首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-six new and previously published radiocarbon dates constrain the relative sea-level history of Arviat on the west coast of Hudson Bay. As a result of glacial isostatic adjustment (GIA) following deglaciation, sea level fell rapidly from a high-stand of nearly 170 m elevation just after 8000 cal yr BP to 60 m elevation by the mid Holocene (~ 5200 cal yr BP). The rate of sea-level fall decreased in the mid and late Holocene, with sea level falling 30 m since 3000 cal yr BP. Several late Holocene sea-level measurements are interpreted to originate from the upper end of the tidal range and place tight constraints on sea level. A preliminary measurement of present-day vertical land motion obtained by repeat Global Positioning System (GPS) occupations indicates ongoing crustal uplift at Arviat of 9.3 ± 1.5 mm/yr, in close agreement with the crustal uplift rate inferred from the inferred sea-level curve. Predictions of numerical GIA models indicate that the new sea-level curve is best fit by a Laurentide Ice Sheet reconstruction with a last glacial maximum peak thickness of ~ 3.4 km. This is a 30–35% thickness reduction of the ICE-5G ice-sheet history west of Hudson Bay.  相似文献   

2.
We present new results for relative sea‐level change for southern Greenland for the interval from 9000 cal. yr BP to the present. Together with earlier work from the same region this yields a nearly complete record from the time of deglaciation to the present. Isolation and/or transgression sequences in one lake and five tidal basins have been identified using lithostratigraphic analyses, sedimentary characteristics, magnetic susceptibility, saturated induced remanent magnetisation (SIRM), organic and carbonate content, and macrofossil analyses. AMS radiocarbon dating of macrofossils and bulk sediment samples provides the timescale. Relative sea level fell rapidly and reached present‐day level at ~9300 cal. yr BP and continued falling until at least 9000 cal. yr BP. Between 8000 and 6000 cal. yr BP sea level reached its lowest level of around ~10 m below highest astronomical tide. At around 5000 cal. yr BP, sea level had reached above 7.8 m below highest astronomical tide and slowly continued to rise, not reaching present‐day sea level until today. The isostatic rebound caused rapid isolation of the basins that are seen as distinct isolation contacts in the sediments. In contrast, the late Holocene transgressions are less well defined and occurred over longer time intervals. The late Holocene sea‐level rise may be a consequence of isostatic reloading by advancing glaciers and/or an effect of the delayed response to isostatic rebound of the Laurentide ice sheet. One consequence of this transgression is that settlements of Palaeo‐Eskimo cultures may be missing in southern Greenland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
在对莱州湾南岸8个钻孔沉积物沉积结构及有孔虫特征分析基础上,识别相关海面标志层位,辅以加速器质谱AMS14C测年,重建了全新世相对海面变化历史,并讨论了海面变化的沉积响应及控制因素。约9200cal BP以前,海面快速上升,研究区海侵时海面于-21.5m左右;9200~8400cal BP海面上升速率减缓至约2mm/a;8400~8000cal BP海面由-14m快速上升至-5.5m,速率约为33mm/a;8000~7600cal BP,海面持续数百年停滞或微弱下降;7600~7000cal BP海面由-5.5m快速上升至0m以上,速率至少约为13mm/a;7000~6000cal BP海面缓慢上升至+2~+3m位置,速率约为3mm/a;约6000cal BP以后海面缓慢下降至现今水平。约9200cal BP以前、8400~8000cal BP、7600~7000cal BP时期的3次海面快速上升,是MWP-1C融水脉冲、诱发8.2ka冷事件的融水脉冲,以及MWP-2融水脉冲的中纬度地区响应。中全新世全球冰融趋于停滞后,由于研究区沉积盆地沉降速度较慢,在冰川均衡调整效应下,使+2~+3m的相对高海面得以呈现。  相似文献   

4.
Southwestern Finland was covered by the Weichselian ice sheet and experienced rapid glacio-isostatic rebound after early Holocene deglaciation. The present mean overall apparent uplift rate is of the order of 4-5 mm/yr, but immediately after deglaciation the rate of crustal rebound was several times higher. Concurrently with land uplift, relative sea level in the Baltic basin during the past more than 8000 years was also strongly affected by the eustatic changes in sea level. There is ample evidence from earlier studies that during the early Litorina Sea stage on the southeastern coast of Finland around 7000 yr BP (7800 cal. yr BP), the rise in sea level exceeded the rate of land uplift, resulting in a short-lived transgression. Because of a higher rate of uplift, the transgression was even more short-lived or of negligible magnitude in the southwestern part of coastal Finland, but even in this latter case a slowing down in the rate of regression can still be detected. We used evidence from isolation basins to obtain a set of 71 14C dates, and over 30 new sea-level index points. The age-elevation data, obtained from lakes in two different areas and located between c. 64 m and 1.5 m above present sea level, display a high degree of internal consistency. This suggests that the dates are reliable, even though most of them were based on bulk sediment samples. The two relative sea-level curves confirm the established model of relatively gradually decreasing rates of relative sea-level lowering since c. 6100 yr BP (7000 cal. yr BP) and clearly indicate that the more northerly of the two study areas experienced the higher rate of glacio-isostatic recovery. In the southerly study area, changes in diatom assemblages and lithostratigraphy suggest that during the early Litorina Sea stage (8300-7600 cal. yr BP) eustatic sea-level rise exceeded land uplift for hundreds of years. Evidence for this transgression was discovered in a lake with a basin threshold at an elevation of 41 m above sea level, which is markedly higher than any previously known site with evidence for the Litorina transgression in Finland. We also discuss evidence for subsequent short-term fluctuations superimposed on the main trends of relative sea-level changes.  相似文献   

5.
We present results from an investigation of relative sea-level changes in the Qaqortoq area in south Greenland from c. 11 000 cal. yr BP to the present. Isolation and transgression sequences from six lakes and two tidal basins have been identified using stratigraphical analyses, magnetic susceptibility, XRF and macrofossil analyses. Macrofossils and bulk sediments have been dated by AMS radiocarbon dating. Maximum and minimum altitudes for relative sea level are provided from two deglaciation and marine lagoon sequences. Initially, relative sea level fell rapidly and reached present-day level at ∼9000 cal. yr BP and continued falling until at least 8800 cal. yr BP. Between 8000 and 6000 cal. yr BP, sea level reached its lowest level of around 6-8 m below highest astronomical tide (h.a.t.). At around 3750 cal. yr BP, sea level has reached above 2.7 m below h.a.t. and continued to rise slowly, reaching the present-day level between ∼2000 cal. yr BP and the present. As in the Nanortalik area further south, initial isostatic rebound caused rapid isolation of low elevation basins in the Qaqortoq area. Distinct isolation contacts in the sediments are observed. The late Holocene transgression is less well defined and occurred over a longer time interval. The late Holocene sea-level rise implies reloading by advancing glaciers superimposed on the isostatic signal from the North American Ice Sheet. One consequence of this transgression is that settlements of Palaeo-Eskimo cultures from ∼4000 cal. yr BP may have been transgressed by the sea.  相似文献   

6.
Rundgren, M., Ingólfsson, Ó., Björck, S., Jiang, H. & Haflioason, H. 1997 (September): Dynamic sea-level change during the last deglaciation of northern Iceland. Boreas , Vol. 26, pp. 201–215. Oslo. ISSN 0300–9483.
A detailed reconstruction of deglacial relative sea-level changes at the northern coast of Iceland, based on the litho- and biostratigraphy of lake basins, indicates an overall fall in relative sea level of about 45 m between 11300 and 9100 BP, corresponding to an isostatic rebound of 77 m. The overall regression was interrupted by two minor transgressions during the late Younger Dryas and in early Preboreal, and these were probably caused by a combination of expansions of local ice caps and readvances of the Icelandic inland ice-sheet margin. Maximum absolute uplift rates are recorded during the regressional phase between the two transgressions (10000–9850 BP), with a mean value of c . 15 cm 14C yr-1 or 11–12 cm cal. yr-1. Mean absolute uplift during the regressional phase following the second transgression (9700–9100 BP) was around 6 cm 14C yr-1, corresponding to c . 3 cm cal. yr-1, and relative sea level dropped below present-day sea level at 9000 BP.  相似文献   

7.
This paper presents the results of an investigation into Holocene relative sea-level (RSL) change, isostatic rebound and ice sheet dynamics in Disko Bugt, West Greenland. Data collected from nine isolation basins on Arveprinsen Ejland, east Disko Bugt, show that mean sea level fell continuously from ca. 70 m at 9.9 ka cal. yr BP (8.9 ka 14C yr BP) to reach a minimum of ca. −5 m at 2.8 ka cal. yr BP (2.5 ka 14C yr BP), before rising to the present day. A west–east gradient in isostatic uplift across Disko Bugt is confirmed, with reduced rebound observed in east Disko Bugt. However, RSL differences (up to 20 m at 7.8 ka to 6.8 ka cal. yr BP (7 ka to 6 ka 14C yr BP)) also exist within east Disko Bugt, suggesting a significant north–south component to the area’s isostatic history. The observed magnitude and timing of late Holocene RSL rise is not compatible with regional forebulge collapse. Instead, RSL rise began first in the eastern part of the bay, as might be expected under a scenario of crustal subsidence caused by neoglacial ice sheet readvance. The results of this study demonstrate the potential of isolation basin data for local and regional RSL studies in Greenland, and the importance of avoiding data compilations from areas where the isobase orientation is uncertain. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
During the last glacial stage, Washington Land in western North Greenland was probably completely inundated by the Greenland Ice Sheet. The oldest shell dates from raised marine deposits that provide minimum ages for the last deglaciation are 9300 cal. yr BP (northern Washington Land) and 7600 cal. yr BP (SW Washington Land). These dates indicate that Washington Land, which borders the central part of Nares Strait separating Greenland from Ellesmere Island in Canada, did not become free of glacier ice until well into the Holocene. The elevation of the marine limit falls from 110 m a.s.l. in the north to 60 m a.s.l. in the southwest. The recession was followed by readvance of glaciers in the late Holocene, and the youngest shell date from Neoglacial lateral moraines north of Humboldt Gletscher is 600 cal. yr BP. Since the Neoglacial maximum, probably around 100 years ago, glaciers have receded. The Holocene marine assemblages comprise a few southern extralimital records, notably of Chlamys islandica dated to 7300 cal. yr BP. Musk ox and reindeer disappeared from Washington Land recently, perhaps in connection with the cold period that culminated about 100 years ago.  相似文献   

9.
A high-resolution, well-dated dinoflagellate cyst record from a lagoon of the southeastern Swedish Baltic Sea reveals climate and hydrological changes during the Holocene. Marine dinoflagellate cysts occurred initially at about 8600 cal yr BP, indicating the onset of the Littorina transgression in the southeastern Swedish lowland associated with global sea level rise, and thus the opening of the Danish straits. Both the species diversity and the total accumulation rates of dinoflagellate cysts continued to increase by 7000 cal yr BP and then decreased progressively. This pattern reveals the first-order change in local sea level as a function of ice-volume-equivalent sea level rise versus isostatic land uplift. Superimposed upon this local sea level trend, well-defined fluctuations of the total accumulation rates of dinoflagellate cysts occurred on quasi-1000- and 500-yr frequency bands particularly between 7500 and 4000 cal yr BP, when the connection between the Baltic basin and the North Atlantic was broader. A close correlation of the total accumulation rates of dinoflagellate cysts with GISP2 ice core sea-salt ions suggests that fluctuations of Baltic surface conditions during the middle Holocene might have been regulated by quasi-periodic variations of the prevailing southwesterly winds, most likely through a system similar to the dipole oscillation of the modern North Atlantic atmosphere.  相似文献   

10.
Forty-eight new and previously published radiocarbon ages constrain deglacial and postglacial sea levels on southern Vancouver Island, British Columbia. Sea level fell rapidly from its high stand of about +75 m elevation just before 14 000 cal BP (12 000 radiocarbon yrs BP) to below the present shoreline by 13 200 cal BP (11 400 radiocarbon years BP). The sea fell below its present level 1000 years later in the central Strait of Georgia and 2000 years later in the northern Strait of Georgia, reflecting regional differences in ice sheet retreat and downwasting. Direct observations only constrain the low stand to be below ?11 m and above ?40 m. Analysis of the crustal isostatic depression with equations utilizing exponential decay functions appropriate to the Cascadia subduction zone, however, places the low stand at ?30 ± 5 m at about 11 200 cal BP (9800 BP). The inferred low stand for southern Vancouver Island, when compared to the sea-level curve previously derived for the central Strait of Georgia to the northwest, generates differential isostatic depression that is consistent with the expected crustal response between the two regions. Morphologic and sub-bottom features previously interpreted to indicate a low stand of ?50 to ?65 m are re-evaluated and found to be consistent with a low stand of ?30 ± 5 m. Submarine banks in eastern Juan de Fuca Strait were emergent at the time of the low stand, but marine passages persisted between southern Vancouver Island and the mainland. The crustal uplift presently occurring in response to the Late Pleistocene collapse of the southwestern sector of the Cordilleran Ice Sheet amounts to about 0.1 mm/yr. The small glacial isostatic adjustment rate is a consequence of low-viscosity mantle in this tectonically active region.  相似文献   

11.
The radiocarbon ages of mollusc shells from the Bogenfels Pan on the hyper arid southern coast of Namibia provide constraints on the Holocene evolution of sea level and, in particular, the mid-Holocene highstand. The Bogenfels Pan was flooded to depths of 3 m above mean sea level (amsl) to form a large subtidal lagoon from 7300 to 6500 calibrated radiocarbon years before present (cal yr BP). The mollusc assemblage of the wave sheltered lagoon includes Nassarius plicatellus, Lutraria lutraria, and the bivalves Solen capensis and Gastrana matadoa, both of which no longer live along the wave-dominated southern Namibian coast. The radiocarbon ages of mollusc shell from a gravely beach deposit exposed in a diamond exploration trench indicate that sea level fell to near or 1 m below its present-day position between 6500 and 4900 cal yr BP. The rapid emergence of the pan between 6500 and 4900 cal yr BP exceeds that predicted by glacio-isostatic models and may indicate a 3-m eustatic lowering of sea level. The beach deposits at Bogenfels indicate that sea level rose to 1 m amsl between 4800 and 4600 cal yr BP and then fell briefly between 4600 and 4200 cal yr BP before returning to 1 m amsl. Since 4200 cal yr BP sea level has remained within one meter of the present-day level and the beach at Bogenfels has prograded seaward from the delayed arrival of sand by longshore drift from the Orange River. A 6200 cal yr BP coastal midden and a 600 cal yr BP midden 1.7 km from the coast indicate sporadic human utilization of the area. The results of this study are consistent with previous studies and help to refine the Holocene sea-level record for southern Africa.  相似文献   

12.
A re‐analysis of sea‐level data from eastern Australia based on 115 calibrated C‐14 ages is used to constrain the origin, timing and magnitude of sea‐level change over the last 7000 years. We demonstrate that the Holocene sea‐level highstand of +1.0–1.5 m was reached ~7000 cal yr bp and fell to its present position after 2000 yr bp . These findings are in contrast to most previous studies that relied on smaller datasets and did not include the now common conversion of conventional C‐14 ages to calendar years. During this ~5000 year period of high sea level, growth hiatuses in oyster beds and tubeworms and lower elevations of coral microatolls are interpreted to represent short‐lived oscillations in sea‐level of up to 1 m during two intervals, beginning c. 4800 and 3000 cal yr bp . The rates of sea‐level rise and fall (1–2 mm yr?1) during these centennial‐scale oscillations are comparable with current rates of sea‐level rise. The origin of the oscillations is enigmatic but most likely the result of oceanographic and climatic changes, including wind strengths, ice ablation, and melt‐water contributions of both Greenland and Antarctic ice sheets.  相似文献   

13.
In West Greenland, early and mid Holocene relative sea level (RSL) fall was replaced by late Holocene RSL rise during the Neoglacial, after 4–3 cal. ka BP (thousand calibrated years before present). Here we present the results of an isolation basin RSL study completed near to the coastal town of Sisimiut, in central West Greenland. RSL fell from 14 m above sea level at 5.7 cal. ka BP to reach a lowstand of ?4.0 m at 2.3–1.2 cal. ka BP, before rising by an equivalent amount to present. Differences in the timing and magnitude of the RSL lowstand between this and other sites in West and South Greenland record the varied interplay of local and non‐Greenland RSL processes, notably the reloading of the Earth's crust caused by a Neoglacial expansion of the Greenland Ice Sheet (GIS) and the subsidence associated with the collapse of the Laurentide Ice Sheet forebulge. This means that the timing of the sea level lowstand cannot be used to infer directly when the GIS advanced during the Neoglacial. The rise in Late Holocene RSL is contrary to recently reported bedrock uplift in the Sisimiut area, based on repeat GPS surveys. This indicates that a belt of peripheral subsidence around the current ice sheet margin was more extensive in the late Holocene, and that there has been a switch from subsidence to uplift at some point in the last thousand years or so. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
We use the radiocarbon ages of marine shells and terrestrial vegetation to reconstruct relative sea level (RSL) history in northern Southeast Alaska. RSL fell below its present level around 13,900 cal yr BP, suggesting regional deglaciation was complete by then. RSL stayed at least several meters below modern levels until the mid-Holocene, when it began a fluctuating rise that probably tracked isostatic depression and rebound caused by varying ice loads in nearby Glacier Bay. This fluctuating RSL rise likely reflects the episodic but progressive advance of ice in Glacier Bay that started around 6000 cal yr BP. After that time, RSL low stands probably signaled minor episodes of glacier retreat/thinning that triggered isostatic rebound and land uplift. Progressive, down-fjord advance of the Glacier Bay glacier during the late Holocene is consistent with the main driver of this glacial system being the dynamics of its terminus rather than climate change directly. Only after the glacier reached an exposed position protruding into Icy Strait ca. AD 1750, did its terminus succumb - a century before the climate changes that marked the end of the Little Ice Age - to the catastrophic retreat that triggered the rapid isostatic rebound and RSL fall occurring today in Icy Strait.  相似文献   

15.
The coastal zone of Norrbotten, northern Sweden, was gradually inundated by the Ancylus Lake following the retreating ice margin and forming a highest coastline approximately 210 m above the present sea level. The succeeding shore displacement is reconstructed based on lithological investigations and radiocarbon datings of identified isolation sequences from 12 cored lake basins. The highest lake basins, along with two basins above the highest shoreline, suggest ice-free conditions already at 10 500 cal. yr BP. This is at least 500 years earlier than previously thought and implies rapid ice-sheet break-up in the Gulf of Bothnia. The shore displacement (RSL) curve represents a forced regression of successively decreasing rate through the Holocene, from 9 m/100 yr to 0.8 m/100 yr. During the first 1000-1200 years, the isostatic uplift is exponentially declining, followed by a constant uplift rate from c. 9500 cal. yr BP to 5500-5000 cal. yr BP. The last 5000 years seem to be characterized by a low but constant rebound rate. The development of the Ancylus Lake stage of the Baltic may also be discerned in the Norrbotten RSL curve, suggesting that the chronology of the Ancylus Lake stages may have to be revised. The Littorina transgression is also reflected by the RSL curve shape. In addition, a series of early to mid-Holocene beach terraces were OSL-dated to allow for comparison with the 14C-dated shore displacement curve. Interpretations of these ages and their relation to former sea levels were clearly more problematic than the dating of the lake basin isolations.  相似文献   

16.
Relative sea level at Vancouver, British Columbia rose from below the present datum about 30,000 cal yr B.P. to at least 18 m above sea level 28,000 cal yr B.P. In contrast, eustatic sea level in this interval was at least 85 m lower than at present. The difference in the local and eustatic sea-level positions is attributed to glacio-isostatic depression of the crust in the expanding forefield of the Cordilleran ice sheet during the initial phase of the Fraser Glaciation. Our findings suggest that about 1 km of ice was present in the northern Strait of Georgia 28,000 cal yr B.P., early during the Fraser Glaciation.  相似文献   

17.
Romundset, A., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. 2009: The first Holocene relative sea-level curve from the middle part of Hardangerfjorden, western Norway. Boreas , 10.1111/j.1502-3885.2009.00108.x. ISSN 0300-9483.
The first relative sea-level (RSL) curve from the mid-Hardangerfjorden area covering the entire Holocene is presented. The curve is based on a series of AMS 14C dates on terrestrial plant macrofossils across the isolation level in each of five lakes located between 3.5 and 74.5 m a.s.l. During the first 1200 years, the RSL fell very rapidly from the marine limit at 98 m a.s.l. to 33 m a.s.l., i.e. at a rate of 5.4 cm yr−1. The emergence rate then slowed considerably and was close to standstill 8000–6500 cal. yr BP. However, an emergence of 16.5 m has taken place during the past 6000 years. Radiocarbon dates of terrestrial plant macrofossils from the basal strata in a lake above the marine limit and mollusc shells from glaciomarine silt in the isolation basins yielded a mean age for the local ice-margin retreat of 11 300 cal. yr BP. This verifies that Hardangerfjorden was glaciated during the Younger Dryas – an interpretation that has recently been disputed. The ice margin retreated at a rate of about 300 m yr−1 from the position of the Younger Dryas moraine to this site some 60 km further into the fjord.  相似文献   

18.
Slightly inclined Holocene marine terraces cover parts of two circular salt diapirs (Hormoz and Namakdan) in the Persian Gulf. Their relative altitude above present sea level results from a combination of general marine transgression/regression affecting the whole area, and of local uplift related to salt diapirism. Differential uplift rate of the studied diapirs in centre‐to‐rim profiles was calculated from results based on: (i) radiocarbon ages of skeletal remains of benthic faunas (19 samples), which originally grew close to sea level; (ii) original altitude of samples, estimated from general sea‐level oscillation curves for the last 10 kyr, and (iii) present sample altitude measured in the field. Calculated uplift rates increase from rim to centre on both diapirs in the range from: 2 mm yr?1 at the rim to 5–6 mm yr?1 at the interior of Hormoz, and 1–3 mm yr?1 at the rim to 3–5 mm yr?1 at the interior of Namakdan. Such uplift rate distributions fit into the parabolic profile of Newtonian fluid rather than to profiles typical for pseudoplastic fluids. The increase in uplift rate with distance from rim to centre of diapirs is gradual as demonstrated also by generally smooth surface of marine terraces. No tectonic dissections were found. The depositional history on both salt diapirs is similar although they are situated more than 100 km apart. Marine sedimentation started at about 9.6k cal. yr BP on Hormoz and at 8.6k cal. yr BP on Namakdan. Owing to rapid transgression, the sea partially truncated both salt diapirs and rapidly deepened, and carbonate mud was deposited on the peripheries of both salt diapirs. Between 7 and 5k cal. yr BP beach deposition replaced carbonate mud. Soon after 5k cal. yr BP, the sea retreated from most of the marine terraces on both salt diapirs. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The outer coast of Finnmark in northern Norway is where the former Fennoscandian and Barents Sea ice sheets coalesced. This key area for isostatic modelling and deglaciation history of the ice sheets has abundant raised shorelines, but only a few existing radiocarbon dates constrain their chronology. Here we present three Holocene sea level curves based on radiocarbon dated deposits from isolation basins at the outermost coast of Finnmark; located at the islands Sørøya and Rolvsøya and at the Nordkinn peninsula. We analysed animal and plant remains in the basin deposits to identify the transitions between marine and lacustrine sediments. Terrestrial plant fragments from these transitions were then radiocarbon dated. Radiocarbon dated mollusk shells and marine macroalgae from the lowermost deposits in several basins suggest that the first land at the outer coast became ice free around 14,600 cal yr BP. We find that the gradients of the shorelines are much lower than elsewhere along the Norwegian coast because of substantial uplift of the Barents Sea. Also, the anomalously high elevation of the marine limit in the region can be attributed to uplift of the adjacent seafloor. After the Younger Dryas the coast emerged 1.6–1.0 cm per year until about 9500–9000 cal yr BP. Between 9000 and 7000 cal yr BP relative sea level rose 2–4 m and several of the studied lakes became submerged. At the outermost locality Rolvsøya, relative sea level was stable at the transgression highstand for more than 3000 years, between ca 8000 and 5000 cal yr BP. Deposits in five of the studied lakes were disturbed by the Storegga tsunami ca 8200–8100 cal yr BP.  相似文献   

20.
The Late Quaternary climate history of the Larsemann Hills has been reconstructed using siliceous microfossils (diatoms, chrysophytes and silicoflagellates) in sediment cores extracted from three isolation lakes. Results show that the western peninsula, Stornes, and offshore islands were ice‐covered between 30 000 yr BP and 13 500 cal. yr BP. From 13 500 cal. yr BP (shortly after the Antarctic Cold Reversal) the coastal lakes of the Larsemann Hills were deglaciated and biogenic sedimentation commenced. Between 13 500 and 11 500 cal. yr BP conditions were warmer and wetter than during the preceding glacial period, but still colder than today. From 11 500 to 9500 cal. yr BP there is evidence for wet and warm conditions, which probably is related to the early Holocene climate optimum, recorded in Antarctic ice cores. Between 9500 and 7400 cal. yr BP dry and cold conditions are inferred from high lake‐water salinities, and low water levels and an extended duration of nearshore sea‐ice. A second climate optimum occurred between 7400 and 5230 cal. yr BP when stratified, open water conditions during spring and summer characterised the marine coast of Prydz Bay. From 5230 until 2750 cal. yr BP sea‐ice duration in Prydz Bay increased, with conditions similar to the present day. A short return to stratified, open water conditions and a reduction in nearshore winter sea‐ice extent is evident between 2750 and 2200 cal. yr BP. Simultaneously, reconstructions of lake water depth and salinity suggests relatively humid and warm conditions on land between 3000 and 2000 cal. yr BP, which corresponds to a Holocene Hypsithermal reported elsewhere in Antarctica. Finally, dry conditions are recorded around 2000, between 760 and 690, and between 280 and 140 cal. yr BP. These data are consistent with ice‐core records from Antarctica and support the hypothesis that lacustrine and marine sediments on land can be used to evaluate the effect of long‐term climate change on the terrestrial environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号