首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
Significant amount of slurry waste is produced from mineral processing plants globally constituting high levels of both kaolin and sand in aqueous suspension. Large quantities of slurry and mine tailings require efficient handling, transportation and storage system. The transportation and treatment of kaolin–sand slurry is dependent on its rheological behaviour which is a function of temperature, total solid concentration and pH. In this study, the effects of total solid concentration, pH and temperature on rheological behaviour of kaolin–sand mixture were investigated. These parameters were varied to analyse the viscosity, yield stress, flow index and shear force requirements of the mixed kaolin–sand suspension as a function of these varying parameters. Experimental rheological investigation conducted on rotational stress-controlled rheometer equipped with Peltier concentric cylinder system showed that the kaolin–sand mixture suspension is shear thickening in nature. The shear stress-rate rheograms for the kaolin–sand suspension can be modelled by the Herschel–Bulkley model with high levels of accuracy for pH range of 4–11, temperature range of 20–50 °C and solid concentration of 5–50 %. Solid concentration of the suspension was found to significantly affect the rheological behaviour of the mixture where higher kaolin–sand slurry concentration resulted in greater viscosity and the trend becoming less predictable for solid concentration greater than 50 % by weight. pH was another factor affecting the rheological behaviour of kaolin–sand slurry. pH of 3 or less resulted in the dramatic increase of viscosity of the suspension possibly due to the isoelectric point of the mixture system found between pH of 3 and 4.  相似文献   

2.
A numerical approach is proposed to model the flow in porous media using homogenization theory. The proposed concept involves the analyses of micro‐true flow at pore‐level and macro‐seepage flow at macro‐level. Macro‐seepage and microscopic characteristic flow equations are first derived from the Navier–Stokes equation at low Reynolds number through a two‐scale homogenization method. This homogenization method adopts an asymptotic expansion of velocity and pressure through the micro‐structures of porous media. A slightly compressible condition is introduced to express the characteristic flow through only characteristic velocity. This characteristic flow is then numerically solved using a penalty FEM scheme. Reduced integration technique is introduced for the volumetric term to avoid mesh locking. Finally, the numerical model is examined using two sets of permeability test data on clay and one set of permeability test data on sand. The numerical predictions agree well with the experimental data if constraint water film is considered for clay and two‐dimensional cross‐connection effect is included for sand. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
4.
5.
Kaolin ores in Huichang contains these minerals of quartz sand, kaolin, mica and feldspars. In order to recover these valuable resources, some experiments of screening, classification, magnetic separation, grinding and flotation are carried out on the basis of the kaolin ore properties. The test results indicate that quartz sand concentrate can be directly obtained when vibrating screen size used is 10 meshes. Materials that are smaller than the screen hole are injected to hydraulic cyclones which controlling classification size is 325 meshes; kaolin concentrate containing above 33.70% Al2O3 and 0.37% Fe2O3 can be well beneficiated from the overflow through magnetic separation with one stage rougher and cleaner to remove iron. On the other hand, the hydrocyclone spigot flow to grinding and flotation with one stage rougher and two scavengers, mica and feldspars concentrate can be beneficiated in sequence. Therefore, these valuable minerals of kaolin ores can be realized comprehensive utilization.  相似文献   

6.
Flows with high suspended sediment concentrations are common in many sedimentary environments, and their flow properties may show a transitional behaviour between fully turbulent and quasi‐laminar plug flows. The characteristics of these transitional flows are known to be a function of both clay concentration and type, as well as the applied fluid stress, but so far the interaction of these transitional flows with a loose sediment bed has received little attention. Information on this type of interaction is essential for the recognition and prediction of sedimentary structures formed by cohesive transitional flows in, for example, fluvial, estuarine and deep‐marine deposits. This paper investigates the behaviour of rapidly decelerated to steady flows that contain a mixture of sand, silt and clay, and explores the effect of different clay (kaolin) concentrations on the dynamics of flow over a mobile bed, and the bedforms and stratification produced. Experiments were conducted in a recirculating slurry flume capable of transporting high clay concentrations. Ultrasonic Doppler velocity profiling was used to measure the flow velocity within these concentrated suspension flows. The development of current ripples under decelerated flows of differing kaolin concentration was documented and evolution of their height, wavelength and migration rate quantified. This work confirms past work over smooth, fixed beds which showed that, as clay concentration rises, a distinct sequence of flow types is generated: turbulent flow, turbulence‐enhanced transitional flow, lower transitional plug flow, upper transitional plug flow and a quasi‐laminar plug flow. Each of these flow types produces an initial flat bed upon rapid flow deceleration, followed by reworking of these deposits through the development of current ripples during the subsequent steady flow in turbulent flow, turbulence‐enhanced transitional flow and lower transitional plug flow. The initial flat beds are structureless, but have diagnostic textural properties, caused by differential settling of sand, silt and cohesive mud, which forms characteristic bipartite beds that initially consist of sand overlain by silt or clay. As clay concentration in the formative flow increases, ripples first increase in mean height and wavelength under turbulence‐enhanced transitional flow and lower transitional plug‐flow regimes, which is attributed to the additional turbulence generated under these flows that subsequently causes greater lee side erosion. As clay concentration increases further from a lower transitional plug flow, ripples cease to exist under the upper transitional plug flow and quasi‐laminar plug flow conditions investigated herein. This disappearance of ripples appears due to both turbulence suppression at higher clay concentrations, as well as the increasing shear strength of the bed sediment that becomes more difficult to erode as clay concentration increases. The stratification within the ripples formed after rapid deceleration of the transitional flows reflects the availability of sediment from the bipartite bed. The exact nature of the ripple cross‐stratification in these flows is a direct function of the duration of the formative flow and the texture of the initial flat bed, and ripples do not form in cohesive flows with a Reynolds number smaller than ca 12 000. Examples are given of how the unique properties of the current ripples and plane beds, developing below decelerated transitional flows, could aid in the interpretation of depositional processes in modern and ancient sediments. This interpretation includes a new model for hybrid beds that explains their formation in terms of a combination of vertical grain‐size segregation and longitudinal flow transformation.  相似文献   

7.
Dynamic two‐phase interaction of soil can be modelled by a displacement‐based, two‐phase formulation. The finite element method together with a semi‐implicit Euler–Cromer time‐stepping scheme renders a discrete equation that can be solved by recursion. By experience, it is found that the CFL stability condition for undrained wave propagation is not sufficient for the considered two‐phase formulation to be numerically stable at low values of permeability. Because the stability analysis of the two‐phase formulation is onerous, an analysis is performed on a simplified two‐phase formulation that is derived by assuming an incompressible pore fluid. The deformation of saturated porous media is now captured in a single, second‐order partial differential equation, where the energy dissipation associated with the flow of the fluid relative to the soil skeleton is represented by a damping term. The paper focuses on the different options to discretize the damping term and its effect on the stability criterion. Based on the eigenvalue analyses of a single element, it is observed that in addition to the CFL stability condition, the influence of the permeability must be included. This paper introduces a permeability‐dependent stability criterion. The findings are illustrated and validated with an example for the dynamic response of a sand deposit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, mesoscale hydromechanical simulations are performed to study (1) fracture features and (2) crack‐gas permeability coupling evolution in the context of the tensile splitting test. The mesostructure is based on a 2‐phase 3‐D representation of heterogeneous materials, such as concrete, where stiff aggregates are embedded into a mortar matrix. To take into account these heterogeneities without any mesh adaptation, a weak discontinuity is introduced into the strain field. In addition, a strong discontinuity is also added to take into account microcracking. This mechanical model is cast into the framework of the enhanced finite element method. Concerning the coupling with gas permeability, a double‐porosity method is used to simulate the flow through the cracks and the porosity. The apparent gas permeability is afterwards evaluated by a homogenization method. On the basis of finite element simulations, influence of aggregate size on ultimate crack opening, macroscopic ultimate tensile stress, total dissipated energy, and gas permeability evolution is numerically investigated. Furthermore, gas permeability evolution is also compared with experimental results from the literature. In addition, in the spirit of a sequential multiscale approach, macroscale gas permeability equations are identified from the hydromechanical results coming from the mesoscale computations. These equations lead to a relation between macroscale gas permeability evolution and crack opening. Besides, we show how the aggregate size influences the percolation threshold and that after this threshold, a cubic relation between macroscale gas permeability and crack opening is obtained.  相似文献   

9.
10.
为了研究不同酸碱环境下锌离子对饱和高岭土压缩特性影响,以及锌离子向其中扩散特性,利用室内人工配制的重塑土开展了一维固结试验和土柱扩散试验。试验结果表明,锌离子浓度不高于0.05 mol/L时,污染土的压缩指数变化不大,但氢氧化锌沉淀量的增加会导致高岭土的压缩性略有降低。高岭土处于碱性环境时,其上部自由溶液中锌离子浓度降低最快,中性环境次之,酸性环境时最慢。溶液电导率可间接反映出其中的溶解态锌离子浓度,高岭土处于中性和碱性环境时,土柱上部自由溶液的电导率与溶液中锌离子浓度呈正相关,而当高岭土处于酸性环境时,土柱上部自由溶液的电导率与溶液中锌离子浓度呈负相关,对于这种酸碱土体环境下的反常规律,在利用溶液电导率快速评价重金属离子浓度时需引起重视。  相似文献   

11.
In sandstone, there is a trend between porosity (?) and permeability (k). It is a linear relationship having the form log (k)?=?a?+?(b ?). The slope, intercept, and degree of scatter of the log(k)???? trends vary from formation to another. These variations are attributed to differences in initial grain size and sorting, diagenetic history, cementation, clay content, pore geometry, and compaction history. In the literature, permeability and porosity modeling by using lab experiments was carried out by using unconsolidated sandstone, sand packs, or synthetic particles. Such models cannot be applied to predict flow properties of consolidated natural sandstone. Furthermore in these models, sand grain size, shape, and sorting factors were considered as the main factors that affect porosity and permeability. Hardly, any attention was paid to the confining pressure and the fraction of cementing material that bind the grain to form a coherent rock. If these two crucial aspects are not taken into consideration during the model development, the model cannot be applied to natural consolidated sandstone. The main objective of the present paper is to develop a new model for porosity versus permeability taking into account important factors such as sand grain size and sorting, compaction pressure, and concentration of cementing material that bind the sand grains. The effect for clay swelling or migration was however discarded, as the sand grains were washed prior to consolidation. The sand used in producing the sandstone cores was medium- to fine-sized well-sorted sand grains. The grain’s sphericity was measured to be in the range of (0.8–0.9) with little angularity. The fabricated cores have an average compressive strength of 5,700 psi, which is comparable with Bera sandstone strength. Also, the produced cores were stable in the fluid media as they were subjected to 300 °C to allow cementing material to be crystallized. The aspect of the present work was to analyze the dependence of both the permeability as well as the porosity on the variables of the present study that consist of grain size, cementation fraction, and the confining pressure. Using the experimental data, a linear relationship, in terms of each variable, was developed here that can eventually help researchers to fabricate cores with desired properties. The second step was to generate more general models to be used as references for scholars for further work in this research field. Nonlinear regression analysis was carried out on all the three variables of the present study to obtain two nonlinear correlations: one describes the behavior of permeability and the other describes porosity. In the third step, an advanced correlation that describes permeability versus porosity in a quantitative manner was developed by using nonlinear regression analysis. Permeability was studied accordingly as a function of all the three variables of the present study as well as porosity. This step represents the main objective of this paper.  相似文献   

12.
The links between large‐scale turbulence and the suspension of sediment over alluvial bedforms have generated considerable interest in the last few decades, with past studies illustrating the origin of such turbulence and its influence on flow resistance, sediment transport and bedform morphology. In this study of turbulence and sediment suspension over large sand dunes in the Río Paraná, Argentina, time series of three‐dimensional velocity, and at‐a‐point suspended sediment concentration and particle‐size, were measured with an acoustic Doppler current profiler and laser in situ scattering transmissometer, respectively. These time series were decomposed using wavelet analysis to investigate the scales of covariation of flow velocity and suspended sediment. The analysis reveals an inverse relationship between streamwise and vertical velocities over the dune crest, where streamwise flow deceleration is linked to the vertical flux of fluid towards the water surface in the form of large turbulent fluid ejections. Regions of high suspended sediment concentration are found to correlate well with such events. The frequencies of these turbulent events have been assessed from wavelet analysis and found to concentrate in two zones that closely match predictions from empirical equations. Such a finding suggests that a combination and interaction of vortex shedding and wake flapping/changing length of the lee‐side separation zone are the principal contributors to the turbulent flow field associated with such large alluvial sand dunes. Wavelet analysis provides insight upon the temporal and spatial evolution of these coherent flow structures, including information on the topology of dune‐related turbulent flow structures. At the flow stage investigated, the turbulent flow events, and their associated high suspended sediment concentrations, are seen to grow with height above the bed until a threshold height (ca 0·45 flow depth) is reached, above which they begin to decay and dissipate.  相似文献   

13.
The effect of microfabric on the mechanical behaviour of clays has been explored previously based on the response of dispersed and flocculated microfabrics only. However, the natural clays often have the geometric arrangement of particles between these two extreme cases which can be termed as intermediate microfabric. This paper explores the formation of intermediate microfabric of kaolin clay and its impact on soil’s consolidation behaviour by performing self-weight consolidation, slurry consolidation and 1-D consolidation tests. The effect of calgon content (dispersing agent) on geometric arrangement of the particles has been evaluated through cluster size distribution by performing double hydrometer tests. Then these clay slurries have been used to perform the AFM (Atomic Force Microscopy) test to obtain the variation in average angle of particle orientation with respect to the calgon content present in the slurry. AFM technique provides 3D image of the clay sample and 2D image with Z-information with the potential of measuring intermediate microfabric of clayey soil quantitatively including dispersed and flocculated microfabrics. Other traditional techniques such as SEM, TEM & XRD are limited to only qualitative analysis of soil’s microfabric, thus, having no capability to measure intermediate microfabric of clay. A methodology of preparing bulk specimens of clay with intermediate microfabric has been developed using slurry consolidation technique; and then these specimens have been consolidated under 1-D loading to evaluate the effect of intermediate microfabric on compressibility and permeability of clay. In this study, all the experiments reports that the dispersed type geometric arrangement increases with the increase in calgon content in soil up to 2 % and then the reverse behaviour is observed at 3 %; which may depend on the required amount of sodium cations to neutralize the negatively charged faces of the clay platelets present in the slurry.  相似文献   

14.
塌陷区混合回填膏体是由全尾砂、废石人工制备得到的复合宽粒级散体,其渗透性能直接影响到塌陷区回填体稳定性及次生灾害发生的可能性。采用自制的渗透性试验装置,研究了废石含量、废石粒径对混合回填体渗透系数的影响,并对回填体固有特征参数(粒径小于0.075、0.02 mm颗粒含量、不均匀系数 、平均粒径)与渗透系数之间关联性进行了研究。试验结果表明,回填膏体渗透系数随废石掺量及粒径增大而增加,细粒效应显著。回填体中粒径小于0.075、0.02 mm颗粒含量对其渗透性影响至关重要,与渗透系数呈负指数关系。渗透系数随 值增大而增大。当 20时,渗透系数增加趋于稳定。给出了混合回填体渗透系数定量方程,其结果与试验结果较为一致。  相似文献   

15.
三轴试样钻孔灌砂固结排水效果试验研究   总被引:1,自引:0,他引:1  
徐晗  黄斌  饶锡保  何晓民  徐言勇 《岩土力学》2009,30(11):3242-3248
对渗透性较差的重黏土样进行固结排水试验时,其饱和、固结、剪切过程时间较长。为提高固结排水试验效率,改进了三轴排水工艺,提出在试样中钻孔灌砂形成竖向排水通道,并进行了针对黏土样的固结排水试验的验证。试验结果表明,1 %~3 %置换率的砂井对固结排水试验应力-应变无影响,并有利于加速三轴试样的饱和、固结排水、孔压消散、剪切排水过程,可使试验效率提高5倍以上;试样周边、顶面、底面粘贴滤纸条,再结合试样内部钻孔灌砂,是改善三轴试验排水路径的一种科学合理的、高效的方法,能够获得准确、可靠的E-B模型参数。  相似文献   

16.
Based on hypotheses derived directly from experimental observations of the triaxial behaviour, a constitutive model for fibre reinforced sands is built in this paper. Both the sand matrix and the fibres obey their own constitutive law, whereas their contributions are superimposed using a volumetric homogenization procedure. The Severn‐Trent sand model, which combines well‐known concepts such as critical state theory, Mohr‐Coulomb like strength criterion, bounding surface plasticity and kinematic hardening, is adopted for the sand matrix. Although the fibres are treated as discrete forces with defined orientation, an equivalent continuum stress for the fibre phase is derived to allow the superposition of effects of sand and fibres. The fibres are considered as purely tensile elements following a linear elastic constitutive rule. The strain in the fibres is expressed as a fraction of the strain in the reinforced sample so that imperfect bonding is assumed at the sand‐fibre interface. Only those fibres oriented within the tensile strain domain of the sample can mobilize tensile stress—the orientation of fibres is one of the key ingredients to capture the anisotropic behaviour of fibre reinforced soil that is observed for triaxial compression and extension loading. A further mechanism of partition of the volume of voids between the fibres and the sand matrix is introduced and shown to be fundamental for the simulation of the volumetric behaviour of fibre‐reinforced soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Development of deflation lag surfaces   总被引:3,自引:0,他引:3  
A series of wind tunnel tests were carried out to investigate the development of deflation lags in relation to the non-erodible roughness element concentration. Glass spheres (18 mm in diameter) were placed along the complete length of the wind tunnel working section in regular staggered arrays using three different spacings (d=18, 30 and 60 mm) and completely covered with a 0.27-mm erodible sand. A pre-selected free stream velocity above threshold (8m s?1) was established above the surface and the sediment transport measured at 2-s intervals using a wedge-shaped trap in which an electronic balance is incorporated. Throughout each test, the emerging lag surface was periodically photographed from above at two locations upwind of the trap. The photographs were electronically scanned and analysed to calculate the lag element coverage and location, as well as mean height and frontal area for each time period. Test results indicate that lag development has a profound effect on both the sediment flux and wind profile characteristics. Initially, there is an increase in sediment flux above that for a rippled sand bed because of increased erosion around and reduced kinetic energy loss in highly elastic collisions with the emerging roughness elements. With further emergence, a dynamic threshold is reached whereupon the sediment flux decreases rapidly, tending towards zero. At this point, the supply of grains to the air stream through fluid drag follows a reduction in aerodynamic roughness and, therefore, surface shearing stress. At least as important is the lesser potential for grain ejection at impact because of reduced momentum imparted from the air stream during saltation. Although recent shear stress partitioning models indicate when particle movement may commence on varying surfaces, our experimental results demonstrate that this partitioning has a further direct bearing upon the saltation flux ratio.  相似文献   

18.
不同粒径级砂土渗透特性试验研究   总被引:5,自引:0,他引:5  
苏立君  张宜健  王铁行 《岩土力学》2014,35(5):1289-1294
渗透性是砂土的重要工程性质之一,影响砂土渗透性的因素有很多,比如土体密实程度、土颗粒自身特性、流体性质等,其中孔隙率与颗粒粒径是两个重要影响因素。而以往基于混合粒径的天然砂土的研究很难分别对这两个因素进行独立的研究。基于此,首先开展了单一粒径级砂土的常水头渗透试验,分别研究了同一粒径级砂土渗透系数随孔隙率的变化和同一孔隙率下不同粒径级砂土渗透系数随均值粒径的变化规律。试验结果显示,渗透系数随着孔隙率的增加而线性增加、随均值粒径二次方的增加而线性增加,其中均值粒径的影响较大,其变化能导致渗透系数量级上的差异。在此基础上,开展了多粒径混合砂土的渗透试验,讨论了曲率系数、不均匀系数等级配参数对渗透性的影响,从而将单一粒径级的研究成果推广到天然砂土,最终拟合出渗透系数与相关影响因素的经验公式,以便工程实践参考使用。  相似文献   

19.
The behaviour of naturally occurring geological materials such as clay and sand depends on many factors. For example, stresses, strains, previous stress history, mineralogy and the depositional environment all contribute in some degree to a characteristic that all natural soils share, namely “structure”. The structure of clay, or more generally, the microstructure of microscopically sized clay mineral particles, is just as important as the many other parameters that are used to quantify the performance of clays. This paper examines the microstructure that results from the particle arrangement brought about during reconstitution in the laboratory and considers its relevance to the resulting stress–strain behaviour.

Samples of reconstituted kaolin clay were produced using two different procedures. In the first series of tests, kaolin slurry was simply isotropically compressed in one increment. In the second series, the slurry was first isotropically compressed to a low pressure and then completely remoulded. This was followed by isotropic compression to the same pressure as the other series. Specimens were taken from the two series of samples, reconsolidated at various isotropic pressures, and sheared under undrained conditions.

Scanning Electron Microscope (SEM) images indicated that the monotonically compressed samples (Series 1) exhibited an anisotropic microstructure that was distinct from the remoulded (Series 2) samples. Significant differences were also found in the consolidation and stress–strain characteristics of the samples produced in the two series.  相似文献   


20.
Water active rocks consist of minerals that hold water in their crystalline structure and in pore spaces. Free water from drilling fluid can be attracted by the formation depending on the potential differences between pore space and drilling fluid. The fluid movement into the formation or out of the formation can lead to a change in effective stress, thus causing wellbore failures. In all previous studies it is found that the solute transport from or to the formation is primarily controlled by diffusion process and the effect of advection on solute transfer is negligible for a range of very low permeable shale formations (>10−5 mD). In this study a range of permeable shale formations (10−5 to 10−3 mD) commonly encountered in drilling oil and gas wells are considered to investigate the solute transfer between drilling fluid and formation due to advection. For this purpose a finite element model of fully coupled chemo-hydro-mechanical processes was developed. Results of this study revealed that the solute transfer between the drilling fluid and the shale formation is controlled primarily by permeability of the shale formations. For the range of shale formations studied here, there exists a threshold permeability below which the solute transfer is dominated by diffusion process and above which by fluid in motion (fluid flow). Results from the numerical experiments have shown that when the permeability of shales is greater than this threshold permeability, the chemical potential gradient between the pore fluid and drilling fluid reaches equilibrium faster than that when the permeability of shales is below this threshold value. Also it has been found that when advection is taken into account, effective radial and tangential stresses decrease around the wellbore, particularly near the wellbore wall where the solute concentration has reached near equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号