materials such as soils, rocks, and concretes. The bifurcation analysis usually performed at the material point level is extended to quasi‐static boundary‐value problems, by considering the stiffness matrix arising from finite element discretization. Lyapunov's definition of stability (Annales de la faculté des sciences de Toulouse 1907; 9 :203–274), as well as definitions of bifurcation criteria (Rice's localization criterion (Theoretical and Applied Mechanics. Fourteenth IUTAM Congress, Amsterdam, 1976; 207–220) and the plasticity limit criterion are revived in order to clarify the application field of the second‐order work criterion and to contrast these criteria. The first part of this paper analyses the second‐order work criterion at the material point level. The bifurcation domain is presented in the 3D stress space as well as 3D cones of unstable loading directions for an incrementally nonlinear constitutive model. The relevance of this criterion, when the nonlinear constitutive model is expressed in the classical form (dσ = Mdε) or in the dual form (dε = Ndσ), is discussed. In the second part, the analysis is extended to the boundary‐value problems in quasi‐static conditions. Nonlinear finite element computations are performed and the global tangent stiffness matrix is analyzed. For several examples, the eigenvector associated with the first vanishing eigenvalue of the symmetrical part of the stiffness matrix gives an accurate estimation of the failure mode in the homogeneous and nonhomogeneous boundary‐value problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
岩土材料剪切破坏点安全系数的研究   总被引:1,自引:0,他引:1  
剪切破坏是岩土材料失效的一种主要的形式。针对这种形式强度安全考虑的点安全系数可以考察结构中各部分的安全情况,是结构安全分析的一种重要参考,尤其在由关键点控制的结构中显得尤为重要。摩尔库伦剪切破坏准则在岩土材料研究中被广泛应用,将基于该准则的点安全系数定义在三维广义Mohr空间中推广,得到了适用于不同剪切破坏失效准则的点安全系数定义,同时,在三维广义Mohr空间中推导,得到了岩土材料剪切破坏最小点安全系数的求解方法;最危险截面上偏应力和剪应力的关系,该最危险截面与最小点安全系数对应;以及在一定整体安全度下的失效条件。应用该定义及方法,可以研究判断不同岩土材料剪切破坏的安全情况,从而提高工程建设质量。  相似文献   

15.
This paper presents an elasto‐plastic model for non‐linear analyses of cement‐treated sand. Various laboratory tests were systematically carried out to investigate the pre‐peak and post‐peak behaviours of a cement‐treated sand. On the basis of these experimental results, the new model was built within the framework of a relatively simple elasto‐plastic theory. Two failure criteria are employed to express tensile and shear failure characteristics observed in the experimental results of the cement‐treated sand. The proposed model can describe strain‐hardening and strain‐softening responses under both failure modes. In the strain‐softening rules, the smeared crack concept is used, and a characteristic length is considered to avoid the issue of mesh‐size dependency. Since the failure criterion and strain‐hardening/softening rules are based on the experimental evidences, the model is relatively easy to understand and the parameters used in the model have clear physical meaning. The proposed model was applied to simulate the behaviour of cement‐treated sand in various laboratory tests, allowing for a reasonable comprehensive evaluation. It was demonstrated that the proposed model is suitable for describing both the tensile and shear failure behaviours of cement‐treated sand. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A series of micromechanical tests were conducted to investigate the bond failure criterion of bonded granules considering the effect of bond thickness, with the aim of enhancing the bond contact model used in the distinct element simulations of cemented geomaterials. The granules were idealized in a two‐dimensional context as one pair of aluminum rods bonded by resin epoxy or cement. The mechanical responses of nearly 500 rod pairs were tested under different loading paths to attain the yield loads of bonded granules at variable bond thickness. This study leads to a generic bond failure criterion incorporating the effect of the bond thickness. The results show that the bond compressive resistance largely decreases with increasing bond thickness owing to the presence of the confinement at the bond‐particle interface. The strength envelopes obtained from the combined shear compression tests and combined torsion compression tests have identical functional form, and they decrease in size with increasing bond thickness but remain unchanged in shape. Given the same cementation material, the generic bond strength envelope in a three‐dimensional contact force space under different loading paths remains the same in shape but shrinks with the increase of bond thickness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In nature, due to complex geological process, some geomaterials with block-in-matrix texture exist that characterized by a heterogeneous structure including rock blocks embedded in a small-grained matrix. In literature, these materials also referred as bimrock (block-in-matrix rock). Typical examples of these complex materials are conglomerates, breccias, glacial till, coarse-grained alluviums, and mélanges formations. When dealing with these complex media in engineering, it is important to understand the process by which the geomaterials fail under common loading conditions. In this paper, artificial bimrock specimens were prepared for different percentage of rock block proportions. The failure mechanism under uniaxial compression and indirect tension loading were studied. In order to compare the failure modes with homogeneous specimens, a numerical simulation of laboratory tests including uniaxial compression and Brazilian test was conducted on a typical bimrock and a homogenous specimen. The results showed different features of failure pattern for bimrocks with high proportions of rock blocks in comparison with homogeneous specimens. According to the experimental results, three main features were observed including a continuous tortuous failure surface, multiple localized shear failure surfaces, and detachment of rock blocks from the periphery of specimens.  相似文献   

18.
区路堤边坡,特别是由冻结的砾石填筑的路堤或含冻结的砂砾层的路堤边坡的破坏准则具有极高的非线性.假定冻土为理想弹塑性体,且符合相关联的流动法则,基于极限分析的上限理论,对非线性破坏准则的寒区路堤边坡稳定性问题,提出了一个既考虑了相关的非线性效应,又易于工程计算,且不失必要分析精度的实用方法.在实际工程应用时,可以利用已有的线性问题的分析结果或依据我们提出的方法使问题简化.  相似文献   

19.
The paper presents detailed FE simulation results of concrete elements under mixed‐mode failure conditions according to the so‐called shear‐tension test by Nooru‐Mohamed, characterized by curved cracks. A continuous and discontinuous numerical two‐dimensional approach was used. In order to describe the concrete's behaviour within continuum mechanics, two different constitutive models were used. First, an elasto‐plastic model with isotropic hardening and softening was assumed. In a compression regime, a Drucker–Prager criterion with a non‐associated flow rule was used. In turn, in a tensile regime, a Rankine criterion with an associated flow rule was adopted. Second, an isotropic damage constitutive model was applied with a single scalar damage parameter and different definitions of the equivalent strain. Both constitutive laws were enriched by a characteristic length of micro‐structure to capture properly strain localization. As an alternative approach, the extended finite element method was used. Our results were compared with the experimental ones and with results of other FE simulations reported in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
For prediction of rockfalls, the failure of rock joints is studied. Considering these failures as constitutive instabilities, a second‐order work criterion is used because it explains all divergence instabilities (flutter instabilities are excluded). The bifurcation domain and the loading directions of instabilities, which fulfill the criterion, are determined for any piecewise linear constitutive relation. The instability of rock joints appears to be ruled by coupling features of the behavior (e.g., dilatancy). Depending on the loading parameters, instabilities can lead to failure, even before the plastic limit criterion. Results for two given constitutive relations illustrate the approach. Some given loading paths are especially considered. Constant volume (undrained) shear and τ‐constant paths are stable or not depending on the link between the deviatoric stress and strain along undrained paths, as found for soils. Some unstable loading paths are illustrated. Along these paths, failure before the plastic limit criterion is possible. The corresponding failure rules are determined. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号