共查询到20条相似文献,搜索用时 15 毫秒
1.
Alok K. Singh 《Journal of the Geological Society of India》2016,87(5):525-534
In the present study an attempt has been made to characterize the coals of Talcher coalfield employing petrographic and geochemical techniques on a large number of coal samples. Pillar coal samples were collected from all the six workable coal seams, which occur in the Karharbari (Seam-I) and the Barakar (Seams II, III, IV, V and IX) formations. 相似文献
2.
The petrological studies on Khadsaliya lignites from Bhavnagar district have been carried out for their microconstituent’s
characterization. Quantitative estimation of macerals reveal, due to high amount of macerals of huminite group, that this
lignite deposits has formed from forest dominated vegetation in a fast subsiding basin, experiencing almost uniform environmental
conditions, with slight intermittent fluctuations. The rank based on Ro max % values indicates that lignites are less mature and have not reached the sub-bituminous stage of coalification as those
of the lignites from Panandhro (Gujarat) and Neyveli (Tamil Nadu) fields. High pyrite content in the Khadsaliya lignite makes
it not much suitable for combustion purpose. 相似文献
3.
Teutsong Tessontsap Temga Jean Pierre Enyegue Armelle Ayissi Feuwo Nicodème Noel Bitom Dieudonné 《中国地球化学学报》2021,40(2):163-175
Acta Geochimica - Iron ore deposits hosted by Precambrian banded iron formation (BIF) are the most important source of mineable iron. In Cameroon, they are located in the southern part of the... 相似文献
4.
Petrographic and geochemical analysis of caliche profiles in a Bahamian Pleistocene dune 总被引:1,自引:0,他引:1
J. A. BEIER 《Sedimentology》1987,34(6):991-998
Two caliche profiles from a Pleistocene carbonate dune on San Salvador Island, Bahamas, were examined by petrographic and geochemical analysis. Profile A is an immature buried caliche profile characterized by caliche pisolites, a friable crust and abundant Cerion. Profile B is a more well-developed caliche profile at the top of the dune which contains abundant pisolites, rhizomorphs, laminated calcrete, a breccia and abundant Cerion. Geochemical changes in caliche profiles relative to the host rock are an increase in Al2O3, Fe2O3 and total organic carbon, a decrease in Mg and Sr, and a decrease in δ13Ccarb, δ18Ocarb and δ13Corg. The magnitude of these changes is probably a function of the duration of subaerial exposure and resultant colonization by dune plants and associated microflora. Abundance of calcified filaments and needle-fibre crystals in profile A attests to the importance of microbial processes in the early development of caliche profiles. Biogenic structures are largely destroyed in profile B due to recrystallization, but indirect evidence of biological activity is retained in the form of carbon isotope values. 相似文献
5.
贵州泥堡金矿构造蚀变体(SBT)为产出于茅口组(P_2m)和龙潭组(P_3l)或峨眉山玄武岩(P_3β)之间沉积间断面-不整合界面附近的一套硅质蚀变岩石组合。采用光学显微镜及ICP-MS研究SBT样品岩相学及元素地球化学特征,结果显示,SBT矿石样品中主要矿物有石英、黄铁矿、褐铁矿、萤石、白云石和辉锑矿等,蚀变类型主要为黄铁矿化、白云石化和硅化,微观结构主要为砂状、岩屑-凝灰碎屑结构、交代结构等,构造主要有浸染状、块状、角砾状、条带状和脉状构造。SBT微量元素标准化曲线以Au、As、Sb、Hg、Te的强烈富集,Li、Sc、Cr的亏损和Cd、Ta的富集为特征。稀土元素CI球粒陨石标准化配分模式图表现为轻稀土富集的右倾型,LREE/HREE为6. 98~19. 91,"四分组"效应明显,重稀土分馏不明显,解释为受热液作用强烈; SBT微量元素标准化图及稀土元素配分曲线均表现出与围岩相似,表明继承了原岩的元素组成;δEu为0. 80~1. 84,显示Eu从明显负异常到明显的正异常;δCe为0. 72~1. 25,显示Ce从明显负异常到弱正异常,认为流体来源于深部或至少经历过对富含斜长石源区的水-岩反应,而不是含矿地层的改造热液。 相似文献
6.
High-grade iron mineralisation (>65%Fe) in the North Deposit occurs as an E-W trending synclinal sheet within banded iron formation (BIF) of the Early Proterozoic Dales Gorge Member and consists of martite-microplaty hematite ore. Three hypogene alteration zones between unmineralised BIF and high-grade iron ore are observed: (1) distal magnetite-siderite-iron silicate, (2) intermediate hematite-ankerite-magnetite, and (3) proximal martite-microplaty hematite-apatite alteration zones. Fluid inclusions trapped in ankerite within ankerite-hematite veins in the hematite-ankerite-magnetite alteration zone revealed mostly H2O–CaCl2 pseudosecondary and secondary inclusions with salinities of 23.9±1.5 (1, n=38) and 24.4±1.5 (1, n=66) eq.wt.% CaCl2, respectively. Pseudosecondary inclusions homogenised at 253±59.9°C (1, n=34) and secondary inclusions at 117±10.0°C (1, n=66). The decrepitation of pseudosecondary inclusions above 350°C suggests that their trapping temperatures are likely to be higher (i.e. 400°C). Hypogene siderite and ankerite from magnetite-siderite-iron silicate and hematite-ankerite-magnetite alteration zones have similar oxygen isotope compositions, but increasingly enriched carbon isotopes from magnetite-siderite-iron silicate alteration (–8.8±0.7, 1, n=17) to hematite-ankerite-magnetite alteration zones (–4.9±2.2, 1, n=17) when compared to the dolomite in the Wittenoom Formation (0.9±0.7, 1, n=15) that underlies the deposit. A two-stage hydrothermal-supergene model is proposed for the formation of the North Deposit. Early 1a hypogene alteration involved the upward movement of hydrothermal, CaCl2-rich brines (150–250°C), likely from the carbonate-rich Wittenoom Formation (13C signature of 0.9±0.7, 1, n=15), within large-scale folds of the Dales Gorge Member. Fluid rock reactions transformed unmineralised BIF to magnetite siderite-iron silicate BIF, with subsequent desilicification of the chert bands. Stage 1b hypogene alteration is characterised by an increase in temperature (possibly to 400°C), depleted 13C signature of –4.9±2.2 (1, n=17), and the formation of hematite-ankerite-magnetite alteration and finally the crystallisation of microplaty hematite. Late Stage 1c hypogene alteration involved the interaction of low temperature (~120°C) basinal brines with the hematite-ankerite-magnetite hydrothermal assemblage leaving a porous martite-microplaty hematite-apatite mineral assemblage. Stage 2 supergene enrichment in the Tertiary resulted in the removal of residual ankerite and apatite and the weathering of the shale bands to clay.Editorial handling: B. Lehmann 相似文献
7.
湘东北仁里- 传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代 总被引:6,自引:0,他引:6
湘东北幕阜山地区由东北向西南,稀有金属矿化种类由单一至复杂,成矿规模逐渐增大,显示出明显的空间规律性。本文选取幕阜山地区西南部岩浆分异演化程度最高、矿化种类最复杂的仁里-传梓源稀有金属矿床,开展典型伟晶岩脉矿物学、地球化学及云母Ar-Ar年代学研究,旨于揭示Be-Nb-Ta-Li-Cs伟晶岩地球化学特征,探讨其与花岗岩围岩成因关系,并限定矿床稀有金属成矿时代。仁里-传梓源矿床5号伟晶岩脉表现出相对富碱(Na_2O+K_2O=5.11%~14.02%,平均9.4%)、过铝质(A/CNK=1.04~2.26,平均为1.4)的特征,微量、稀土元素含量极低,总体上富集Ta、Nb、Hf、Zr等高场强元素(HFSE),相对亏损Ba、Sr等离子亲石元素(LILE),不相容元素Rb、Cs、Nb、Ta、Zr、Hf等的强烈富集表明岩浆分异演化程度极高。矿物学及地球化学特征显示,仁里-传梓源矿床5号伟晶岩脉由边部至核部分异演化程度逐渐升高,但其化学指数与花岗岩围岩相比表现出较明显的突变关系。结合野外接触关系、年代学等证据,推断围岩二云母花岗岩并非稀有金属伟晶岩母岩。仁里-传梓源矿床显示出稀有金属岩浆-热液两阶段成矿的特征,伟晶岩中锂云母Ar-Ar坪年龄为125.0±1.4 Ma,代表了岩浆分异演化晚阶段,近热液体系中稀有金属聚集成矿的时代。 相似文献
8.
新疆图拉尔根铜镍钴矿产于康古儿塔格—黄山韧性剪切带的北东段,是由硫化物深部熔离成矿为主兼就地熔离、热液叠加成矿多重作用形成的半隐伏矿床。1号岩体以全岩矿化为特征,可分为4个岩相:角闪橄榄岩、辉石橄榄岩、角闪辉石岩、辉长岩。岩性具有单期岩浆多次脉动上涌成矿特征。岩体m/f值为3.1~4.8,属于铁质超镁铁岩类,且具有低钛、低碱、低Al2O3特征,与黄山—镜儿泉镁铁质-超镁铁质杂岩带岩石化学特征相似。由稀土元素配分曲线和微量元素、过渡族元素蛛网图可知1号和2号岩体具有同源性,并具有互补性,预示2号岩体深部成矿潜力很大,虽然其地表辉长岩矿化微弱。根据横穿1号和2号岩体的大地电磁测深剖面图可以看出两个岩体在深部具有同一个岩浆通道,也验证了两岩体属于同一岩浆来源。较低的La/Sm(<2)和Th/Ta值(4.6)表明成矿岩浆为地幔来源,岩体就位时很少受到地壳的混染。 相似文献
9.
云南省香格里拉地区发育一套以甭哥碱性杂岩体为代表的富碱高钾岩浆岩。该岩体SiO_2变化范围较宽,高FeO~T和碱质,低Al_2O_3、MgO和CaO;富集LILE和LREE,相对亏损HFSE并显著亏损Cr、Co、Ni等过渡族元素,同时还具有从弱负异常至强正异常的δEu及δCe,表现出埃达克质与岛弧型火山岩双重特征。岩石地球化学研究表明,甭哥岩体并非单一岩浆经简单结晶分异而来,其岩浆来源具有多样性与多期性,它们主要代表了晚三叠印支期俯冲洋片和地幔楔与下地壳部分熔融及新生代含金云母相的交代富集地幔低程度部分熔融的岩浆作用。其形成和演化大致经历了晚印支期初始岩浆形成和燕山期后续岩浆逐步叠加及新生代喜山期岩浆侵位三个阶段,在整个岩浆作用过程中,伴随有地幔流体交代作用及由此引发的壳幔物质混染现象。而与甭哥碱性杂岩体有关的金成矿作用主要受制于该区多阶段岩浆与含矿地幔流体的相互作用及地幔流体交代叠加混染作用,其金成矿的富矿体可能定位于深部,据此提出甭哥碱性杂岩体具有深部成矿的勘探开发远景。 相似文献
10.
《International Journal of Coal Geology》2006,65(1-2):146-157
Fifty-six samples of stream sediments from 12 creeks in the vicinity of Trail, British Columbia, Canada were examined to determine their origin, characterize their organic matter and their relation to natural/geogenic and anthropogenic sources. The samples were initially screened by Rock-Eval® 6 pyrolysis for their TOC, HI, and OI contents and then examined by both reflected (polarized) and fluorescent light microscopy. It was found that organic matter in stream sediments is mostly from natural/biological sources from local vegetation, such as woody tissue, suberin, spores, and pollen, as well as altered natural/biological input from char formed due to forest fires. Anthropogenic organic matter, mostly coke particles, was also found in the stream sediments. The coke particles have anisotropic properties with medium grained texture formed from medium volatile bituminous coal. The occurrence of coke particles is limited to Ryan Creek located close to an area were some small gold, nickel, and lead smelting operations previously occurred. There is no evidence to indicate that the coke particles found in the creek are emitted from the lead and zinc smelter currently in operation in the area. There are no coal-bearing strata in the area that may have a direct input of coal fragments in any of the creeks. 相似文献
11.
Hypotheses proposed to explain the origin of pseudotachylite bodies formed during impact cratering include: (1) frictional heating, (2) shock loading, (3) decompression or (4) drainage of impact melt into target rocks. In order to differentiate among these processes, we conducted detailed geochemical and petrographic analysis of the matrices in pseudotachylitic veins and dikes and of their respective wall rocks. Our analyses indicate that the chemical compositions of matrices locally deviate significantly from their immediate wall rocks and that assimilation of wall rock has substantially modified the pseudotachylite matrix compositions in places. Variable magnitudes of assimilation can be explained by the surface area of wall rock or its fragments in contact with melt, as well as the initial temperature and cooling rate of the pseudotachylitic melt. Chemical trends observed can be explained either by admixture of an exotic melt component with immediate wall rock or by mixing of melts derived from local lithologies. Trends in the compositional deviation of centimetre to metre-wide pseudotachylite dikes from their immediate wall rocks are consistent with the presence of a primary melt component having granitoid composition akin to the average composition of Vredefort Granophyre dikes. Within veins, melt transport can be geochemically and petrographically traced for distances of centimetres to metres, with the direction of melt transport from larger pseudotachylite veins toward smaller ones and into apophyses. Sulphide and silicate mineralogy indicates that the initial temperature of pseudotachylitic melt must have been at least 1200-1700 °C. Collectively, these characteristics point to an allochthonous origin of pseudotachylitic melt. We advocate the possibility that impact melt from the initially superheated impact melt sheet contributed to the formation of pseudotachylite bodies at Vredefort. 相似文献
12.
The Jurassic rock sequence in Lebanon is characterized by pervasive dolomitization (thickness > 1000 m). Two distinct dolostones are recognized within this rock succession: fine-to-medium crystalline seepage-reflux grey dolostone and coarse-crystalline hydrothermal beige dolostone. In this contribution, field, petrographic, and geochemical investigations on a dolostone ‘tongue’, occurring in Late Jurassic carbonates in central Lebanon, are discussed. The dolostone ‘tongue’ consists predominantly of the beige Late Jurassic hydrothermal dolostones. During and/or after the deposition of the overlying continental sandstones (Early Cretaceous), meteoric water percolated through the sand layers and into the underlying beige dolostones. This resulted first in dolomite intracrystalline dissolution, and then in the precipitation of oxides/hydroxides within the pore space. Finally, the precipitation of ferroan dolomite cement — from reduced fluids during a new stage of burial — took place. This study attempts to explain how superimposed diagenetic events result in a single pervasive dolostone body. 相似文献
13.
The Late Jurassic-early Senonian Cehennemdere Formation extending in an E-W direction in a wide area at the south of the Bolkar Mountains (Central Taurides, Turkey) is composed of platform carbonates. The formation was deposited in an environment that was being transformed from a shallow carbonate platform to an open shelf and a continental slope, and was buried until late Paleocene uplift. The formation, with a thickness of about 360 m, was chiefly developed as textures consisting of mudstone and wackestone and has been commonly dolomitized. Based on petrographic and geochemical properties, four types of replacement dolomites and two types of dolomite cements were distinguished. Replacement dolomite (RD), which is cut by low-amplitude stylolites developed as (1) fine crystalline planar-s dolomite (RD1); (2) medium crystalline planar-s dolomite (RD2); (3) medium-coarse crystalline planar-e dolomite (RD3) and; (4) coarse crystalline planar-s (e) dolomite (RD4). Two types of dolomite cements (CD) observed in low abundance and overlie low-amplitude stylolites: (1) coarse crystalline dolomite cement (CD1) filling dissolution voids and fractures in RD1 dolomites, and; (2) rim dolomite cement (CD2) that commonly develops on the space-facing surfaces of RD4 dolomite. Replacement dolomites are non-stoichiometric (Ca54–59Mg41–46), have similar geochemical properties, and are generally dull red/non luminescent in appearance. Replacement dolomite is represented by δ18O values from −4.5 to −0.5‰ VPDB, δ13C values of −0.7 to 2.7‰ VPDB, and 87Sr/86Sr ratios ranging from 0.707178 to 0.707692. Petrographic and geochemical data indicate that replacement dolomite (particularly RD2, RD3, and RD4 dolomite) was formed at shallow-intermediate burial depths during the Late Jurassic-Early Cretaceous, from seawater and/or from slightly modified seawater. The replacement dolomite (RD) was then recrystallized at increased burial depths and temperatures. Dolomite cements are similar to replacement dolomites in that they are non-stoichiometric (Ca55Mg45) and have similar trace element compositions. CD1 dolomite, which cuts low-amplitude stylolites, was formed during intermediate to deep burial following stylolite development. CD2 dolomite was precipitated in intercrystal pores in association with RD4 dolomite. Remaining pore space was filled with bitumen. 相似文献
14.
About 25 economically significant, Kuroko-type massive sulfide bodies lie in a metamorphosed volcano-sedimentary complex (probable Middle Ordovician) known as Tetagouche Group, in Bathurst area, New Brunswick. Despite unresolved structural complexities, it does appear that they were deposited during a particular phase of volcanic activity and are, therefore, contemporaneous. Most of the sulfide bodies are closely associated with iron-rich rocks representing various facies of iron formation, and together with sulfides it constitutes the “ore horizon‘ which, therefore, is highly magnetic. Aero-magnetic and ground-magnetic techniques are useful to locate the ore horizon but problems are created because of the occurrence of iron-rich rocks with no sulfide, along another horizon in the Tetagouche Group.Petrographic and geochemical characteristics of various types of iron-rich rocks have been studied to see if the iron-rich rocks of the ore horizon can be distinguished from the iron-rich rocks of the other horizon. The iron-rich rocks found in the Tetagouche Group can be classified into five types: (1) cherty magnetitic rocks; (2) iron-rich chloritic rocks; (3) sideritic rocks; (4) basic iron formation; and (5) maroon shale. The basic iron formation, which is quite magnetic, gives a false indication of the ore horizon wherein the presence of any of the first three types of rocks is expected. Moreover, the basic iron formation is generally similar in appearance and mineralogy to some of the cherty magnetitic and chloritic rocks.Regarding major element composition, TiO2, Na2O, Al2O3 and CaO are higher whereas Fe2O3, FeO and MnO are lower in the basic iron formation than in the other iron-rich rocks. These geochemical characteristics can help distinguish the barren rocks of the basic iron formation from those of the ore horizon during the exploration programs. 相似文献
15.
《International Geology Review》2012,54(10):1113-1144
The Kumbalgarh Group of the south Delhi fold belt are the main bedrock series exposed in the axial region of the Aravalli craton. Quartzites and greywackes, the chief clastic constituents of this group, are well exposed. Petrographic and bulk-rock analyses of these rocks permit determination of their provenance, tectonic setting of the basin, and the Archaean to Proterozoic crustal evolution. Greywackes comprise quartz, plagioclase, amphiboles, K-feldspar, and rock fragments. Based on mineralogy, we divided the quartzites into three categories: QTZ1 is chiefly composed of quartz with a silty matrix and a minor quantity of feldspars and QTZ2 contains significant mafic minerals as well as quartz and feldspars, whereas QTZ3 is more feldspathic than the other groups. All the lithounits have SiO2/Al2O3 ratios <~10 suggesting textural immaturity consistent with their sedimentary petrography. Greywackes display the least fractionated rare earth elements (REEs) (La/Yb N : avg. 2.55) with positive Eu anomalies (avg. Eu/Eu* = 1.34). QTZ1 contains strongly fractionated REE patterns (avg. La/Yb N : 13.56, avg. Eu/Eu* = 0.60), QTZ2 shows moderate REE fractionation (avg. La/Yb N : 4.97, avg. Eu/Eu* = 0.61), and QTZ3 possesses the least fractionated V-shaped REE patterns (avg. La/Yb N : 1.97, avg. Eu/Eu* = 0.51). Weathering attributes including chemical index of alteration (CIA), plagioclase index of alteration (PIA), chemical index of weathering (CIW), and A–CN–K plots assign a low to moderate degree of weathering to the Kumbalgarh sediments under a subtropical climate. Based on our synthesis of the petrographic and geochemical data, we suggest a provenance comprising basalts, tonalite–trondhjemite–granodiorite (TTG), and granite. Geochemical attributes indicate deposition of the detritus in an extensional backarc basin receiving sedimentary input from opposite directions. The opening and then closure of the South Delhi Basin was the last phase of the break-up of the supercontinent, columbia, which began by abortive rifting of the Udaipur belt and culminated in separation of the Aravalli–Bundelkhand–Dharwar block in the east and the East African orogen in the west. 相似文献
16.
M. Schilling R.V. Conceio G. Mallmann E. Koester K. Kawashita F. Herv D. Morata A. Motoki 《Lithos》2005,82(3-4):485-502
Cerro Redondo is an ancient cinder cone now almost completely eroded, sited over a sill that corresponds to a sub-volcanic magma chamber, in Santa Cruz province, Patagonia, Argentina. It is composed of Pliocene-Pleistocene alkaline basalt containing spinel-facies lherzolite and harzburgite mantle xenoliths. Core compositions of pyroxenes indicate temperatures of 823 °C to 1043 °C and pressures of 12.4 kb to 21.4 kb. Based on P–T estimates, petrographic, geochemical, and isotopic characteristics, we propose that Cerro Redondo xenoliths come from a thick homogeneous mantle column (36 km to 63 km depth), and present different degrees of basalt infiltration. A simple mixing model based on Sr isotopes was used to quantify the host basalt infiltration, and contamination values of 0.0%, 0.2%, 3%, and 12% were obtained for samples X-F, X-D, X-C, and X-B, respectively. For unknown reasons, samples X-G and X-E suffered selective isotopic and trace element modification, respectively, associated with 1% of basalt infiltration. Sample X-F best represents the sub-continental lithospheric mantle column, conserving primary equilibrium textures with sharp grain boundaries, and having TiO2, CaO, Na2O, K2O, and P2O5 contents lower than average spinel lherzolite, flat chondrite-normalized REE pattern, and 87Sr/86Sr and 143Nd/144Nd ratios of 0.70519 and 0.51297, respectively. This sample records a decoupling of the Sr–Nd system where Sr ratios increase at constant Nd ratios, possibly caused by chromatographic processes. Its 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios are 17.987, 15.556, and 37.959, respectively. As the interaction with the host basalt increases, xenoliths show a gradual increase of disequilibrium textures such as reaction rims and exsolution lamellae in orthopyroxene and clinopyroxene, and increase of TiO2, CaO, Al2O3, Na2O, K2O, P2O5, LREE, and incompatible element concentrations. The Sr–Nd system shows an unusual positive trend from the unmodified sample X-F toward the host basalt isotope composition with 87Sr/86Sr and 143Nd/144Nd ratios of 0.70447 and 0.51279, respectively, while 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios tend to increase toward those of the host basalt (18.424, 15.648, and 38.728, respectively) as the xenolith–basalt interaction increases. The basalt–xenolith reaction probably started during the transport of the xenoliths to the surface, and continued during the residence of xenoliths in the sub-volcanic magma chamber of Cerro Redondo. 相似文献
17.
Vanja Bi?evac Erwin Krenn Dra?en Balen Fritz Finger Kadosa Balogh 《Mineralogy and Petrology》2011,102(1-4):163-180
Granitic pebbles occurring in the Permotriassic metasedimentary sequence of eastern Papuk, Slavonian Mountains, Croatia, were recognized to represent a coherent group of felsic, muscovite-albite metagranites. Fabrics, modal compositions and geochemical data imply that the rocks are derivatives of S-type granites formed through a combination of igneous and subsequent metasomatic processes. A Variscan formation age is demonstrated by K-Ar dating on coarse muscovite (range of 329?C317?Ma) as well as by electron microprobe based Th-U-Pb monazite dating (338?±?15?Ma). Additionally to the Variscan metasomatic processes of albitization and greisenisation, which led to an almost complete replacement of K-feldspar and biotite by albite and coarse muscovite, pebbles were affected by a younger phase of alteration resulting in the formation of a fine-grained sericitic matrix. The fine sericite yields K-Ar ages of 91?C83?Ma. A substantial reheating of the rocks during the Cretaceous is also indicated by the growth of new monazite dated at 106?±?10?Ma. Yttrium-contents of the Cretaceous monazite from the granite pebbles (0.3?C0.9?wt% Y2O3) are compatible with metamorphic temperatures of ~350?C400°C. These data confirm recent concepts according to which large parts of the Slavonian Mountains received a pervasive Cretaceous low-T regional metamorphic overprint. Furthermore, the pebbles provide useful information on the nature of the eroded Variscan crust of the Tisia Terrain, which has obviously contained considerable amounts of evolved high-level S-type granites modified through albitization and greisenization. 相似文献
18.
The Ouenza siderite deposit is located proximal to evaporitic diapirs of Triassic age. Mineralization occurs mainly in Aptian
neritic limestones which host important iron concentrations (120–150 MT) and minor Pb, Zn, Cu, Ba and F occurrences. The iron
ore consists of iron carbonate minerals which have been oxidized partially to hematite. Fine-grained ankerite and siderite
replace limestones, whereas sparry ankerite and siderite were emplaced in veins. Limited variation in the chemical and isotopic
compositions of ankerite and siderite were observed, which indicate that they precipitated from the same fluid. Stable isotope
compositions (δ18O and δ13C) of iron carbonates and limestones allow estimation of the isotopic composition of the mineralizing fluid and precipitation
temperature: δ18O = 7.5‰ SMOW, T = 100–120 °C. Later deposition of Pb, Zn, Cu, Ba and F minerals is controlled by fractures oriented NE–SW
and SE–NW. Fluid inclusion studies of quartz yield salinities of 18–22 wt.% equivalent NaCl and homogenization temperatures
between 150 and 180 °C. These values are similar to those of Mississippi Valley type deposits which are associated with basinal
brines.
Received: 4 January 1996 / Accepted: 17 July 1996 相似文献
19.
Abstract. Vein type tungsten mineralization at Degana is genetically and spatially associated with the Degana Granite. The deposit is characterized by pervasive wall rock alteration around the mineralized quartz veins. Laterally three different alteration zones, greisen, silicification and potassic zones, are marked based on the field features, mineral assemblages and geo-chemical characteristics. In the present paper, systematic mineralogical and chemical variation in these alteration zones is reported. Thick mono-mineralic (zinnwaldite) selvages around the veins characterize the deposit. Plagioclase and alkali feldspar are low in the greisen zones while K-feldspar shows more increase than plagioclase in the potassic zone. Quartz is uniformly high in all the alteration zones, but it shows an anomalous value in the silicification zone. Al2 O3 concentration shows initial depletion in greisen zone with gradual increase away from the contact. MgO and FeO are higher in greisen zone than silicification and potassic zones. The potassic zone is characterized by the depletion of Na2 O and higher value of K2 O.
The common presence of topaz and fluorite as both primary and secondary minerals and fluorine-bearing micas suggest fluorine partitioning in substantial amount between granitic melt and coexisting aqueous fluid phase and higher HF activity during the evolution of hydrothermal fluid. The mutual relationship of the fluorine minerals (topaz and fluorite) in the different alteration zones suggests an increase in the Ca2+ activity and decrease of H+ activity during the fluid evolution from greisenization towards alkali-metasomatised granite and the fluid is assumed to change from low to high activity ratio of Ca2+ /H+. 相似文献
The common presence of topaz and fluorite as both primary and secondary minerals and fluorine-bearing micas suggest fluorine partitioning in substantial amount between granitic melt and coexisting aqueous fluid phase and higher HF activity during the evolution of hydrothermal fluid. The mutual relationship of the fluorine minerals (topaz and fluorite) in the different alteration zones suggests an increase in the Ca
20.
Edward F. Bakewell 《Geoarchaeology》1996,11(2):119-140
Classification and sourcing of vulcanic lithics is simplified through petrographic and geochemical analyses. In examining volcanic lithics, major element geochemistry is required for classification, trace element geochemistry is necessary for discrimination of materials from different sources, and rare earth elements are used in source-modeling. Materials such as those found in the debitage at the British Camp shell midden, San Juan Island (45SJ24), are ubiquitous in the Gulf of Georgia region of the Pacific Northwest. Previous archaeological reports over the past 100 years have classified this volcanic debitage as basalt and predicted a local source. Petrographic analyses of thin sections and geochemical analyses using ICP emission spectrometry have shown that these artifacts are formed of dacite rather than basalt. The analysis also shows that the major lithic material used for stone chipping during the entire temporal sequence at the British Camp site is invariably from the same distant source in the High Cascades, possibly as far as 200 km from the site. © 1996 John Wiley & Sons, Inc. 相似文献