首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Interface damage and delamination is usually accompanied by frictional slip at contacting interfaces under compressive normal stress. The present work is concerned with an analysis of progressive interface failure using the cohesive crack model with the critical stress softening and frictional traction present at the contact. Both monotonic and cyclic loadings are considered for anti‐plane shear of an elastic plate bonded to a rigid substrate by means of cohesive interface. An analytical solution can be obtained by neglecting the effect of minor shear stress component. The analysis of progressive delamination process revealed three solution types, namely: short, medium and long plate solutions. The long plate solution was obtained under an assumption of quasistatic progressive growth of the delamination zone. In view of snap back response, the quasistatic deformation process cannot be executed by either traction or displacement control. The states of frictional slip accompanied by shake down or incremental failure are distinguished in the case of cyclic loading, related to load amplitude and structural dimensions. The analysis provides a reference solution for numerical treatment of more complex cases. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
以贺兰山岩画、云冈石窟等中常见的硅质胶结砂岩为研究对象,对不同温变速率冻融后岩样进行称重、超声波测试和单轴压缩试验,探究了冻融后岩石物理力学性质随冻融温变速率的变化规律;根据冻融后岩石受载过程中的声发射和微震特征,揭示了温变速率对冻融后岩石内部不同尺度裂纹扩展的影响规律及其内在机制。研究表明:(1)随着温变速率增加,岩样冻融后的微裂纹增多,颗粒间联结强度减弱,峰值强度、弹性模量降低,破坏应变及损伤参量De、Dv增大;(2)冻融岩石受载过程中,微裂纹具有“初始压密―扩展孕育―急速扩展”的演化特征,宏观裂纹演化过程可分为“匀速扩展-急速扩展”两个阶段,其中宏观裂纹的急速扩展阶段还呈现出“孕育-扩展-再孕育-再扩展”的波浪式发展特点;温变速率越大,冻融后岩石受载过程中的微裂纹、宏观裂纹扩展越快,且更易于进入急速扩展阶段;当温变速率增大到一定数值后,微裂纹、宏观裂纹从加载开始即以较高速率扩展,直至岩样破坏;(3)微裂纹孕育阶段和加载全过程的声发射振铃相对增长速率,以及宏观裂纹匀速扩展阶段的相对时长、微震振铃相对增长速率均与损伤参量De、Dv具有较好的拟合关系,能够反映冻融循环对岩石的初始损伤作用;(4)冻胀力随温变速率增加而增大,导致不同温变速率冻融后岩样的初始损伤不同,这是引起冻融后岩石受载过程中裂纹扩展、声震特性出现显著差异的内在原因。  相似文献   

3.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A methodology is developed in SPH framework to analyze the behavior of preexisting multiple intersecting discontinuities or joints in rock material. The procedure does not require any additional unknowns to represent discontinuities and to capture velocity jump across them. Instead, a discontinuity is represented by a set of joint particles placed along the discontinuity plane, in which relative velocity and traction vector is evaluated, obeying the Mohr–Coulomb friction law with zero tension constrain. For failure of continuous rock material, the Drucker–Prager yield criterion with tensile cracking is employed in the elastic‐plastic constitutive model. Free‐sip, no‐slip, and symmetric boundary conditions are also implemented in SPH framework for proper representation of physical system. The paper analyzes behavior of a rock sample having a discontinuity plane under uniaxial loading and compares velocity and stress with a theoretical solution derived considering effective vertical stiffness of the joint planes. The efficacy of the proposed method is successfully demonstrated by solving another two problems of jointed rock mass under uniaxial and gravitational loading conditions.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
张向东  李军  孙琦  易富  曲直 《岩土力学》2018,39(11):4149-4156
为研究冻土在不同温度下的弹性模量退化与动力特佂,通过对不同负温条件下冻土试样进行循环加、卸载试验,获得其在动荷载作用下的应力-应变滞回曲线与疲劳损伤寿命。按照疲劳寿命与应力幅之间的关系确定了冻土在不同温度下的疲劳损伤参数。根据冻土的弹性模量退化规律提出了动弹模衰减控制方程并建立了冻土唯象疲劳损伤模型。根据冻土实测的循环加卸载滞回曲线特征,提出了理想和非理想滞回圈情况下阻尼比联合分析方法;基于Kelvin模型建立了滞回圈演化规律与弹性模量退化及加载时间的数学联系。研究发现:考虑了动弹模衰减影响的唯象疲劳损伤模型描述了冻土的加速疲劳损伤特征;理想滞回与非理想滞回阻尼比联合分析方法考虑滞回圈的实际演化特征;基于弹性模量退化的Kelvin流变模型建立了滞回圈曲线与加、卸载时间的数学联系。  相似文献   

6.
Based on the unsaturated triaxial experiments for the intact fourth period Middle Pleistocene Epoch loess (Q2l loess), the mechanical characteristic of Q2l loess is studied. According to the continuum damage mechanics and elastic–plastic theory, the damage potential function and loading function were deduced. Besides, plastic deformation and irreversible damage deformation are supposed to obey Hyushin’s postulate. The elastoplastic damage constitutive model and damage evolution law of the unsaturated intact Q2 loess are set up. Comparing the experiment curves with the computation result of this model, it is shown that the model can stimulate the mechanics characteristics of Q2 loess well.  相似文献   

7.
This paper presents a damage‐viscoplastic consistency model for numerical simulation of brittle fracture in heterogeneous rocks. The model is based on a combination of the recent viscoplastic consistency model by Wang and the isotropic damage concept with separate damage variables in tension and compression. This approach does not suffer from ill‐posedness, caused by strain softening, of the underlying boundary/initial value problem since viscoplasticity provides the regularization by introducing a length scale effect under dynamic loading conditions. The model uses the Mohr–Coulomb yield criterion with the Rankine criterion as a tensile cut‐off. The damage law in compression is calibrated via the degradation index concept of Fang and Harrison. Thereby, the model is able to capture the brittle‐to‐ductile transition occurring in confined compression at a certain level of confinement. The heterogeneity of rock is accounted for by the statistical approach based on the Weibull distribution. Numerical simulations of confined compression test in plane strain conditions demonstrate a good agreement with the experiments at both the material point and structural levels as the fracture modes are realistically predicted. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
对石英云母片岩进行三轴压缩蠕变试验,研究丹巴水电站石英云母片岩的三轴蠕变特性及其各向异性特性。按轴向荷载与层理面关系加工成平行组和垂直组2组试件,开展分级加载方式进行不同围压条件下的蠕变试验。试验研究表明,石英云母片岩具有蠕变特性,包括瞬时变形、衰减蠕变、稳定蠕变和加速蠕变阶段;采用带Kachanov蠕变损伤律的蠕变模型来描述石英云母片岩的蠕变特性,并进行蠕变参数辨识,拟合结果显示此模型能很好地描述石英云母片岩的蠕变特性;根据试验结果获得2组试件的长期屈服强度、破坏形态、瞬时变形参数和稳定蠕变速率,分析表明石英云母片岩的蠕变力学特性具有明显的各向异性特性。层理面与轴向荷载垂直的试件较层理面与轴向荷载平行的试件的强度、弹性剪切模量、体积模量和黏性系数相对较大,表现出较高的抗变形和抗破坏能力;平行组以剪切破坏为主,垂直组破坏时出现侧向鼓胀现象,显示出延性破坏的特点;2组石英云母片岩试件的瞬时应变量和稳定蠕变速率都随着应力水平的提高而增大。  相似文献   

9.
This paper presents a damage–viscoplastic cap model for rocks with brittle and ductile behavior under low‐velocity impact loading, which occurs, e.g. in percussive drilling. The model is based on a combination of the recent viscoplastic consistency model by Wang and the isotropic damage concept. This approach does not suffer from ill posedness—caused by strain softening—of the underlying boundary/initial‐value problem since viscoplasticity provides a regularization under dynamic loading by introducing an internal length scale. The model uses the Drucker–Prager (DP) yield function with the modified Rankine criterion as a tension cut‐off and a parabolic cap surface as a compression cut‐off. The parabolic cap is smoothly fitted to the DP cone. The strain softening law in compression is calibrated with the degradation index concept of Fang and Harrison. Thereby, the model is able to capture the brittle‐to‐ductile transition and hardening behavior of geomaterials under highly confined compression, which is the prevailing stress state under a bit‐button in percussive drilling. Rock strength heterogeneity is characterized statistically at the structural level using the Weibull distribution. An explicit time integrator is chosen for solving the FE‐discretized equations of motion. The contact constraints due to the impact of an indenter are imposed with the forward increment Lagrange multiplier method that is compatible with explicit time integrators. The model is tested at the material point level with various uniaxial and triaxial tests. At the structural level confined compression, uniaxial tension tests and a rock sample under low‐velocity impact are simulated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A three‐phase soil model is proposed to simulate stress wave propagation in soil mass to blast loading. The soil is modelled as a three‐phase mass that includes the solid particles, water and air. It is considered as a structure that the solid particles form a skeleton and their voids are filled with water and air. The equation of state (EOS) of the soil is derived. The elastic–plastic theory is adopted to model the constitutive relation of the soil skeleton. The damage of the soil skeleton is also modelled. The Drucker–Prager strength model including the strain rate effect is used to describe the strength of the soil skeleton. The model is implemented into a hydrocode Autodyn. The recorded results obtained by explosion tests in soil are used to validate the proposed model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The stability of integration is essential to numerical simulations especially when solving nonlinear problems. In this work, a continuum damage mechanics model proposed by the first author is implemented with an integration method named cutting plane algorithm (CPA) to improve the robustness of the simulation. This integration method is one type of return mapping algorithm that bypasses the need for computing the gradients. We compare the current integration method with the previous direct method, and the result shows that the cutting plane algorithm exhibits excellent performance under large loading rate conditions. To enhance accuracy of the new method, a control procedure is utilized in the implementation of the algorithm based on error analysis. Thereafter, the theory of poromechanics is utilized with the damage model to account for the effects of fluid diffusion. Laboratory tests simulated with finite element method illustrate distinct behaviors of shale with different loading rates and indicate the development of microcrack propagation under triaxial compression. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
熊玉春  房营光 《岩土力学》2007,28(3):544-548
基于各向同性弹塑性损伤和Prevost模型的基本理论,把弹塑性等向硬化、运动硬化和各向同性损伤结合起来,推导了循环荷载作用下不排水饱和软黏土的弹塑性动力损伤本构模型。由循环累积塑性偏应变建立损伤演化方程,以描述循环加载对软黏土结构的破坏作用,并通过对循环三轴试验的模拟验证了模型的有效性。结果表明,提出的模型能较好地描述饱和软黏土在循环荷载作用下的变形、孔压变化及模量损伤过程。  相似文献   

13.
A modification to the nonlinear Pastor–Zienkiewicz–Chan (PZC) constitutive model without any change in the number of model parameters is introduced in order to simulate stiffness degradation of dense sands at dynamic loading. The PZC model is based on generalized plasticity and was verified by good prediction of liquefaction and undrained behavior of saturated sand. The PZC is a robust model that can predict drained dynamic behavior of sands, especially stiffness increase in loose sand at reloading of dynamic loading. Yet, this model does not show stiffness degradation of dense sand at reloading. The modification is made through modifying the stress memory factor, H DM, which is multiplied by the plastic modulus, H L. This modification does not influence reloading behavior of loose sand. The modified PZC model is verified via results of drained cyclic tests. Two cyclic triaxial tests on loose and dense specimens, along with two cyclic plane strain tests on dense sand are utilized for validation. The model simulation shows that the modified PZC model is able to predict the stiffness degradation of dense sand at reloading well.  相似文献   

14.
刘洋  赵明阶 《岩土力学》2009,30(Z1):47-52
建立单一微裂纹在单轴压缩荷载作用下的力学模型,采用宏观复合型断裂理论中的最大周向应力理论,求出单一微裂纹达到稳定时的形态尺寸.利用分形损伤理论,求出不同荷载阶段的分形维数;由分形维数的定义导出了不同荷载阶段的裂纹个数的变化情况;结合单一微裂纹的形态尺寸,求出不同荷载阶段中岩石孔隙率与荷载值之间的关系;利用目前被广泛采用的超声波纵波速度与孔隙率的关系式,最终导出单轴压缩荷载作用下岩石超声波纵波速度与应力的理论关系式.进行岩石声-应力的试验测试,根据试验成果作出声-应力曲线,并与理论声-应力曲线进行比对,结果表明,理论模型比较适合于反映岩石受载全过程中的后半部分的声-应力关系.  相似文献   

15.
为了揭示岩石变形的破坏机理以及岩石材料产生损伤的本质原因,文章对岩石材料变形规律和力学特性进行分析后,再以损伤变量作为影响岩石变形和力学性能变化的内变量,采用能量原理、有效应力原理和统计损伤理论构建了一种基于弹性能释放率的新型岩石统计损伤本构模型。该损伤模型进一步完善了岩石损伤本构模型的理论体系,弥补了传统损伤模型无法合理解释引发岩石破坏原因的不足。利用岩石试验数据对损伤模型的参数进行确定,并将损伤演化模型代入弹性能-应变模型中,分析在加载过程中岩石弹性能变化的规律。结果表明:模型曲线与试验曲线在峰前变形阶段几乎重合,说明损伤模型可以很好地反映岩石的变形特性;在初始加载阶段,岩石的损伤变量随着轴向应变的增大而增大,说明在荷载作用下,岩石内部裂隙逐渐发展发育,使得岩石材料的损伤逐步积累;在围压达到10 MPa以上时,损伤-应变曲线基本重合。同时,在初始加载时刻,损伤-应变曲线增长率急剧上升,大约在岩石应变为0.01%时,损伤-应变曲线趋于平稳变化状态;且由于岩石在峰值应力点附近损伤迅速累积,进而使得损伤变量在数值上快速增大到1,这说明了围压的增大使得岩石破坏极限得到显著的提升。  相似文献   

16.
A computational method, incorporating the finite element model (FEM) into data assimilation using the particle filter, is presented for identifying elasto‐plastic material properties based on sequential measurements under the known changing traction boundary conditions to overcome some difficulties in identifying the parameters for elasto‐plastic problems from which the existing inverse analysis strategies have suffered. A soil–water coupled problem, which uses the elasto‐plastic constitutive model, is dealt with as the geotechnical application. Measured data on the settlement and the pore pressure are obtained from a synthetic FEM computation as the forward problem under the known parameters to be identified for both the element tests and the ground behavior during the embankment construction sequence. Parameter identification for elasto‐plastic problems, such as soil behavior, should be made by considering the measurements of deformation and/or pore pressure step by step from the initial stage of construction and throughout the deformation history under the changing traction boundary conditions because of the embankment or the excavation because the ground behavior is highly dependent on the loading history. Thus, it appears that sequential data assimilation techniques, such as the particle filter, are the preferable tools that can provide estimates of the state variables, that is, deformation, pore pressure, and unknown parameters, for the constitutive model in geotechnical practice. The present paper discusses the priority of the particle filter in its application to initial/boundary value problems for elasto‐plastic materials and demonstrates a couple of numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
张平阳  夏才初  周舒威  周瑜  胡永生 《岩土力学》2015,36(12):3354-3359
循环加-卸载岩石本构模型是预测压气储能洞室长期稳定性的关键,但目前还没有适用的本构模型,因此,提出了一种能够描述岩石循环加载和卸载的本构模型。鉴于岩石在循环作用下损伤不断累积,将基于Weibull分布的岩石损伤软化模型进行拓展,并用内变量疲劳本构模型描述每个循环的初始模量和卸载模量的变化,进而得到循环加-卸载作用下的岩石本构模型,然后将该模型与现有的试验结果进行对比。该模型物理意义明确,涉及的参数较少,且便于拟合。提出的循环加-卸载下岩石本构模型对试验数据拟合效果较好,能较准确地反映循环荷载上、下限值对应的轴向应变,也能反映出循环内部变形模量衰减的趋势。该模型的成功建立为循环加-卸载下岩石本构模型的研究提供了新思路。  相似文献   

18.
Using TAW-2000KN electro-hydraulic servo rock press machines and the American Physical Acoustics Company’s SH-II acoustic emission systems, experimental studies began to address the mechanical properties in different beddings of loaded coal and the related acoustic emission characteristics, established based on the acoustic emission damage model, and verify the model. The results show that the mechanical properties of different coal sample beddings are distinctive, with maximum uniaxial compressive strength and elastic modulus of vertical stratification of coal samples and the minimum Poisson’s ratio. Thus, the minimum uniaxial compressive strength and elastic modulus of oblique bedding coal samples along with the maximum Poisson’s ratio in the processes of loading result in different bedding coal samples having different stress–strain curves, especially when different bedding coal samples experience the stages of fissure compression, elastic deformation, plastic deformation and instability and destruction. In addition, the displacement proportions of each stage of the loading process have relatively obvious differences: the loading times of vertical, parallel and oblique bedding coal are 495, 382 and 331 s, respectively, and their acoustic emission mutation points of peak stress are approximately 60, 41 and 33%, respectively. Thus, we can use the mutation point as precursor information to estimate the damage intensity in different bedding seams. The theoretical and experimental stress–strain curves obtained by the coal damage model are basically identical, verifying the reliability of the model and reflecting the feasibility of acoustic emission technology in the study of coal damage. The results can effectively forecast coal and gas outburst hazard in coal mines, especially highly gassy and outburst mines. It can also make comprehensive predictions for flooding accidents, roof fall accidents and other disasters, and provide valuable evacuation time for underground coal mine workers. The results are of great scientific significance in safeguarding the safety of coal mines.  相似文献   

19.
Accurate prediction of the interactions between the nonlinear soil skeleton and the pore fluid under loading plays a vital role in many geotechnical applications. It is therefore important to develop a numerical method that can effectively capture this nonlinear soil‐pore fluid coupling effect. This paper presents the implementation of a new finite volume method code of poro‐elasto‐plasticity soil model. The model is formulated on the basis of Biot's consolidation theory and combined with a perfect plasticity Mohr‐Coulomb constitutive relation. The governing equation system is discretized in a segregated manner, namely, those conventional linear and uncoupled terms are treated implicitly, while those nonlinear and coupled terms are treated explicitly by using any available values from previous time or iteration step. The implicit–explicit discretization leads to a linearized and decoupled algebraic system, which is solved using the fixed‐point iteration method. Upon the convergence of the iterative method, fully nonlinear coupled solutions are obtained. Also explored in this paper is the special way of treating traction boundary in finite volume method compared with FEM. Finally, three numerical test cases are simulated to verify the implementation procedure. It is shown in the simulation results that the implemented solver is capable of and efficient at predicting reasonable soil responses with pore pressure coupling under different loading situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a new purely viscoplastic soil model based on the subloading surface concept with a mobile centre of homothety, enabling the occurrence of viscoplastic strains inside the yield surface and avoiding the abrupt change in stiffness of the traditional overstress viscoplastic models. This is required for overconsolidated soils. The model is formulated to reproduce the soil rate‐dependent behaviour under cyclic loading (changes in loading direction) and incorporates both initial and induced anisotropy, as well as destructuring. The model shows good qualitative response to some imposed three‐dimensional stress paths under quasi‐inviscid (elastoplastic) behaviour. Some of the main time‐dependent aspects of soil behaviour that the model is capable of reproducing were also illustrated. The capability of the model to adequately reproduce the results from an undrained triaxial test performed on stiff overconsolidated clays from the Lisbon region (Formação de Benfica), with an unloading–reloading deviatoric stress cycle at constant mean stress, that incorporates a series of staggered fast loading and creep stages, was evaluated. The model was able to reproduce well the main observed aspects of the time‐dependent stress–strain response and pore pressure evolution of a stiff overconsolidated clay under complex loading. The revised and generalised viscoplastic subloading surface concept is viable and can be applied to a consistent extension to viscoplasticity, including in the interior of the yield surface, of existing elastoplastic models formulated for soils and other materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号