首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FERRY  JOHN M. 《Journal of Petrology》1995,36(4):1039-1053
Contact-mctamorphic assemblages in ophicarbonate from the Bergellaureole correspond either to model isobaric invariant T-XCO2points [Atg-Cal-Di-Tr-Fo (6 samples) and Atg-Cal-Tr-Fo-Dol (2)]or to isobaric univariant T-XCO2, curves [Tr-Cal-Di-Atg (18),Tr-Dol-Atg-Cal (1), Atg-Cal-Fo-Di (1), and Atg-Cal-Tr-Fo (1)].Calcite-dolomite thermometry and mineral-fluid equilibria inthe invariant assemblages record T=440–540C at P=3•5kbar. Equilibrium metamorphic fluids were very H2O rich withX CO2,=0•001–0•027. In the invariant assemblagesTr + Fo were produced by prograde decarbonation-dehydrationreactions. In contrast, measured modes and reaction texturesin samples with univariant assemblages indicate thai Tr wasproduced by carbonation reactions. The apparent paradox of simultaneousdecarbonation reactions in the model isobaric invariant assemblagesand carbonation reactions in univariant assemblages is resolvedby local mineral-fluid equilibrium and fluid flow through ophicarbohatesin the direction of decreasing temperature as the aureole heated.Time-integrated flux (q) was computed from measured reactionprogress in 28 samples for models of both horizontal and verticaldown-temperature flow. Results are similar, with q decreasingrapidly from (0•2–5•1) 105 cm3 fluid/cm2 rock1•3–1•7 km from the intrusion to 0–0•6105cm3/cm2 at 1•8–4•0 km. The decrease in q ismore consistent with vertical than horizontal flow. Variationsin time-integrated flux of more than an order of magnitude arerecorded by samples from the same outcrop. The absence of carbonatein adjacent metaperidotite indicates that flow was confinedto the ophicarbonate. Channelized, spatially heterogeneous,vertical flow can be explained by the brecciation and strongvertical foliation of the ophicarbonate relative to surroundingmassive metaperidotite. Generation of metamorphicfluids by decarbonation-dehydrationreactions within the ophicarbonates explains larger averageflux 1–2 km from the intrusion compared with more distalpoints. KEY WORDS: Bergell; contact metamorphism; fluid flow; ophicarbonate *Telephone: (410) 516-8121. Fax: (410) 516-7933  相似文献   

2.
Emplacement of mantle-derived magma (magmatic accretion) isoften presumed or inferred to be an important cause of regionalgranulite facies metamorphism and crustal anatexis. The juxtapositionof mafic cumulates and regionally distributed granulite faciesrocks has led some to consider the Ivrea zone (northern Italy,Southern Alps) as an important exposure that demonstrates thiscausal relationship. However, regional PTt paths indicated bymetamorphic reaction textures and PT conditions inferred fromgeothermobarometry indicate that the emplacement of mafic plutonicrocks (Mafic Complex) at the Ivrea zone occurred during decompressionfrom ambient pressures at the regional thermal maximum. Fieldand petrographic observations, supported by PT estimates, indicatethat regional retrograde decompression and emplacement of theupper parts of the Mafic Complex probably accompanied extensionduring the Late Carboniferous–Early Permian. A spatiallyrestricted decompression-melting event accompanied final emplacement,depleting supracrustal rocks enclosed by an  相似文献   

3.
Corella marbles in the Mary Kathleen Fold Belt were infiltratedby fluids during low-pressure (200-MPa) contact metamorphismassociated with the intrusion of the Burstall granite at 1730–1740Ma. Fluids emanating from the granite [whole-rock (WR) 18O=8.1–8.6%]produced Fe-rich massive and banded garnet—clinopyroxeneskarns [18O(WR)=9.1–11.9%]. Outside the skarn zones, marblemineralogies define an increase in temperature (500 to >575C) and XCO2 (0.05 to >0.12) towards the granite, andmost marbles contain isobarically univariant or invariant assemblagesin the end-member CaO–MgO–Al2O3–SiO2–H2O–CO2system. Marbles have calcite (Cc) 18O and 13C values of 12.3–24.6%and –1.0 to –3.9%, respectively. A lack of down-temperaturemineral reactions in the marbles suggests that pervasive fluidinfiltration did not continue after the thermal peak of contactmetamorphism. The timing of fluid flow probably correspondsto a period of high fluid production and high intrinsic permeabilitiesduring prograde contact metamorphism. The petrology and stableisotope geochemistry of the marbles suggest that these rockswere infiltrated by water-rich fluids. If fluid flow occurredup to the peak of contact metamorphism, the mineralogical andisotopic resetting is best explained by fluids flowing up-temperaturetoward the Burstall granite. However, if fluid flow ceased beforthe peak of regional metamorphism, the fluid flow directioncannot be unambiguously determined. At individual outcrops,marble 18O(Cc) values vary by several permil over a few squaremetres, suggesting that fluid fluxes varied by at least an orderof magnitude on the metre to tens-of-metre scale. Fluids werefocused across lithological layering; however, mesoscopic fracturesare not recognized. The focusing of fluids was possibly viamicrofractures, and the variation in the degree of resettingmay reflect variations in microcrack density and fracture permeability.The marble—skarn contacts represent a sharp discontinuityin both major element geochemistry and 18O values, suggestingthat, at least locally, little fluid flow occurred across thesecontacts.  相似文献   

4.
Contact metamorphism of siliceous dolomite in the southern partof the metamorphic aureole of the Alta stock (Utah, USA) producedthe prograde isograd sequence: talc (Tc), tremolite (Tr), forsterite(Fo), and periclase (Per). Calcite (Cc)–dolomite (Do)geothermometry and phase equilibria define a general progradeT–X(CO2) path of decreasing X(CO2) with rising temperaturefor the dolomite. High-variance assemblages typify the aureole.Per + Cc and Fo + Cc + Do characterize the inner aureole (Perand Fo zones), and Tr + Do + Cc and Tc + Do + Cc are widespreadin the outer aureole (Tr and Tc zones). Low-variance assemblagesare rare and the thickness of reaction zones (coexisting reactantand product minerals) at the isogradic reaction fronts are narrow(tens of metres or less). The mineral assemblages, calculatedprogress of isograd reactions, and the prograde T–X(CO2)path all indicate that massive dolomite was infiltrated by significantfluxes of water-rich fluids during prograde metamorphism, andthat the fluid flow was down-temperature and laterally awayfrom the igneous contact. Fluid infiltration continued throughat least the initial retrograde cooling of the periclase zone.Down-T fluid flow is also consistent with the results of Cc–Dogeothermometry and patterns of 18O depletion in this area. Theclose spatial association of reacted and unreacted chert nodulesin both the tremolite and talc zones plus the formation of tremoliteby two reactions indicate that the outer aureole varied in X(CO2),and imply that fluid flow in the outer aureole was heterogeneous.The occurrence of dolomite-rich and periclase (brucite)-absent,high-  相似文献   

5.
The Tertiary Beinn an Dubhaich granite intruded at 75OC and05 kb into siliceous dolostones and limestones of the UpperDurness Group in Strath, Skye, with the consequent developmentof talc, tremolite, diopside, olivine, and periclase in thebulk of the aureole, and abundant fluoro-borosilicate skarnsimmediately adjacent to the pluton. With increasing grade thelimestones develop the mineral sequence talc, tremolite, diopside,and olivine, whereas the dolostones develop the sequence talc,tremolite, olivine, and periclase. The abundant chert nodulesin the dolostones take either of the two reaction paths, dependenton their size. Those below 2–7 mm in dimension followthe dolostone reaction path, whereas larger nodules follow thelimestone reaction path. The presence of monticellite in thehighest-grade rocks points to the flushing of the contact byvolumes of water-rich fluid, derived presumably from the granite.Consideration of low-grade olivine-bearing veins and fracturesin the dolostones also points to the presence of extremely water-richfluid in the more distal parts of the aureole. Using simplebox models with constant porosity, it is shown that the observedreaction progress in oli vine-grade and talc-grade rocks canonly be accounted for if the rocks were infiltrated by substantialvolumes of water-bearing fluid. Minimum estimates for volumesof infiltrated fluid show that rocks nearest the pluton wereprobably infiltrated by greater amounts of fluid than thosefurther away. Low-grade rocks which suffered greatest amountsof infiltration are the brecciated dolostones nearest the Thrust.  相似文献   

6.
Quartz–calcite sandstones experienced the reaction calcite+ quartz = wollastonite + CO2 during prograde contact metamorphismat P = 1500 bars and T = 560°C. Rocks were in equilibriumduring reaction with a CO2–H2O fluid with XCO2 = 0·14.The transition from calcite-bearing, wollastonite-free to wollastonite-bearing,calcite-free rocks across the wollastonite isograd is only severalmillimeters wide. The wollastonite-forming reaction was drivenby infiltration of quartz–calcite sandstone by chemicallyreactive H2O-rich fluids, and the distribution of wollastonitedirectly images the flow paths of reactive fluids during metamorphism.The mapped distribution of wollastonite and modeling of an O-isotopeprofile across a lithologic contact indicate that the principaldirection of flow was layer-parallel, directed upward, withany cross-layer component of flow <0·1% of the layer-parallelcomponent. Fluid flow was channeled at a scale of 1–100m by pre-metamorphic dikes, thrust and strike-slip faults, foldhinges, bedding, and stratigraphic contacts. Limits on the amountof fluid, based on minimum and maximum estimates for the displacementof the wollastonite reaction front from the fluid source, are(0·7–1·9) x 105 cm3 fluid/cm2 rock. Thesharpness of the wollastonite isograd, the consistency of mineralthermobarometry, the uniform measured 18O–16O fractionationsbetween quartz and calcite, and model calculations all arguefor a close approach to local mineral–fluid equilibriumduring the wollastonite-forming reaction. KEY WORDS: contact metamorphism, fluid flow, wollastonite, oxygen isotopes, reaction front  相似文献   

7.
Interlayered and cofolded charnockites and metapelites of thetype charnockite area near Madras were metamorphosed under granulitefades conditions. Fe-Mg partitioning between orthopyroxene,garnet, and biotite indicates that chemical equilibrium wasapproached under similar P-T conditions in the two rock suites.Several geothennometers and geobarometers give P-T values whichconverge at 750–800?C and 6.5–7.5 kb. Computations utilizing data from high pressure phase equilibriumexperiments of Bohlen et al. (1983a) and Wones & Dodge (1977)point to several significant relations regarding the behaviourof H2O during the granulite metamorphism. aH2O values, computedfrom Bohlen et al.'s (1983a) reversal data and the a-X modelfor phlogopite after Bohlen et al. (1980), show distinctly lowermagnitudes in metapelites (0.10–0.16) than in charnockites(0.23–0.34). No systematic spatial gradients exist withinthe charnockites or metapelites, and aH2O has similar valuesin metapelite exposures widely separated in the field. Theseimply an internal, rather than an external (e.g., by CO2 influx),control of the fluids. Applying the algebraic method developed by Rumble (1976), Gibbsanalysis in the system K2O-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2Oshows that the chemical potentials of H2O and to O2, as monitoredagainst biotite composition and , exhibit gradients with respect to XMg in the two rock suites under isothermal-isobaricconditions. µH2O was found to decrease with XMgbt in both,while µO2 increases with decreasing XMgbt in metapelitesbut increases sympathetically with XMgbt in charnockites. Thesefindings point out again that µH2O and µO2 wereinternally buffered. The absence of graphite in the metapelites,at an estimated fO2 = 10–14.7 b, also argues against anexternal influx of CO2 and, inter alia, supports internal buffering.A complementary enquiry into variations of aTIO2 reveals aninverse relation between aTIO2 and aH2O, suggesting a similarcontrol for aTIO2. The inferences from biotite dehydration equilibria, when combinedwith the P-T data and with several field and chemical featuresof these rocks noted earlier (Sen, 1974), make dehydration meltinga distinct possibility for the Madras rocks. It is argued thatthe low aH2O and high aTIO2 ({small tilde} 0.9) observed inthe metapelites have been caused by a greater extent of meltingin the precursors of metapelites, which were more hydrous thanthose of charnockites, coupled with preferential partitioningof Ti into the residual rocks—thus strengthening the casefor dehydration melting.  相似文献   

8.
东南极拉斯曼丘陵泥质麻粒岩变质作用演化   总被引:5,自引:0,他引:5  
普里兹湾拉斯曼丘陵代表了东南极一条重要的早古生代的~530Ma泛非期(Pan-African)高级构造活动带。然而,该区早期的晚元古代的~1000Ma格林维尔期(Grenvellian)高级变质作用的演化历史至今仍有争论。该区呈透镜状产出的泥质麻粒岩峰期矿物组合(M1)为石榴石+堇青石+斜方辉石+钾长石+石英,峰期石榴石变斑晶发育堇青石或堇青石+斜方辉石反应边(M2)。利用Thermocalc程序在KFMASH模式体系对该泥质麻粒岩进行的定量模拟表明,其峰期矿物组合是由反应石榴石+黑云母+石英=堇青石+斜方辉石+钾长石+熔体形成的。利用Themocalc平均P-T计算方法获得峰期M1变质P-T条件为~0.9GPa和~900℃,而叠加的M2组合反映了一个减压冷却的过程,其变质P-T条件为~0.7GPa和800~850℃。结合已有的年代学数据,认为该区泥质麻粒岩的峰期M1矿物组合反映晚元古代(~1000Ma)格林维尔期挤压D1构造事件,而叠加的M2矿物组合与M3蠕虫状结构则形成于早古生代泛非期(~530Ma)D2~D3高级扭压剪切构造期间。该扭压事件导致了面状高低应变带的发育以及进步花岗岩和伟晶岩的侵入。  相似文献   

9.
Granite sheets emplaced into the migmatite zone of the easterncontact aureole of the Bushveld Complex resulted from fluid-enhanced,incongruent biotite melting of the underlying Silverton Formationshales during prograde metamorphism. Ba concentrations are extremein both the sheets (>1000 ppm) and the hornfels (>800ppm) into which they have been emplaced. We conclude that aBa-rich, hydrothermal fluid induced melting in the aureole,and that fluid transport of Ba2+, and to a lesser extent, Sr2+and Eu2+, persisted in the melt zones under subsolidus conditions.Sr-isotope systematics from high-Ba localities define an errorchronof 2161 ± 106 Ma with an initial (87Sr/86Sr) ratio of0·705 ± 0·001. Metasedimentary rocks unaffectedby fluid infiltration were homogenized at the same time butwith an increased initial ratio, suggesting that whereas isotopehomogenization was achieved between outcrops permeated by fluids,there is no evidence of regional homogenization. Oxygen-isotopecompositions of psammitic metasediments in the aureole are uncorrelatedwith distance from the contact, suggesting the infiltratingfluid equilibrated isotopically with the metasediments. Theirelevated  相似文献   

10.
Pressure-temperature conditions of pelites in the Ballachulishaureole, Scotland, have been determined from a calibrated petrogeneticgrid and from published geothermometers and geobarometers. Tocalibrate the mineral reactions in the grid, thermodynamic datafor appropriate end members of Ms, Chi, Qtz, And, Sil, Ky, Crn,Crd, Kfs, and Bt were derived from experimental data. This approachwas hampered by the unknown compositions of many of the mineralsused in the experiments, and by apparent inconsistency betweenthe experiments. A best compromise grid that satisfies mostof the data was obtained, which is applicable to the Ballachulishand other contact aureoles. In this grid, the first developmentof sillimanite is constrained to lie between the Richardsonet al. (1969) and Holdaway (1971) andalusite-sillimanite boundaries. A pressure estimate of 3.0 + 0.5 kb is obtained from the calibratedgrid, within 0.3 kb of estimates from geobarometry and fromtwo other independent petrological studies. Temperatures rangedfrom 560?20?C at the first development of cordierite in theassemblage Ms+Qtz+Chl+Crd+Bt to 750–800?C in Grt+Crd+Hyassemblages in pelitic screens within the igneous complex. In graphitic slates, in contrast to non-graphitic pelites, anentire andalusite-bearing subzone is developed, and initialcordierite development occurs further from the igneous contacts.The presence of graphite lowered aH2o in the slaters, expandingthe stability field of the andalusite-bearing assemblage And+Qtz+Bt+Ms+Crdrelative to the assemblage Kfs+Qtz+Bt+Ms+Crd developed in non-graphiticunits. Initial development of cordierite in the assemblage Ms+Qtz+Chl+Crd+Btwas also promoted by reduced aH2o in graphitic slates. The regular sequence and spacing of mineral zones in the aureolesuggests that gross equilibrium was attained during contactmetamorphism, even though the thermal metamorphic pulse is estimatedto have been less than 0.2 Ma (Buntebarth, in press). Thereis no evidence for reaction overstepping in cordierite-producingreactions.  相似文献   

11.
The Mt Stafford area in central Australia preserves a low-pressuregreenschist- to granulite-facies regional aureole. The metasedimentarysequence has been divided into five zones from greenschist (Zone1) to granulite facies (Zone 4) and a zone of hybrid diatexiteformed from the introduction of granitic magma into the high-grademigmatites (Zone 5). Melt production was dominated by a seriesof multivariant biotite breakdown reactions, not the univariantreactions suggested by previous studies. Although the threemain metasedimentary rock types produced similar amounts ofmelt at the highest grades, their melt production historiesdiffered markedly as a function of temperature. Aluminous metapelitesproduced more melt at lower temperatures (Zones 2 and 3), whereasmetapsammite and cordierite granofels experienced an additionalmajor melt-producing step at higher temperatures (upper Zone3 and Zone 4). This melting step involved the breakdown of biotiteto produce garnet, K-feldspar and melt, and in some rocks theproduction of orthopyroxene. Melt production in Zone 4 exceeded25 mol %, resulting in the formation of in situ diatexites.Complex relationships involving aluminosilicate porphyroblastsresulted in the breakdown of biotite and aluminosilicate beingdrawn out over a wide temperature range, from subsolidus conditionsto temperatures close to 750°C. Initially, much of the meltingdeveloped around the aluminosilicate porphyroblasts during thebreakdown of coexisting biotite, aluminosilicate and quartz.However, much of the rock was chemically isolated from the porphyroblastsand could not react to produce melt. As temperatures rose, thepresence of the large isolated aluminosilicate porphyroblastscontrolled the spatial development of quartz-absent, spinel-presentcompositional domains, the formation of spinel being governedby the silica-undersaturated breakdown of coexisting biotiteand aluminosilicate. KEY WORDS: NCKFMASHTO; metapelite; granulite facies; petrogenetic grid; partial melting; THERMOCALC  相似文献   

12.
Metapelitic rocks in the aureole beneath the Bushveld Complexpreserve evidence for both high- and low-aH2O anatexis. Theaureole is characterized by an inverted thermal structure inwhich suprasolidus rocks potentially interacted with an H2O-richvolatile phase derived from underlying, dehydrating rocks. Atlower grade (T < 700°C) the rocks contain fibrolite matsand seams that record local redistribution of volatiles. Incongruentreactions consuming biotite produced small quantities (<1mol %) of liquid and peritectic cordierite that remained trappedwithin the mesosome. Larger volumes of melt (3–4%), preservedas coarse-grained discordant leucosomes, were produced by congruentmelting following a structurally focused influx of H2O. Subhorizontalvolatile-phase flow was concentrated within thin (  相似文献   

13.
Analyses of garnets are presented from a wide variety of metamorphicterrains, in relation to which there appears to be a regularpattern of substitution of (FeO+MgO) for (CaO+MnO), the valuesof these components reflecting the metamorphic grade of thepelitic schists. This provides a method for indicating variationsin grade in metamorphic terrains and for comparing the variationsin different areas. In areas of repeated metamorphism this wouldappear to have a particular value in establishing the gradeof the various episodes of metamorphism. It is also demonstratedthat by the determination of selected physical propertics (unitcell edge a and refractive index) of garnets in the peliticschists, and evaluating the significance of their variations,it is possible to work out the local changes of metamorphicgrade within a particular area.  相似文献   

14.
INTRODUCTIONUptonowthereisinagreementonthetectonic-dynamicbackgroundoftheformationofUHPmetamorphicrocks,i.e.,theUHPMrocksareproductsofobliquecollisionbe-tweentheYangtzeandSinokoreancratonsinIndosinianstage(Jahn,1998lWangandCong,l998,1996;Lietal.,l997,l996iHackeretal.,l996ILiouet.al.,l9961Okay;Sen-gor,l993,CongandWang,l994;Sengor,1993).Buthowthesemetamorphicrocksareformedatmantledepthexhumedbacktothesurfacesorapidlyisstillastandingproblem-TheexhumationofUHPMrocksisacomplextectoni…  相似文献   

15.
Progressive metamorphism of impure dolomitic limestone in the 1.5 to 2.5 km wide contact aureole surrounding the northernmost portion of the boulder batholith has resulted in a consistent sequence of uniformly distributed zones of low-variance mineral parageneses separated by abrupt and distinctive isograds. In silica-undersaturated, aluminous marbles, the following mineral assemblages occur, in order of increasing grade: calcite-dolomite-calcic amphibole-chlorite, calcite-dolomite-calcic amphibole-chlorite-spinel, calcite-dolomite-calcic amphibole-chlorite-olivine-spinel, calcite-dolomite-chlorite-olivine-spinel, calcite-dolomite-olivine-spinel. The spatial distribution of parageneses and the occurrence of low-variance parageneses indicate buffering of the pore fluid composition by the local mineral assemblages. The observed sequence of mineral reactions and the spacing of isograds is in good agreement with experimental and calculated equilibria in terms of P-T-X CO 2and temperatures of equilibration inferred from calcite-dolomite geothermometry, which range from 435 to 607 °C across the aureole.Microprobe analyses of coexisting minerals indicate attainment of exchange equilibrium. Calcic amphibole and chlorite coexisting with calcite and dolomite become progressively more aluminous with increasing grade; calcic amphibole changes rapidly from Al-poor tremolite to pargasite, while AlIV in Cte increases from 2.0 to 2.3 atoms per 8 tetrahedral sites. Observed low-variance assemblages fix the activities of calcic amphibole and chlorite end-member components as a function of P and T, and hence the systematic compositional variation in these phases is not an independent variable, but is controlled by the local mineral assemblage.  相似文献   

16.
17.
The Adula Nappe is a slice of Pre-Mesozoic continental basementaffected by Early Alpine (Mesozoic or Lower Tertiary) high-pressuremetamorphism. Mineral compositions in mafic rocks containingomphacite + garnet + quartz record a continuous regional trendof increasing recrystalliza tion temperatures and pressuresthat can be ascribed to this regional high-pressure metamorphicevent. P-T estimates derived from mineral compositions gradefrom about 12 kb and 500 ?C or less in the north of the nappeto more than 20 kb/800 ?C in the south. The regional P-T trend is associated with a mineralogical transitionfrom assemblages containing additional albite and abundant amphiboles,epidote minerals, and white micas in the north (omphacite-garnetamphibolites) to kyanite eclogites containing smaller amountsof hornblende and zoi.site in the south. Textures and mineralcompositional data show that these hydrous and anhydrous silicatesassociated with omphacite + garnet + quartz arc primary partsof the high-pressure assem blages. Observed phase relationsbetween these primary silicates, theoretical Schreinemakersanalysis, and the thermobarometric results, together indicatethat the regional transition from omphacite amphibolites tokyanite eclogites can be described by two simplified reactions: alb+epi+hbl=omp+kya+qtz+par (H2O-conserving) (15) par+epi+hbl+qtz=omp+kya+H2O (dehydration) (12) which have the character of isograd reactions. Local variations of water activity (aH2O) as indicated by isofacialmineral assemblages, and the H2O character of the reaction (15),are interpreted to reflect largely H and predominantly fluid-absenthigh-pressure metamorphism within the northern part of the nappe.The omphacite amphibolites and paragonite eclogites in thisarea are thought to have formed by H2O reactions from Pre-Mesozoichigh-grade amphibolites, i.e. from protoliths of similar bulkH2O-countent. The second ‘isograd’ (12) is interpreted to markthe regional transition from largely fluid-absent metamorphismin the north to fluid-present metamorphism in the south, wheremetamorphic pressures and temperatures in excess of 12-15kband 500-600?C were sufficient for prograde in-situ dehydrationof similar hydrous protoliths to kyanite eclogites. The observationof abundant veins, filled with quartz+kyanite+omphacite, suggeststhat a free fluid coexisted locally with the kyanite eclogitesof the southern Adula Nappe at some time during progressivedehydration.  相似文献   

18.
The 2 km wide contact aureole produced from serpentinite bythe intrusion of the Mount Stuart Batholith into the IngallsComplex at Paddy-Go-Easy Pass contains the following ultramaficassemblages, in order of increasing grade: serpentine-forsterite-diopside,serpentine-forsterite-tremolite, forsterite-talc, forsterite-anthophyllite,forsterite-enstatite-anthophyllite, forsterite-enstatite-chlorite,forsterite-enstatite-spinel. Associated metarodingites displayfive metamorphic zones, the diagnostic assemblages of whichare, in increasing grade: grossular-idocrase-chlorite, grossular-diopside-chlorite,epidote-diopside-chlorite, epidote-diopside-spinel, plagioclase-grossular-diopside.Mafic hornfels in the aureole contains no orthopyroxene, indicatingthat the conditions of pyroxene hornfels facies were not reached. The breakdown of chlorite is best displayed in aluminous blackwallreaction zones around mafic inclusions in the peridotite. Attemperatures above those of the anthophyllite-out isograd, butwithin the field of forsterite+tremolite, these chlorite-richrocks react to form the assemblage: forsterite-enstatite-spinel.Calculations show that cordierite did not form as a result ofchlorite breakdown in the natural system because impurities,such as iron and chromium, displaced the equilibrium: forsterite+cordierite=enstatite+spinelto much lower pressures than the three kilobars found in thepure system. The primary chromite of the peridotite has been altered to chrome-magnetitein the serpentinite. This alteration seems to be isochemicalover the whole rock, as true chromite, formed by metamorphism,occurs at grades above that of the forsterite-enstatite-anthophylliteassemblage. Calcic amphibole in high-grade metaperidotite is tremolite,even in the presence of aluminous chromite, whereas that inmetamorphosed blackwall rock grades from tremolite into hornblende.The pattern of substitution appears to be: Mg2Si3(Na,K)(AlVI)2(AlIV)3.  相似文献   

19.
Ultramafic rocks of Tibet and Xinjiang are the products of partial melting of the upper mantle. The evolution of their mineral composition is marked by two parallel evolutionary series: one is the progressive increase of the 100 Mg/(Mg+Fe~(2+) ratio of silicate minerals in order of lherzolite→harzburgite→dunite, i.e. the increase in magnesium; the other is the increase of the 100 Cr/(Cr+Al) ratio of accessory chrome spinel in the same order, i. e. the increase in Chromium. The above-mentioned evolutionary trends are contrary to that of magmatic differentiation. The evolution of fabrics of ultramafic rocks is characterized by progressive variation in order of protogranular texture→melted residual texture, symplectic texture and clastophyritic texture→equigranular mosaic texture and tabular mosaic texture. Experiments of partial melting of lherzolite have convincingly shown that the evolution of Alpine ultramafic rocks resulted from the partial melting of pyrolite. Various subtypes of them represent different degrees of partial melting. The vertical zoning marked by more basic rocks in the upper part and more acid rocks in the lower actually belongs to the fusion zoning of pyrolite.  相似文献   

20.
FROST  RONALD 《Journal of Petrology》1975,16(2):272-313
The 2 km wide contact aureole produced from serpentinite bythe intrusion of the Mount Stuart Batholith into the IngallsComplex at Paddy-Go-Easy Pass contains the following ultramaficassemblages, in order of increasing grade: serpentine-forsterite-diopside,serpentine-forsterite-tremolite, forsterite-talc, forsterite-anthophyllite,forsterite-enstatite-anthophyllite, forsterite-enstatite-chlorite,forsterite-enstatite-spinel. Associated metarodingites displayfive metamorphic zones, the diagnostic assemblages of whichare, in increasing grade: grossular-idocrase-chlorite, grossular-diopside-chlorite,epidote-diopside-chlorite, epidotediopside-spinel, plagioclase-grossular-diopside.Mafic hornfels in the aureole contains no orthopyroxene, indicatingthat the conditions of pyroxene hornfels facies were not reached. The breakdown of chlorite is best displayed in aluminous blackwallreaction zones around mafic inclusions in the peridotite. Attemperatures above those of the anthophyllite-out isograd, butwithin the field of forsterite+tremolite, these chlorite-richrocks react to form the assemblage: forsterite-enstatite-spinel.Calculations show that cordierite did not form as a result ofchlorite breakdown in the natural system because impurities,such as iron and chromium, displaced the equilibrium: forsterite+cordierite= enstatite+spinel to much lower pressures than the three kilobarsfound in the pure system. The primary chromite of the peridotite has been altered to chrome-magnetitein the serpentinite. This alteration seems to be isochemicalover the whole rock, as true chromite, formed by metamorphism,occurs at grades above that of the forsterite-enstatite-anthophylliteassemblage. Calcic amphibole in high-grade metaperidotite is tremolite,even in the presence of aluminous chromite, whereas that inmetamorphosed blackwall rock grades from tremolite into hornblende.The pattern of substitution appears to be: Mg2Si3rlhar2;(Na,K)(AlVI)2(AlIV)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号