共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The flow of water–kaolinite mixtures exhibits a non‐Newtonian nature that differs from the flow of Newtonian fluid. The varying viscosities and shear history of non‐Newtonian fluid flows necessitate the use of a rheology model in moving particle semi‐implicit (MPS) for the numerical studies. On the other hand, the Lagrangian method has the advantage of handling free surface flows with large deformation and fragmentation. This study proposes a mesh‐free Lagrangian method, namely, the MPS method, together with a simple rheology model to investigate the non‐Newtonian free surface flows. The rheological parameters required in the rheology model are determined based upon experiments. The proposed method is applied to a water–kaolinite mixture collapse problem and is proved to be capable of reproducing the significant flow features observed in laboratory experiments. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
光滑粒子流体动力学(SPH)是近年来发展起来的一种纯拉格朗日无网格法,并因其在大变形领域内的优势而受到广泛关注。在进行滑坡大变形分析时,流动法则及剪胀角的选取对于边坡失稳后的运动特性有重要的影响。采用Fortran自行编写了基于SPH的边坡稳定性及失稳后大变形分析程序,然后通过2个经典的算例,讨论了不同流动法则及剪胀角的选取对滑坡大变形分析精度的影响。结果表明:(1)剪胀角的选取对土体失稳后的滑动距离有显著影响,随着剪胀角的增大,土体的滑动速度与距离呈明显增大趋势;(2)在关联性流动法则及非关联性流动法则? =1/2? (? 为剪胀角,? 为摩擦角)条件下,土体在大变形过程中会产生过度膨胀,且运动速度与距离要大于实际情况,而采用关联性流动法? =0时,对于非膨胀土可以得到比较令人满意的结果,但对于膨胀土体会使得运动速度和运动距离过小,不符合实际情况。建议在计算膨胀土大变形时,采用非关联性流动法则且适当考虑膨胀性(? =(0.1~0.2)? ),可以得到较好的结果。 相似文献
4.
The method of smoothed particle hydrodynamics (SPH) has recently been applied to computational geomechanics and has been shown to be a powerful alternative to the standard numerical method, that is, the finite element method, for handling large deformation and post‐failure of geomaterials. However, very few studies apply the SPH method to model saturated or submerged soil problems. Our recent studies of this matter revealed that significant errors may be made if the gradient of the pore‐water pressure is handled using the standard SPH formulation. To overcome this problem and to enhance the SPH applications to computational geomechanics, this article proposes a general SPH formulation, which can be applied straightforwardly to dry and saturated soils. For simplicity, the current work assumes hydrostatic pore‐water pressure. It is shown that the proposed formulation can remove the numerical error mentioned earlier. Moreover, this formulation automatically satisfies the dynamic boundary conditions at a submerged ground surface, thereby saving computational cost. Discussions on the applications of the standard and new SPH formulations are also given through some numerical tests. Furthermore, techniques to obtain the correct SPH solution are also proposed and discussed throughout. As an application of the proposed method, the effect of the dilatancy angle on the failure mechanism of a two‐sided embankment subjected to a high groundwater table is presented and compared with that of other solutions. Finally, the proposed formulation can be considered a basic formulation for further developments of SPH for saturated soils. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
5.
本构模型是描述泥石流流变特性的关键,也是决定其动力过程数值模拟准确性的核心问题之一。泥石流流体属多相混合物,现有的研究已证实其存在剪切增稠或剪切变稀的现象,传统基于Bingham及Cross线性本构关系的数值模型难以准确描述泥石流流变特性。文中探讨了Bingham模型在低剪应变率下的数值发散问题,在光滑粒子流体动力学(SPH)方法框架上建立了整合Herschel-Bulkley-Papanastasiou(HBP)本构关系的稀性泥石流动力过程三维数值模型。相比传统基于浅水波假设的二维数值模型,所述方法从三维尺度建立SPH形式下的泥石流浆体纳维?斯托克斯方程并进行数值求解,可获取泥石流速度场时空分布及堆积形态,同时采用HBP本构关系描述泥石流流变特性,能在确保数值收敛的前提下反映泥石流流体在塑性屈服过渡段及大变形状态下应力?应变的非线性变化。为验证提出方法的合理性,结合小型模型槽实验观测进行了对比,结果表明数值模拟与实测结果基本吻合。 相似文献
6.
A hierarchical mathematical model for analyses of coupled chemo‐thermo‐hygro‐mechanical behaviour in concretes at high temperature is presented. The concretes are modelled as unsaturated deforming reactive porous media filled with two immiscible pore fluids, i.e. the gas mixture and the liquid mixture, in immiscible–miscible levels. The thermo‐induced desalination process is particularly integrated into the model. The chemical effects of both the desalination and the dehydration processes on the material damage and the degradation of the material strength are taken into account. The mathematical model consists of a set of coupled, partial differential equations governing the mass balance of the dry air, the mass balance of the water species, the mass balance of the matrix components dissolved in the liquid phases, the enthalpy (energy) balance and momentum balance of the whole medium mixture. The governing equations, the state equations for the model and the constitutive laws used in the model are given. A mixed weak form for the finite element solution procedure is formulated for the numerical simulation of chemo‐thermo‐hygro‐mechanical behaviours. Special considerations are given to spatial discretization of hyperbolic equation with non‐self‐adjoint operator nature. Numerical results demonstrate the performance and the effectiveness of the proposed model and its numerical procedure in reproducing coupled chemo‐thermo‐hygro‐mechanical behaviour in concretes subjected to fire and thermal radiation. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
7.
Computational fluid dynamics and discrete element method (CFD–DEM) is extended with the volume of fluid (VOF) method to model free‐surface flows. The fluid is described on coarse CFD grids by solving locally averaged Navier–Stokes equations, and particles are modelled individually in DEM. Fluid–particle interactions are achieved by exchanging information between DEM and CFD. An advection equation is applied to solve the phase fraction of liquid, in the spirit of VOF, to capture the dynamics of free fluid surface. It also allows inter‐phase volume replacements between the fluid and solid particles. Further, as the size ratio (SR) of fluid cell to particle diameter is limited (i.e. no less than 4) in coarse‐grid CFD–DEM, a porous sphere method is adopted to permit a wider range of particle size without sacrificing the resolution of fluid grids. It makes use of more fluid cells to calculate local porosities. The developed solver (cfdemSolverVOF) is validated in different cases. A dam break case validates the CFD‐component and VOF‐component. Particle sedimentation tests validate the CFD–DEM interaction at various Reynolds numbers. Water‐level rising tests validate the volume exchange among phases. The porous sphere model is validated in both static and dynamic situations. Sensitivity analyses show that the SR can be reduced to 1 using the porous sphere approach, with the accuracy of analyses maintained. This allows more details of the fluid phase to be revealed in the analyses and enhances the applicability of the proposed model to geotechnical problems, where a highly dynamic fluid velocity and a wide range of particle sizes are encountered. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
This paper presents a unified modeling framework to investigate the impacts of debris flow on flexible barriers, based on coupled computational fluid dynamics and discrete element method (CFD‐DEM). We consider a debris flow as a mixture of fluid and particles where the fluid and particle phases are modeled by the CFD and the DEM, respectively. The fluid‐particle coupling is considered by the exchange of interaction forces between CFD and DEM calculations. The flexible barrier is simulated by the DEM as a network of bonded particles with remote interactions. The proposed coupled CFD‐DEM approach enables us to conveniently handle the complicated three‐way interactions among the fluid, the particles, and the flexible barrier structure for debris flow impact simulations. The proposed approach is first used to investigate the influences of channel inclination and the volumetric solid fraction in a debris mixture on the impact force, the resultant deformation, and the retained mass in a flexible barrier. The predictions agree well with existing experimental and numerical studies. We further examine the possible failure modes of a flexible barrier under debris flow impact and their underlying mechanisms. The performance of different components in a flexible barrier system, including single wires, double twists and cables, and their load sharing mechanisms, are carefully evaluated. The proposed unified framework offers a novel, promising pathway towards physically based, quantitative analysis and design of flexible barriers for debris flow mitigation. 相似文献
9.
Considering the effect of non‐Darcy flow, the perturbation theory and normal mode method are introduced to analyze the linear stability of one‐dimensional non‐Darcy flow of gases in broken rocks. A stability criterion for linear systems is obtained theoretically when the steady states of pressure and velocity fields are perturbed, and the effects of the physical parameters on the linear governing system are studied theoretically and numerically. It is pointed out that the deviation coefficient from Darcy's law plays an important role in the governing system; the increasing absolute value of deviation coefficient from Darcy's law stabilizes the system, and the numerical results are shown graphically. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
Ha H. Bui Jayantha K. Kodikara Abdelmalek Bouazza Asadul Haque Pathegama G. Ranjith 《国际地质力学数值与分析法杂志》2014,38(13):1321-1340
Segmental retaining wall (SRW) systems are commonly used in geotechnical practice to stabilize cut and fill slopes. Because of their flexibility, these systems can tolerate minor movements and settlements without incurring damage or crack. Despite these advantages, very few numerical studies of large deformations and post‐failure behavior of SRW systems are found in the current literature. Traditional numerical methods, such as the finite element method, suffer from mesh entanglement, thus are unable to simulate large deformations and flexible behavior of retaining wall blocks in SRW systems. To overcome the above limitations, a novel computational framework based on the smoothed particle hydrodynamics (SPH) method was developed to simulate large deformations and post‐failure behavior of soils and retaining wall blocks in SRW systems. The proposed numerical framework is a hybrid continuum/discontinuum approach that can model soil as an elasto‐plastic material and retaining wall blocks as independent rigid bodies associated with both translational and rotational degrees of freedom. A new contact model is proposed within the SPH framework to simulate the interaction between the soil and the blocks and between the blocks. As an application of the proposed numerical method, a two‐dimensional simulation of an SRW collapse was simulated and compared to experimental results conducted under the same conditions. The results showed that the proposed computational approach provided satisfactory agreement with the experiment. This suggests that the new framework is a promising numerical approach to model SRW systems. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
12.
In this paper, 3D steady‐state fluid flow in a porous medium with a large number of intersecting fractures is derived numerically by using collocation method. Fluid flow in the matrix and fractures is described by Darcy's law and Poiseuille's law, respectively. The recent theoretical development presented a general potential solution to model the steady‐state flow in fractured porous media under a far‐field condition. This solution is a hypersingular integral equation with pressure field in the fracture surfaces as the main unknown. The numerical procedure can resolve the problem for any form of fractures and also takes into account the interactions and the intersection between fractures. Once the pressure field and then the flux field in fractures have been determined, the pressure field in the porous matrix is computed completely. The basic problem of a single fracture is investigated, and a semi‐analytical solution is presented. Using the solution obtained for a single fracture, Mori‐Tanaka and self‐consistent schemes are employed for upscaling the effective permeability of 3D fractured porous media. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
This paper presents a method that incorporates a non‐associated flow rule into the limit analysis to investigate the influence of the dilatancy angle on the factor of safety for the slope stability analysis. The proposed method retain's the advantage of the upper bound method, which is simple and has no stress involvement in the calculation of the energy dissipation and the factor of safety. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
14.
This paper investigates the two‐dimensional flow problem through an anisotropic porous medium containing several intersecting curved fractures. First, the governing equations of steady‐state fluid flow in a fractured porous body are summarized. The flow follows Darcy's law in matrix and Poiseuille's law in fractures. An infinite transversal permeability is considered for the fractures. A multi‐region boundary element method is used to derive a general pressure solution as a function of discharge through the fractures and the pressure and the normal flux on the domain boundary. The obtained solution fully accounts for the interaction and the intersection between fractures. A numerical procedure based on collocation method is presented to compute the unknowns on the boundaries and on the fractures. The numerical solution is validated by comparing with finite element solution or the results obtained for an infinite matrix. Pressure fields in the matrix are illustrated for domains containing several interconnected fractures, and mass balance at the intersection points is also checked. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
This study focuses on non‐coaxial flow behavior of cohesionless soil undergoing cyclic rotational shear, with a special interest in the effects of particle‐scale characteristics. To this end, we perform a series of 2D discrete element simulations with various particle shapes, inter‐particle coefficient of friction, initial density, and stress ratios. The validity and efficacy of the numerical model is established by systematically comparing numerical simulation results with existing laboratory testing results. Such comparison shows that the numerical simulations are capable of capturing mechanical behavior observed in laboratory testing under rotational shear. We further demonstrate and quantify a strong yet simple relationship between the deviatoric part of the normalized strain increment and the non‐coaxial angle, denoted by and ψ, respectively. This quantitative correlation between ψ and is independent of applied stress ratio, initial and current void ratio, and the number of cycles applied, but dependent on the principal stress orientation and particle‐scale characteristics. At the same , specimens with higher inter‐particle friction angle or smaller particle aspect ratio show greater non‐coaxial angles. A simple model is able to fit this ψ‐ relationship well, which provides a useful relationship that can be exploited in developing constitutive models for rotational shearing. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
In this paper, the non‐coaxial relation between the principal plastic strain increments and the principal stresses, which results from the internal friction in geomaterials, is analyzed, and the phenomenon of the unbalanced development of plastic flow in two conjugate directions is discussed. A non‐coaxial, unbalanced plastic flow model for Coulomb frictional materials is developed and used to determine the orientation of shear band in geomaterials. It is shown that the unbalanced index r of plastic flow has important effect on the orientation of the shear band, and the orientation determined by the conventional plastic flow theory is only a special case of the proposed model when r=0. This result soundly explains the reason that the geomaterials with the same internal friction angle and dilatancy angle can have very different shear band orientations. In addition, the difference between the intrinsic and apparent dilatancy angles is analyzed, and it is emphasized that the dilatancy angle commonly used in practice is indeed the apparent dilatancy angle. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
17.
Lynda C. Howard Paul J. Wood Malcolm T. Greenwood Helen M. Rendell Stephen J. Brooks Patrick D. Armitage Chris A. Extence 《第四纪科学杂志》2010,25(8):1270-1283
The sub‐fossil head capsules of larval Chironomidae have been widely exploited as palaeoecological indicators of lentic ecosystems but their value in the interpretation of the evolution of lotic systems has been underutilised by comparison. Recent research has demonstrated that the remains of Chironomidae are abundant within fluvial sequences and that they offer a valuable record of channel change and floodplain evolution that may complement that derived from existing biological and sedimentological techniques. This paper demonstrates the use of Chironomidae in characterising the palaeoflow regime of a large mid–late Holocene floodplain palaeochannel (5470–4960 to 1530–1350 cal. a BP) of the River Trent (Derbyshire, UK). Using expert knowledge and published information regarding flow preferences, larval Chironomidae were incorporated into the PalaeoLIFE (Lotic‐invertebrate Index for Flow Evaluation) methodology. The results clearly demonstrate that the sub‐fossil record provided by Chironomidae can be used to characterise changes in the flow regime within palaeochannel sections. At the scale of the channel section, species‐ and generic‐level ecological associations can provide useful information regarding habitat characteristics, including the presence of instream vegetation, mineral substrates and woody debris. The ability to undertake environmental reconstruction and channel evolution history was significantly enhanced through the application of a multi‐proxy approach, by incorporating other aquatic insect groups (Trichoptera and Coleoptera) into the PalaeoLIFE metric, together with sedimentological data. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
18.
Concrete cracking in reinforced concrete structures is governed by two mechanisms: the activation of bond forces at the steel–concrete interface and the bridge effects of the reinforcement crossing a macro‐crack. The computational modelling of these two mechanisms, acting at different scales, is the main objective of this paper. The starting point is the analysis of the micro‐mechanisms, leading to an appropriate choice of (measurable) state variables describing the energy state in the surface systems: on the one side the relative displacement between the steel and the concrete, modelling the bond activation; on the other hand, the crack opening governing the bridge effects. These displacement jumps are implemented in the constitutive model using thermodynamics of surfaces of discontinuity. On the computational side, the constitutive model is implemented in a discrete crack approach. A truss element with slip degrees of freedom is developed. This degree of freedom represents the relative displacement due to bond activation. In turn, the bridge effect is numerically taken into account by modifying the post‐cracking behaviour of the contact elements representing discrete concrete cracks crossed by a rebar. First simulation results obtained with this model show a good agreement in crack pattern and steel stress distribution with micro‐mechanical results and experimental results. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
19.
Studying the effect of non‐spherical micro‐particles on Hoek–Brown strength parameter mi using numerical true triaxial compressive tests 下载免费PDF全文
The strength parameter mi in the Hoek–Brown strength criterion is empirical and was developed by trial and error. To better understand the fundamental relationship between mi and the physical characteristics of intact rock, this paper presents a systematic study of mi by representing intact rock as a densely packed cemented particle material and simulating its mechanical behavior using particle flow modeling. Specifically, the three‐dimensional particle flow code (PFC3D) was used to conduct numerical true triaxial compression tests on intact rock and to investigate the effect of non‐spherical micro‐particle parameters on mi. To generate numerical intact rock specimens containing non‐spherical micro‐particles, a new genesis process was proposed, and a specific loop algorithm was used based on the efficiency of the process and the acceptability of generated specimens. Four main parameters—number, aspect ratio, size, and shape—of non‐spherical micro‐particles were studied, and the results indicated that they all have great effect on mi. The strength parameter mi increases when the number, aspect ratio, or size is larger or the shape becomes more irregular, mainly as a result of the higher level of interlocking between particles. This confirms the observations from engineering experience and laboratory experiments. To simulate the right strength parameter mi, it is important to use appropriate non‐spherical micro‐particles by controlling these four parameters. This is further demonstrated by the simulation of two widely studied rocks, Lac du Bonnet granite and Carrara marble. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
This paper presents a numerical procedure of material parameter identification for the coupled hydro‐mechanical boundary value problem (BVP) of the self‐boring pressuremeter test (SBPT) in clay. First, the neural network (NN) technique is applied to obtain an initial estimate of model parameters, taking into account the possible drainage conditions during the expansion test. This technique is used to avoid potential pitfalls related to the conventional gradient‐based optimization techniques, considered here as a corrector that improves predicted parameters. Parameter identification based on measurements obtained through the pressuremeter expansion test and two types of holding tests is illustrated on the Modified Cam clay model. NNs are trained using a set of test samples, which are generated by means of finite element simulations of SBPT. The measurements obtained through expansion and consolidation tests are normalized so that NN predictors operate independently of the testing depth. Examples of parameter determination are demonstrated on both numerical and field data. The efficiency of the combined parameter identification in terms of accuracy, effectiveness and computational effort is also discussed. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献