首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A pore-scale numerical model based on Smoothed Particle Hydrodynamics (SPH) is described for modelling fluid flow phenomena in porous media. Originally developed for astrophysics applications, SPH is extended to model incompressible flows of low Reynolds number as encountered in groundwater flow systems. In this paper, an overview of SPH is provided and the required modifications for modelling flow through porous media are described, including treatment of viscosity, equation of state, and no-slip boundary conditions. The performance of the model is demonstrated for two-dimensional flow through idealized porous media composed of spatially periodic square and hexagonal arrays of cylinders. The results are in close agreement with solutions obtained using the finite element method and published solutions in the literature. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Smoothed particle hydrodynamics (SPH) is a versatile technique which can be applied to single and multiphase flow through porous media. The versatility of SPH is offset by its computational expense which limits the practicability of SPH for large problems involving low Reynolds number flow. A parallel pore-scale numerical model based on SPH is described for modeling flow phenomena in porous media. Aspects of SPH which complicate parallelization are emphasized. The speed of the method is demonstrated to be proportional to the number of processors for test cases where load balance was achieved. The parallel algorithm permits the application of SPH to more complicated porous media problems than previously considered. For such problems, best performance is achieved when several soil grains are simulated by each processor. Finally, future applications of the method and possible extensions are discussed.  相似文献   

3.
In this paper, a series of multimaterial benchmark problems in saturated and partially saturated two‐phase and three‐phase deforming porous media are addressed. To solve the process of fluid flow in partially saturated porous media, a fully coupled three‐phase formulation is developed on the basis of available experimental relations for updating saturation and permeabilities during the analysis. The well‐known element free Galerkin mesh‐free method is adopted. The partition of unity property of MLS shape functions allows for the field variables to be extrinsically enriched by appropriate functions that introduce existing discontinuities in the solution field. Enrichment of the main unknowns including solid displacement, water phase pressure, and gas phase pressure are accounted for, and a suitable enrichment strategy for different discontinuity types are discussed. In the case of weak discontinuity, the enrichment technique previously used by Krongauz and Belytschko [Int. J. Numer. Meth. Engng., 1998; 41:1215–1233] is selected. As these functions possess discontinuity in their first derivatives, they can be used for modeling material interfaces, generating only minor oscillations in derivative fields (strain and pressure gradients for multiphase porous media), as opposed to unenriched and constrained mesh‐free methods. Different problems of multimaterial poro‐elasticity including fully saturated, partially saturated one, and two‐phase flows under the assumption of fully coupled extended formulation of Biot are examined. As a further development, problems involved with both material interface and impermeable discontinuities, where no fluid exchange is permitted across the discontinuity, are considered and numerically discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes the application of a three-dimensional lattice Boltzmann method (LBM) to Newtonian and non-Newtonian (Bingham fluid in this work) flows with free surfaces. A mass tracking algorithm was incorporated to capture the free surface, whereas Papanastasiou’s modified model was used for Bingham fluids. The lattice Boltzmann method was first validated using two benchmarks: Newtonian flow through a square cross-section tube and Bingham flow through a circular cross-section tube. Afterward, the dam-break problem for the Newtonian fluid and the slump test for Bingham fluid were simulated to validate the free-surface-capturing algorithm. The numerical results were in good agreement with analytical results, as well as other simulations, thereby proving the validity and correctness of the current method. The proposed method is a promising substitute for time-consuming and costly physical experiments to solve problems encountered in geotechnical and geological engineering, such as the surge and debris flow induced by a landslide or earthquake.  相似文献   

5.
Simulation of large deformation and post‐failure of geomaterial in the framework of smoothed particle hydrodynamics (SPH) are presented in this study. The Drucker–Prager model with associated and non‐associated plastic flow rules is implemented into the SPH code to describe elastic–plastic soil behavior. In contrast to previous work on SPH for solids, where the hydrostatic pressure is often estimated from density by an equation of state, this study proposes to calculate the hydrostatic pressure of soil directly from constitutive models. Results obtained in this paper show that the original SPH method, which has been successfully applied to a vast range of problems, is unable to directly solve elastic–plastic flows of soil because of the so‐called SPH tensile instability. This numerical instability may result in unrealistic fracture and particles clustering in SPH simulation. For non‐cohesive soil, the instability is not serious and can be completely removed by using a tension cracking treatment from soil constitutive model and thereby give realistic soil behavior. However, the serious tensile instability that is found in SPH application for cohesive soil requires a special treatment to overcome this problem. In this paper, an artificial stress method is applied to remove the SPH numerical instability in cohesive soil. A number of numerical tests are carried out to check the capability of SPH in the current application. Numerical results are then compared with experimental and finite element method solutions. The good agreement obtained from these comparisons suggests that SPH can be extended to general geotechnical problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (uw formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Smoothed particle hydrodynamics (SPH) is a Lagrangian method based on a meshless discretization of partial differential equations. In this review, we present SPH discretization of the Navier-Stokes and advection-diffusion-reaction equations, implementation of various boundary conditions, and time integration of the SPH equations, and we discuss applications of the SPH method for modeling pore-scale multiphase flows and reactive transport in porous and fractured media.  相似文献   

8.
It is well known that for a sufficiently high seepage velocity, the governing flow law of porous media is nonlinear (J. Computers & Fluids 2010; 39 : 2069–2077). However, this fact has not been considered in the studies of soil‐pore fluid interaction and in conventional soil mechanics. In the present paper, a fully explicit dynamic finite element method is developed for nonlinear Darcy law. The governing equations are expressed for saturated porous media based on the extension of the Biot (J. Appl. Phys. 1941; 12 : 155–164) formulation. The elastoplastic behavior of soil under earthquake loading is simulated using a generalized plasticity theory that is composed of a yield surface along with non‐associated flow rule. Numerical simulations of porous media subjected to horizontal and vertical components of ground motion excitations with different permeability coefficients are carried out; while computed maximum pore water pressure is specially taken into consideration to make the difference between Darcy and non‐Darcy flow regimes tangible. Finally, the effect of non‐Darcy flow on the evaluated liquefaction potential of sand in comparison to conventional Darcy law is examined. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a numerical model for simulating free surface flow in porous media with spatially varying porosity. The governing equations are based on the mixture theory. The resistance forces between solid and fluid is assumed to be nonlinear. A multiphase SPH approach is presented to solve the governing equations. In the multiphase SPH, water is modeled as a weakly compressible fluid, and solid phase is discretized by fixed solid particles carrying information of porosity. The model is validated by several numerical examples including seepage through specimen, fast flow through rockfill dam and wave interaction with porous structure. Good agreements between numerical results and experimental data are obtained in terms of flow rate and evolution of free surface. Parameter study shows that (1) the nonlinear resistance law provides more accurate results; (2) particle size and porosity have significant influence on the porous flow.  相似文献   

10.
A numerical approach is proposed to model the flow in porous media using homogenization theory. The proposed concept involves the analyses of micro‐true flow at pore‐level and macro‐seepage flow at macro‐level. Macro‐seepage and microscopic characteristic flow equations are first derived from the Navier–Stokes equation at low Reynolds number through a two‐scale homogenization method. This homogenization method adopts an asymptotic expansion of velocity and pressure through the micro‐structures of porous media. A slightly compressible condition is introduced to express the characteristic flow through only characteristic velocity. This characteristic flow is then numerically solved using a penalty FEM scheme. Reduced integration technique is introduced for the volumetric term to avoid mesh locking. Finally, the numerical model is examined using two sets of permeability test data on clay and one set of permeability test data on sand. The numerical predictions agree well with the experimental data if constraint water film is considered for clay and two‐dimensional cross‐connection effect is included for sand. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Contaminant migration through soil is usually modelled mathematically using the dispersion–advection equation. This type of model finds application when planning the remediation of contaminated land, predicting the movement of polluted groundwater and designing engineered landfills. Usually the analysis assumes that the porous media through which the contaminant migrates is stationary. However, the construction of landfills on clay soils means that the soil beneath the landfill will undergo time‐dependent deformation as the soil consolidates. To date, there are no published data on the effect a deforming porous media may have on contaminant transport beneath a landfill; indeed, there appears to be no theory of contaminant migration through a deforming soil. In this paper, a one‐dimensional theory of contaminant migration through a saturated deforming porous media is developed based on a small and large strain analysis of a consolidating soil and conservation of contaminant mass. By selection of suitable parameters, the new transport equation reduces to the familiar one‐dimensional dispersion–advection equation for a saturated soil with linear, reversible, equilibrium controlled sorption of the contaminant onto the soil skeleton. Analytic solutions to a quasi‐steady‐state contaminant transport problem for a deforming media are presented, and a preliminary assessment made of the potential importance of soil deformation on the results of a contaminant migration analysis. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Within the framework of compressible multi‐phase flow through deformable porous media, wave–soil interactions in the near‐shore region during wave runup and drawdown are modeled. Critical non‐dimensional parameters governing the interaction processes are identified. Within the context of wave basin and centrifuge wave tank facilities, we propose scaling relations for the experimental investigations of the transient and steady‐state responses of wave–soil systems. Numerical simulations are conducted to illustrate and confirm the theoretical and scaling analyses. Based on the simulations results, the implications on the design of experiments and interpretation of results are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Fully coupled, porous solid–fluid formulation, implementation and related modeling and simulation issues are presented in this work. To this end, coupled dynamic field equations with u?p?U formulation are used to simulate pore fluid and soil skeleton (elastic–plastic porous solid) responses. Present formulation allows, among other features, for water accelerations to be taken into account. This proves to be useful in modeling dynamic interaction of media of different stiffnesses (as in soil–foundation–structure interaction). Fluid compressibility is also explicitly taken into account, thus allowing excursions into modeling of limited cases of non‐saturated porous media. In addition to these features, present formulation and implementation models in a realistic way the physical damping, which dissipates energy. In particular, the velocity proportional damping is appropriately modeled and simulated by taking into account the interaction of pore fluid and solid skeleton. Similarly, the displacement proportional damping is physically modeled through elastic–plastic processes in soil skeleton. An advanced material model for sand is used in present work and is discussed at some length. Also explored in this paper are the verification and validation issues related to fully coupled modeling and simulations of porous media. Illustrative examples describing the dynamical behavior of porous media (saturated soils) are presented. The verified and validated methods and material models are used to predict the behavior of level and sloping grounds subjected to seismic shaking. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
We describe a new approach for simulation of multiphase flows through heterogeneous porous media, such as oil reservoirs. The method, which is based on the wavelet transformation of the spatial distribution of the single-phase permeabilities, incorporates in the upscaled computational grid all the relevant data on the permeability, porosity, and other important properties of a porous medium at all the length scales. The upscaling method generates a nonuniform computational grid which preserves the resolved structure of the geological model in the near-well zones as well as in the high-permeability sectors and upscales the rest of the geological model. As such, the method is a multiscale one that preserves all the important information across all the relevant length scales. Using a robust front-detection method which eliminates the numerical dispersion by a high-order total variation diminishing method (suitable for the type of nonuniform upscaled grid that we generate), we obtain highly accurate results with a greatly reduced computational cost. The speed-up in the computations is up to over three orders of magnitude, depending on the degree of heterogeneity of the model. To demonstrate the accuracy and efficiency of our methods, five distinct models (including one with fractures) of heterogeneous porous media are considered, and two-phase flows in the models are studied, with and without the capillary pressure.  相似文献   

15.
In this article we present closed‐form solutions for the undrained variations in stress, pore pressure, deformation and displacement inside hollow cylinders and hollow spheres subjected to uniform mechanical pressure instantaneously applied to their external and internal boundary surfaces. The material is assumed to be a saturated porous medium obeying a Mohr–Coulomb model failure criterion, exhibiting dilatant plastic deformation according to a non‐associated flow rule which accounts for isotropically strain hardening or softening. The instantaneous response of a porous medium submitted to an instantaneous loading is undrained, i.e. without any fluid mass exchange. The short‐term equilibrium problem to be solved is now formally identical to a problem of elastoplasticity where the constitutive equations involve the undrained elastic moduli and particular equivalent plastic parameters. The response of the model is presented (i) for extension and compression undrained triaxial tests, and (ii) for unloading problems of hollow cylinders and spheres through the use of appropriately developed closed‐form solutions. Numerical results are presented for a plastic clay stone with strain hardening and an argilite with strain softening. The effects of plastic dilation, of the strain softening law and also of geometry of the cavity on the behaviour of the porous medium have been underlined. Analytical solutions provide valuable benchmarks enabling various numerical methods in undrained conditions with a finite boundary to be verified. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, quasistatic models are developed for the slow flow of compressible fluids through porous solids, where the solid exhibits fading memory viscoelasticity. Problems of this type are important in practical geomechanics contexts, for example, in the context of fluid flow through unconsolidated reservoir sands and of wellbore deformation behaviour in gas and oil shale reservoirs, all of which have been studied extensively. For slow viscous fluid flow in the poro-viscoelastic media we are able to neglect the dynamic effects related to inertia forces, as well as the dissipation associated with the viscous flows. This is in contrast to the vast body of work in the poro-elastic context, where much faster flow of the viscous fluids may give rise to memory effects associated with microflows in pores of the solid media. Such problems have been treated extensively in both the dynamic and quasistatic cases. We are taking a specific type of the porous medium subject to slow deformation processes possibly inducing moderate pressure gradients and flow rates characterised by negligible inertia effects. As the result of homogenisation of such a two-phase medium, we observe the fading memory behaviour in the Biot modulus which controls the pressure increase due to skeleton macroscopic deformation and pore fluid content. Although our derivation leads to a result which is consistent with the formal phenomenological approach proposed by Biot (J Appl Phys 23:1482–1498, 1962), we offer the reader more insight into the structure of the poro-viscoelastic constitutive relations obtained; in particular, we can show that the Biot compressibility evolves in time according to the creep function while the skeleton stiffness is driven by the relaxation function.  相似文献   

17.
A Lagrangian particle‐based method, smooth particle hydrodynamics (SPH), is used in this paper to model the flow of self‐compacting concretes (SCC) with or without short steel fibres. An incompressible SPH method is presented to simulate the flow of such non‐Newtonian fluids whose behaviour is described by a Bingham‐type model, in which the kink in the shear stress vs shear strain rate diagram is first appropriately smoothed out. The viscosity of the SCC is predicted from the measured viscosity of the paste using micromechanical models in which the second phase aggregates are treated as rigid spheres and the short steel fibres as slender rigid bodies. The basic equations solved in the SPH are the incompressible mass conservation and Navier–Stokes equations. The solution procedure uses prediction–correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting temporal velocity field is then implicitly projected on to a divergence‐free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. The results of the numerical simulation are benchmarked against actual slump tests carried out in the laboratory. The numerical results are in excellent agreement with test results, thus demonstrating the capability of SPH and a proper rheological model to predict SCC flow and mould‐filling behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Conventional modelling of transport problems for porous media usually assumes that the Darcy flow velocities are steady. In certain practical situations, the flow velocity can exhibit time‐dependency, either due to the transient character of the flow process or time dependency in the boundary conditions associated with potential flow. In this paper, we consider certain one‐ and three‐dimensional problems of the advective transport of a chemical species in a fluid‐saturated porous region. In particular, the advective flow velocity is governed by the piezo‐conduction equation that takes into account the compressibilities of the pore fluid and the porous skeleton. Time‐ and/or mesh‐refining adaptive schemes used in the computational modelling are developed on the basis of a Fourier analysis, which can lead to accurate and optimal solutions for the advective transport problem with time‐ and space‐dependent advective flow velocity distributions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Based on the Biot theory, the exact solutions for one‐dimensional transient response of single layer of fluid‐saturated porous media and semi‐infinite media are developed, in which the fluid and solid particles are assumed to be compressible and the inertial, viscous and mechanical couplings are taken into account. First, the control equations in terms of the solid displacement u and a relative displacement w are expressed in matrix form. For problems of single layer under homogeneous boundary conditions, the eigen‐values and the eigen‐functions are obtained by means of the variable separation method, and the displacement vector u is put forward using the searching method. In the case of nonhomogeneous boundary conditions, the boundary conditions are first homogenized, and the displacement field is constructed basing upon the eigen‐functions. Making use of the orthogonality of eigen‐functions, a series of ordinary differential equations with respect to dimensionless time and their corresponding initial conditions are obtained. Those differential equations are solved by the state‐space method, and the series solutions for three typical nonhomogeneous boundary conditions are developed. For semi‐infinite media, the exact solutions in integral form for two kinds of nonhomogeneous boundary conditions are presented by applying the cosine and sine transforms to the basic equations. Finally, three examples are studied to illustrate the validity of the solutions, and to assess the influence of the dynamic permeability coefficient and the fluid inertia to the transient response of porous media. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Li  Chen  Wang  Zhenzhen  King  Michael J. 《Computational Geosciences》2021,25(5):1647-1666

The Fast Marching Method (FMM) has been applied to characterize the transient drainage volume and to simulate flow as a function of time in porous media using the concept of the “diffusive time of flight” (DTOF). The DTOF (τ) provides a spatial coordinate which reduces the three dimensional pressure diffusivity equation to an equivalent one dimensional formulation. It is obtained from the solution to the Eikonal equation via the FMM. Previous applications of this approach have solved the flow equations numerically or by using an analytic asymptotic approximation. Both solution approaches rely upon three characteristics. (1) Accurate solution for the DTOF irrespective of the degree of heterogeneity within a reservoir model. (2) The approximation of the three dimensional pressure solution in terms of the τ coordinate. (3) Accurate representation and discretization of the drainage volume, on which the asymptotic and numerical flow simulations are based. The second and third of these characteristics are specific to reservoir engineering applications, and provide the focus of this study. Analysis of the drainage volume shows that the near well region requires special treatment, leading to a composite discretization for the drainage volume. This discretization has a direct impact upon the calculation of the well test pressure derivative when the asymptotic approximation is used for pressure transient interpretation. For flow simulation, the discretization directly impacts the calculation of the well index and the intercell transmissibility computed in the τ coordinate, and places additional constraints on the discretization of the drainage volume. These new results are validated by comparison with a commercial finite difference flow simulator, and are shown to be more accurate than earlier computational approaches.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号