首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 781 毫秒
1.
项阳  吴林林 《气象科技》2021,49(4):579-588
利用蚌埠S波段双偏振多普勒雷达资料,对安徽省宿州市2020年7月22日的龙卷天气进行了分析。结果表明:在梅雨期暴雨天气形势下,较低的抬升凝结高度、较强的中低层垂直风切变为龙卷提供了有利的环境背景。龙卷发生在梅雨锋南端的超级单体风暴中,底层的右后方出现钩状回波。风暴参数、中气旋、龙卷涡旋(TVS)特征参数在龙卷过程中的急剧变化,对提前预警和判断龙卷是否发生有较好的指示意义。龙卷发生前单体风暴最大反射率因子、垂直累积液态水、顶高都跃增,底高明显降低,龙卷发生在最大反射率因子高度骤降到风暴底部之时。雷达在龙卷发生前24min探测到中气旋,在42min前探测到TVS。龙卷发生前中气旋顶高跃增、最大切变量高度骤降,龙卷发生在底高降到1km以下,同时顶高骤降、最大切变量高度降到中气旋底部之时。龙卷发生前TVS顶高和最大切变量跃增、最大切变量高度骤降,龙卷发生时顶高骤降,最大切变量高度也随之降到TVS底部。在底层钩状回波末端处观测到零滞后相关系数、差分反射率低值区的龙卷碎片特征。  相似文献   

2.
利用X波段双极化相控阵雷达等多源观测资料,分析了2022年6月19日早晨广东佛山超级单体龙卷的环境条件和对流风暴的结构及演变特征。龙卷母体风暴是在强西南季风天气背景下的一条东北-西南向飑线南端发展起来的。环境条件具备较大对流有效位能、低抬升凝结高度和强垂直风切变等有利于超级单体龙卷发生发展的热力和动力条件;低空风暴相对螺旋度、超级单体复合指数和强龙卷指数的显著增强对超级单体龙卷的发生有较好指示意义。具有高时空分辨率的佛山南海X波段双极化相控阵雷达探测到了龙卷母体微型超级单体的发展过程和龙卷涡旋的演变特征:对流单体在前侧低层入流的加强下逐渐形成钩状回波和反射率弱回波空洞;中气旋首先在2.5km附近高度形成后向低层伸展,随着后侧下沉气流的加强,低层涡旋旋转增强,当低层中气旋旋转速度超过22m·s-1(强中气旋)且直径紧缩至1.5km以内时,龙卷即将触地,龙卷涡旋特征(TVS)和龙卷碎片特征(TDS)出现是龙卷触地的主要特征,龙卷发生在反射率弱回波空洞、TVS和TDS附近。  相似文献   

3.
广东是我国一个龙卷多发地区,近年来该地区发生的龙卷造成了重大人员伤亡和巨大的经济损失。为了开展对龙卷的监测和预警,2015年佛山市建设了X波段双偏振多普勒天气雷达。2015年10月4日下午广东省佛山市发生了一次龙卷天气过程,当龙卷涡旋移近佛山市X波段双偏振雷达时,该雷达探测到了超级单体风暴钩状回波内的龙卷涡旋。龙卷涡旋位于钩状回波的末端,龙卷涡旋的反射率因子呈现为一强反射率因子区,该强反射率因子区的中间反射率强度相对较弱;与该强反射率因子对应的位置,平均径向速度有明显的涡旋特征;在龙卷涡旋的位置,双偏振雷达的差分反射率ZDR有一明显的低值区,零滞后相关系数CC也有一明显的低值区。分析认为,这是龙卷卷起的杂物碎片形成的龙卷碎片特征。  相似文献   

4.
《气象》2021,(9)
分析了 2019年8月29日发生在海南省屯昌县和儋州市龙卷过程的海口双偏振多普勒雷达探测资料。龙卷发生在台风杨柳右前方大约370 km处的台风雨带中的对流风暴单体中,两次龙卷发生都与风暴合并有关联,一次发生在风暴单体合并前12 min,一次发生在风暴单体合并后5 min。单体合并导致风暴反射率因子增强,风暴高度增高,风暴中气旋迅速增强。两次龙卷,雷达都探测到龙卷涡旋特征(TVS),探测到TVS的时间比龙卷发生时间分别提前27 min和5 min。龙卷发生前对应龙卷涡旋特征位置的相关系数(CC)值没有变化,龙卷发生时,龙卷涡旋特征位置的CC值突然减小到0.8以下,龙卷发生后CC的低值特征持续了 20 min以上。两次龙卷都有后部风暴单体并入,龙卷发生在主风暴单体的后部、两个风暴单体合并的连接处。  相似文献   

5.
强龙卷超级单体风暴特征分析与预警研究   总被引:26,自引:12,他引:14       下载免费PDF全文
利用多普勒雷达资料,对发生在安徽的3次强烈龙卷过程进行了分析.重点研究了导致F2~F3级强龙卷的3次超级单体风暴多普勒雷达回波特征及其与强冰雹超级单体风暴的差异.另外,利用安徽省、市、县气象报表、历年气候评价灾情资料(部分来自民政部门的灾情报告),对1960年至今的龙卷天气的时空分布及变化趋势、产生龙卷的环流形势特征进行了分析,结果表明:(1)龙卷主要出现在淮北东部和江淮之间东部地势平坦地区,7月份出现龙卷的概率最高.(2)超级单体龙卷产生在中等大小的对流有效位能和强垂直风切变条件下,同时抬升凝结高度较低.(3)3次F2~F3级龙卷在发生前、发生时在多普勒雷达上都探测到强中气旋和龙卷涡旋特征TVS.与非龙卷超级单体风暴相比,导致强龙卷的中气旋底高明显偏低,基本在1 km以下.同时风暴结构也有所不同,造成龙卷天气的超级单体风暴最大反射率因子与风暴质心高度接近,基本在3 km左右,反射率因子在50~60 dBz.造成强冰雹的超级单体风暴在冰雹产生前,风暴最大反射率因子高于风暴质心的高度;当风暴开始降雹时,最大反射率因子高度开始降低,而风暴质心的高度变化不大,高于最大反射率因子高度,基本保持在5km左右,反射率因子在60~70 dBz.  相似文献   

6.
利用多普勒雷达观测资料,结合NCEP FNL 1.0°×1.0°再分析资料、探空资料,对2017年8月11日内蒙古赤峰市龙卷进行了分析。分析表明:(1)大尺度环境场提供了上干下湿不稳定层结条件,切变线和地面干线为对流触发条件;对流有效位能超过2 000 J/kg,抬升凝结高度低于1 km,低层垂直风切变10×10~(-3)s~(-1),为龙卷发生提供了有利条件。(2)发生龙卷的超级单体风暴低层有明显的钩状回波,弱回波区及与之对应的前侧V型缺口及后侧V型缺口特征;雷达距离龙卷发生地超过100 km,未识别出龙卷涡旋特征,但识别出了三维相关切变和中气旋,中气旋最大转动速度达到了18 m/s,为中到强等级的中气旋。(3)产生龙卷的超级单体风暴最大反射率因子在60 d BZ左右,而且在龙卷发生前基于单体的垂直累积液态水和风暴顶高有明显的跃增。(4)龙卷接地前,对应的中气旋顶高≤6 km,切变≥15×10~(-3)s~(-1)。  相似文献   

7.
利用常规观测资料、区域自动气象观测站加密观测资料、多普勒雷达资料和NCEP/NCAR 1°×1°再分析资料,对2019年8月16日发生在日照一次龙卷天气过程的天气形势、环境物理量和涡旋特征进行了分析。结果表明:地面β中尺度辐合线和高空冷涡是此次龙卷发生的主要影响系统,较湿的近地面层、较低的抬升凝结高度为龙卷的发生提供了有利的环境条件。地面辐合线上的γ中尺度涡旋在显著深厚湿对流潜势下触发了对流,较大的对流有效位能(convective available potential energy,CAPE)和较强的0~3 km垂直风切变有利于初生对流的发展、合并,形成超级单体风暴。龙卷发生时,超级单体风暴低层右前侧出现钩状回波、入流缺口。较强的风暴单体、深厚持久的中气旋、中气旋强中心和底部迅速下降并重合、气旋性涡旋加强、最大风切变跃增、多个时次体扫出现龙卷涡旋特征(tornadic vortex signature,TVS)是地面龙卷发生的主要特征。对龙卷风暴单体移动起主导作用的因子在不同时段有所不同,前期主要受平流的影响;风暴单体合并的过程中,风暴移动受传播和平流的共同影响;风暴单体完全合并后,引导气流对风暴的移动又起主要作用。  相似文献   

8.
2019年8月16日渤海北部沿岸出现了一次冷涡背景下的EF1级龙卷。利用营口S波段双偏振多普勒天气雷达探测资料、5 min间隔的地面自动气象站观测资料、盘锦风廓线雷达探测资料及ERA5再分析资料,研究了该龙卷风暴产生的环境条件、龙卷风暴结构特征及龙卷形成的可能物理过程。结果表明:此次龙卷过程发生在500 hPa冷涡主体控制下,低空位于“利奇马”台风残涡西侧水汽输送带内,环境条件表现为弱的风垂直切变和强低层热力不稳定。营口双偏振雷达位于距龙卷发生地15 km处,探测到产生龙卷的微型超级单体钩状回波、下沉反射率核心(DRC)、弱回波洞(WEH)、龙卷残片特征(TDS)等结构。处于消亡阶段雷暴的阵风锋出流向西传播,而营口附近海风锋缓慢东移,两条边界层辐合线相遇加强,在水平切变不稳定的作用下,辐合线上有γ中尺度涡旋形成。辐合线相遇造成的辐合抬升、低层强热力不稳定导致的环境正浮力以及中层中气旋扰动低压共同作用产生强上升气流,γ中尺度涡旋与上升气流叠置,强拉伸作用增强了垂直涡度,可能是低层微尺度气旋形成的关键机制。微尺度气旋直径收缩至最小伴随旋转速度达到最大时刻,对应龙卷生成,中层中气旋与微尺度气旋分离导致龙卷消亡。   相似文献   

9.
2018年6月8日在距台风“艾云尼”中心80 km、160 km的广州市南沙区横沥镇、佛山市南海区大沥镇两地罕见地先后出现了龙卷天气。利用X波段双偏振雷达组网、广州S波段双偏振雷达、风廓线雷达和区域加密自动站等观测资料对两次近距离台风龙卷过程的环境条件和雷达特征进行了分析。环境条件分析表明,两次龙卷发生地位于低层西南急流和东南急流辐合区,所处环境为弱的对流有效位能(CAPE)、低的抬升凝结高度和强的低层垂直风切变环境中,0~1 km垂直风切变值超过15×10-3 s-1。中小尺度雷达特征分析表明:(1)两地龙卷由台风外围微型超级单体引起,超级单体在发展强盛阶段有钩状回波、入流缺口、中层回波悬垂等典型特征,最强反射率因子55~60 dBz,强度≥50 dBz强回波发展高度在4 km以下,微型超级单体有水平尺度2~3 km的中气旋,由于速度模糊影响,仅在南海龙卷发生前9 min广州S波段雷达能自动识别中气旋。(2)与南沙龙卷相联系的中气旋核心高度低,强度进一步加强紧缩导致龙卷发生;而与南海龙卷相联系的中气旋从中层发展,中气旋加强紧缩下降到更低导致龙卷发生。(3)两地弱龙卷发生时广州和南海双偏振雷达没能捕捉到龙卷碎片(TDS)特征,南海X波段雷达能提前30 min监测到入流急流,提前27 min探测出钩状回波等特征,并通过分析ZDR弧和KDP弧可判断低层强盛的上升气流和强的垂直风切变利于风暴的发展。(4)佛山四部X波段组网雷达反演的1 km水平风场可分析出小尺度涡旋结构,对应钩状回波尾端有强的风向切变,这对龙卷发生地点的判断和风暴的流场结构有较好指示意义。   相似文献   

10.
热带一次致灾龙卷形成物理过程研究   总被引:1,自引:0,他引:1  
王秀明  俞小鼎 《气象学报》2019,77(3):387-404
2016年6月5日海南出现了一个弱风垂直切变背景下的EF2级致灾龙卷。利用海口多普勒天气雷达观测资料、10 min间隔的地面自动气象站观测资料以及风廓线资料,研究了该龙卷风暴的结构、龙卷风暴与龙卷形成的可能物理过程。初始风暴在文昌附近向西传播,而同时海口风暴亦由海风锋触发并向东移动,两风暴下沉气流导致的出流相遇在海风锋辐合线上,触发了龙卷母云体。龙卷初始涡旋在低层两风暴出流相遇的切变辐合线上形成,当初始涡旋与其上方深厚且强烈的上升气流叠置时,拉伸作用加强了垂直涡度,使得龙卷形成。深厚的强上升气流有3个来源:对流风暴的出流边界相遇形成的辐合抬升,环境正浮力造成的对流单体内强上升气流,还可能与中高层强中气旋强迫的扰动低压有关。龙卷形成过程中,中高层强中气旋位于6—9 km高空并向上发展,龙卷初始涡旋先于龙卷母云体出现且比一般微气旋尺度大,伸展至更高的高度,属于非典型中气旋龙卷(或非典型超级单体龙卷)。此次热带强龙卷出现在弱的大尺度系统强迫的天气背景下,水平风垂直切变弱,海风锋、出流边界等边界层β中尺度辐合线边界在龙卷形成过程中可能起决定性作用。   相似文献   

11.
070703天长超级单体龙卷的多普勒雷达典型特征   总被引:10,自引:1,他引:9  
刘娟  朱君鉴  魏德斌  宋子忠  卢海  周红根 《气象》2009,35(10):32-39
主要使用南京多普勒天气雷达资料,分析了2007年7月3日发生在安徽天长和江苏高邮的龙卷风天气,着重分析了中气旋和龙卷涡旋特征(TVS)等产品的典型特征.龙卷发生在飑线回波带的北端强烈发展的超级风暴单体中,回波带前沿存在强烈的水平风切变,使得回波带上不断有中气旋生成.对产生龙卷的超级风暴单体,龙卷发生30min前,雷达给出了中气旋(M)产品,该中气旋持续了7个体扫的时间(42min),在中气旋出现后第5个体扫,雷达给出龙卷涡旋特征(TVS)产品,龙卷涡旋特征持续了3个体扫,综合切变产品也给出了显著的提醒.实地调查结果,龙卷风和第2个TVS同时发生,龙卷风位置与TVS位置对应,但位于TVS的南侧,位于中气旋最大风速圈的南缘.虽然CINRAD/SA雷达的TVS产品有虚警的情况,但结合反射率因子、平均径向速度、中气旋、综合切变等产品的分析,对于龙卷监测和预警会很有帮助的.  相似文献   

12.
两类不同风灾个例超级单体特征对比分析   总被引:1,自引:1,他引:0  
杨波  孙继松  刘鑫华 《气象学报》2019,77(3):427-441
采用分钟级加密自动气象站观测资料,盐城、淮安和岳阳、荆州雷达探测数据,以及欧洲中期天气预报中心(ECMWF)高分辨率的ERA-Interim全球再分析数据,对比分析了2016年6月23日江苏阜宁龙卷灾害和2015年6月1日湖北监利下击暴流大风灾害的环境特征与超级单体的结构特征。结果表明:(1)两次强对流大风灾害发生在相似的低空环流背景下:风灾发生在低空急流出口区左侧的暖区内、850 hPa低涡中心东侧6—7个经距的位置;环境大气的对流有效位能大于2000 J/kg。但是风灾的类型不同,江苏阜宁大风灾害主要由超级单体龙卷造成,监利“东方之星”沉船事故主要是超级单体触发的下击暴流造成。短时强降水中心与风灾中心的相对位置不同:阜宁龙卷移动方向的左侧伴随着最强短时降水;湖北监利沉船事件发生期间,风灾中心与短时强降水中心基本重合。鉴于不同性质的对流大风位置与超级单体母体的中心位置对应关系上存在差异,通过比较地面观测的瞬时大风与瞬时强降水中心的相对位置将有助于区分强对流大风的性质。(2)环境风垂直切变强度对对流风暴结构、发展、维持有重要影响:阜宁龙卷发生时,其上空0—6 km风垂直切变达4×10-3 s-1,超级单体有明显的向前倾斜结构,形成有界弱回波区;而监利强对流沉船位置0—6 km风垂直切变只有2.3×10-3 s-1左右,风暴单体中的上升气流近乎于垂直。阜宁超级单体中气旋,首先出现在0—1.5 km风垂直切变和0—3 km风暴相对螺旋度带状大值区,在向抬升凝结高度更低的环境移动过程中,其底部不断下降,形成龙卷;而在监利沉船区,中低层风切变和风暴相对螺旋度相对要弱得多,对应风暴单体中的中气旋强度、持续性较弱,中气旋底部高度维持在1.6 km左右。(3)环境湿度垂直结构特征不同可能是风暴单体形成不同类型灾害大风的重要环境因子。监利下击暴流造成的风灾发生时,在地面气温迅速下降过程中,气压变化呈现快速跳升又快速下降的“尖锥”形,气压峰值比降水峰值提前4 min出现。它与对流层中高层环境大气中较为深厚的干空气卷入对流风暴中造成水物质强烈蒸发、冷却过程有关。而阜宁风灾过程中,环境大气中层仅存在非常浅薄的干层,加之低层较为深厚的饱和大气环境,对应的地面冷池效应相对较弱。   相似文献   

13.
2018年9月17日台风山竹(1822)外围螺旋雨带中发生EF2级龙卷。在高湿度、高不稳定、强垂直风切变的环流背景下,龙卷在台风外围雨带上微型超级单体右后侧钩状回波顶端的弱回波区中发展起来。具有高时空分辨率的广州X波段双极化相控阵雷达,不仅观测到超级单体的发展过程,还呈现出龙卷涡旋演变特征:单体风暴尾端在右后方入流加强作用下,逐渐形成钩状回波形态,此时对流层中低层2~3 km高度附近的中气旋强度率先达到最大,随着旋转强度进一步加强和旋转中心高度逐步下降,低层强旋转特征越来越明显,当低层旋转速度达到峰值(超过21 m·s-1),旋转直径收缩到1 km范围,地面出现EF2级以上龙卷,旋转速度对区域出现清晰的弱回波龙卷眼区特征。X波段双极化相控阵雷达在龙卷观测中优势显著,弥补了多普勒天气雷达观测的不足。  相似文献   

14.
广东两次台风龙卷的环境背景和雷达回波对比   总被引:1,自引:1,他引:0       下载免费PDF全文
利用常规气象观测、广州多普勒天气雷达及NCEP/NCAR再分析等资料对比广东省佛山市2015年10月4日EF3级和2006年8月4日EF2级台风外围强龙卷过程。结果表明:两次强龙卷都发生在登陆台风的东北象限,低层辐合、高层辐散及中低空强劲东南急流在珠江三角洲叠加是其产生的相似环境背景。环境参数均表现为较小的对流有效位能、低的对流抑制与抬升凝结高度、强的垂直风切变和大的风暴相对螺旋度。两个龙卷母体均为微型超级单体,前者雷达回波强度更强,钩状回波特征更明显;都存在强中气旋和龙卷涡旋特征(TVS),中气旋都在中低层形成后,向更低层发展最终导致龙卷。TVS比龙卷触地提前1个体扫出现,或与龙卷触地同时发生,中气旋和TVS的底高和顶高均很低。但两次龙卷触地前后,前者中气旋和TVS的底高和顶高出现突降现象,而后者中气旋和TVS的底高和顶高一直维持较低高度。龙卷触地前后,两者风暴单体的最强切变均出现剧增现象,但前者TVS的最强切变更强,比后者大1倍以上。  相似文献   

15.
2018年8月19日受台风“温比亚”影响,山东省临沂市遭受龙卷袭击。通过实地灾情调查,给出了该龙卷的影响范围、灾害分布和强度评估等,综合考虑不同标识物和致灾过程,评估本次龙卷强度为EF3级。分析龙卷发生的环境和天气雷达特征,结果表明:龙卷发生在低抬升凝结高度(≤300 m)、强低层垂直风切变(≥18×10-3s-1)、强相对风暴螺旋度(≥350 m2/s2)和较低对流有效位能(≤400 J/kg)的有利环境条件下;龙卷超级单体嵌于台风右侧螺旋雨带内,龙卷发生在中气旋与风暴后侧下沉气流区相接一侧,与龙卷涡旋特征位置对应;龙卷及地时中气旋向下延伸加强,同时风暴顶及单体质心迅速下降;若探测到低层中等强度中气旋时应发布龙卷预警,则此次过程的龙卷预警时间提前量为15~20 min。  相似文献   

16.
2017年8月11日下午,三个EF4级龙卷袭击了内蒙古自治区赤峰市的地形复杂地区,造成5人死亡,58人受伤。这是1961年以来中国有记录的最强山地龙卷事件。首先给出了此次龙卷过程的灾情调查结果,接下来分析了此次龙卷母体风暴-龙卷超级单体产生的天气背景、关键环境参数以及多普勒天气雷达观测特征。本次龙卷事件发生在东北冷涡东南象限的地面锋前和干线向湿侧发展处,CAPE(对流有效位能)值为1 800 J/kg,0~6 km风垂直切变为12.9 m/s,0~1 km风垂直切变达到10.8 m/s;同时,0~1 km相对风暴螺旋度达到67.3 m2/s2,接近美国龙卷发生环境的中位数,有利于超级单体龙卷的发生。现场灾害调查发现,灾害路径具有多涡旋和不连续的特点,可能与当地的复杂地形有关。基于多普勒天气雷达相对径向速度图识别出三个龙卷涡旋特征(TVS),TVS径向速度差最大达到38 m/s。三个龙卷及对应TVS出自同一个超级单体的同一个中气旋,其中两个TVS出现时间重叠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号