首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles of subduction of the Pacific plate and the big mantle wedge (BMW) in the evolution of east Asian continental margin have attracted lots of attention in past years. This paper reviews recent progresses regarding the composition and chemical heterogeneity of the BMW beneath eastern Asia and geochemistry of Cenozoic basalts in the region, with attempts to put forward a general model accounting for the generation of intraplate magma in a BMW system. Some key points of this review are summarized in the following. (1) Cenozoic basalts from eastern China are interpreted as a mixture of high-Si melts and low-Si melts. Wherever they are from, northeast, north or south China, Cenozoic basalts share a common low-Si basalt endmember, which is characterized by high alkali, Fe2O3T and TiO2 contents, HIMU-like trace element composition and relatively low 206Pb/204Pb compared to classic HIMU basalts. Their Nd-Hf isotopic compositions resemble that of Pacific Mantle domain and their source is composed of carbonated eclogites and peridotites. The high-Si basalt endmember is characterized by low alkali, Fe2O 3 T and TiO2 contents, Indian Mantle-type Pb-Nd-Hf isotopic compositions, and a predominant garnet pyroxenitic source. High-Si basalts show isotopic provinciality, with those from North China and South China displaying EM1-type and EM2-type components, respectively, while basalts from Northeast China containing both EM1- and EM2-type components. (2) The source of Cenozoic basalts from eastern China contains abundant recycled materials, including oceanic crust and lithospheric mantle components as well as carbonate sediments and water. According to their spatial distribution and deep seismic tomography, it is inferred that the recycled components are mostly from stagnant slabs in the mantle transition zone, whereas EM1 and EM2 components are from the shallow mantle. (3) Comparison of solidi of garnet pyroxenite, carbonated eclogite and peridotite with regional geotherm constrains the initial melting depth of high-Si and low-Si basalts at <100 km and ~300 km, respectively. It is suggested that the BMW under eastern Asia is vertically heterogeneous, with the upper part containing EM1 and EM2 components and isotopically resembling the Indian mantle domain, whereas the lower part containing components derived from the Pacific mantle domain. Contents of H2O and CO2 decrease gradually from bottom to top of the BMW. (4) Melting of the BMW to generate Cenozoic intraplate basalts is triggered by decarbonization and dehydration of the slabs stagnated in the mantle transition zone.  相似文献   

2.

The Madang Cenozoic sodic alkaline basalt occurred in the eastern margin of the Tibetan Plateau, where is a key tectonic transform region of Tibet, North China, and Yangtze blocks. The basalts are characterized by the variation in SiO2=42%–51%, Na2O/K2O>4, belonging to the sodic alkaline basalt series. The rocks are enriched in Ba, Th, Nb, Ta, relative to a slight depletion in K, Rb in the trace and rare earth element (REE) spider diagrams that are similar to the typical oceanic island alkaline basalt. The Sr-Nd-Pb isotopic compositions suggest that they are derived from a mixed mantle reservoir. The western Qinling-Songpan tectonic region was controlled by Tibet, North China and Yangtze blocks since Cenozoic, therefore, the region was in the stage of the substance converge from the mantle to upper crust, producing a mixed mantle reservoir in the studied area. The Madang basalts occurred in the specific tectonic background, they result from partial melting of a mixed asthenospheric mantle reservoir in the western Qinling-Songpan tectonic node.

  相似文献   

3.
《Journal of Geodynamics》2007,43(1):87-100
The petrology and geochemistry of Icelandic basalts have been studied for more than a century. The results reveal that the Holocene basalts belong to three magma series: two sub-alkaline series (tholeiitic and transitional alkaline) and an alkali one. The alkali and the transitional basalts, which occupy the off-rift volcanic zones, are enriched in incompatible trace elements compared to the tholeiites, and have more radiogenic Sr, Pb and He isotope compositions. Compared to the tholeiites, they are most likely formed by partial melting of a lithologically heterogeneous mantle with higher proportions of melts derived from recycled oceanic crust in the form of garnet pyroxenites compared to the tholeiites. The tholeiitic basalts characterise the mid-Atlantic rift zone that transects the island, and their most enriched compositions and highest primordial (least radiogenic) He isotope signature are observed close to the centre of the presumed mantle plume. High-MgO basalts are found scattered along the rift zone and probably represent partial melting of refractory mantle already depleted of initial water-rich melts. Higher mantle temperature in the centre of the Iceland mantle plume explains the combination of higher magma productivity and diluted signatures of garnet pyroxenites in basalts from Central Iceland. A crustal component, derived from altered basalts, is evident in evolved tholeiites and indeed in most basalts; however, distinguishing between contamination by the present hydrothermally altered crust, and melting of recycled oceanic crust, remains non-trivial. Constraints from radiogenic isotope ratios suggest the presence of three principal mantle components beneath Iceland: a depleted upper mantle source, enriched mantle plume, and recycled oceanic crust.The study of glass inclusions in primitive phenocrysts is still in its infancy but already shows results unattainable by other methods. Such studies reveal the existence of mantle melts with highly variable compositions, such as calcium-rich melts and a low-18O mantle component, probably recycled oceanic crust. Future high-resolution seismic studies may help to identify and reveal the relative proportions of different lithologies in the mantle.  相似文献   

4.
The water contents of minerals and whole-rock in mantle-derived xenoliths from eastern China exhibit large variations and are generally lower than those from other on- and off-craton lithotectonic units. Nevertheless, the water contents of mineral and whole-rock in Junan peridotite xenoliths, which sourced from the juvenile lithospheric mantle, are generally higher than those elsewhere in eastern China. This suggests that the initial water content of juvenile lithospheric mantle is not low. There is no obvious correlation between the water contents and Mg# values of minerals in the mantle xenoliths and no occurrence of diffusion profile in pyroxene, suggesting no relationship between the low water content of mantle xenolith and the diffusion loss of water during xenolith ascent with host basaltic magmas. If the subcontinental lithospheric mantle (SCLM) base is heated by the asthenospheric mantle, the diffusion loss of water is expected to occur. On the other hand, extraction of basaltic melts from the SCLM is a more efficient mechanism to reduce the water content of xenoliths. The primary melts of Mesozoic and Cenozoic basalts in eastern China have water contents, as calculated from the water contents of phenocrysts, higher than those of normal mid-ocean ridge basalts (MORB). The Mesozoic basalts exhibit similar water contents to those of island arc basalts, whereas the Cenozoic basalts exhibit comparable water contents to oceanic island basalts and backarc basin basalts with some of them resembling island arc basalts. These observations suggest the water enrichment in the mantle source of continental basalts due to metasomatism by aqueous fluids and hydrous melts derived from dehydration and melting of deeply subducted crust. Mantle-derived megacrysts, minerals in xenoliths and phenocrysts in basalts from eastern China also exhibit largely variable hydrogen isotope compositions, indicating a large isotopic heterogeneity for the Cenozoic SCLM in eastern China. The water content that is higher than that of depleted MORB mantle and the hydrogen isotope composition that is deviated from that of depleted MORB mantle suggest that the Cenozoic continental lithospheric mantle suffered the metasomatism by hydrous melts derived from partial melting of the subducted Pacific slab below eastern China continent. The metasomatism would lead to the increase of water content in the SCLM base and then to the decrease of its viscosity. As a consequence, the SCLM base would be weakened and thus susceptible to tectonic erosion and delamination. As such, the crust-mantle interaction in oceanic subduction channel is the major cause for thinning of the craton lithosphere in North China.  相似文献   

5.
The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh ba-saltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions. Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cu-mulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.  相似文献   

6.
The properties and tectonic significance of the fault bound zone on the northern margin of the Central Tianshan belt are key issues to understand the tectonic framework and evolutionary history of the Tianshan Orogenic Belt. Based on the geological and geochemical studies in the Tianshan orogenic belt, it is suggested that the ophiolitic slices found in the Bingdaban area represent the remaining oceanic crust of the Early Paleozoic ocean between the Hazakstan and Zhungaer blocks. Mainly composed of basalts, gabbros and diabases, the ophiolites were overthrust onto the boundary fault between the Northern Tianshan and Central Tianshan belts. The major element geochemistry is characterized by high TiO2 (1.50%–2.25%) and MgO (6.64%–9.35%), low K2O (0.06%–0.41%) and P2O5 (0.1%–0.2%), and Na2O>K2O as well. Low ΣREE and depletion in LREE indicate that the original magma was derived from a depleted mantle source. Compared with a primitive mantle, the geochemistry of the basalts from the Bingdaban area is featureded by depletion in Th, U, Nb, La, Ce and Pr, and unfractionated in HFS elements. The ratios of Zr/Nb, Nb/La, Hf/Ta, Th/Yb and Hf/Th are similar to those of the typical N-MORB. It can be interpreted that the basalts in the Bingdaban area were derived from a depleted mantle source, and formed in a matured mid-oceanic ridge setting during the matured evolutionary stage of the Northern Tianshan ocean. In comparison with the basalts, the diabases from the Bingdaban area show higher contents of Al2O3, ΣREE and HFS elements as well as unfractionated incompatible elements except Cs, Rb and Ba, and about 10 times the values of the primitive mantle. Thus, the diabases are thought to be derived from a primitive mantle and similar to the typical E-MORB. The diabases also have slight Nb depletion accompanying no apparent Th enrichment compared with N-MORB. From studies of the regional geology and all above evidence, it can be suggested that the diabases from the Bingdaban area were formed in the mid-oceanic ridge of the Northern Tianshan ocean during the initial spreading stage. Supported by the Major State Research Program of PRC (Grant No. 2001CB409801), the National Natural Science Foundation of China (Grant Nos. 40472115 and 40234041) and the State Research Program of China Geological Survey (Grant No. 2001130000-22)  相似文献   

7.
通过对采自河北汉诺坝玄武岩中的下地壳和上地幔包体的详细研究 ,建立了本区下地壳—上地幔地温线。该地温线高于大洋地温线和古老地盾地温线 ,接近克拉通边缘的地温线 ,符合该区的大地构造环境。由该地温线建立的下地壳—上地幔地质结构剖面表明 ,该区下地壳主要由不同类型的麻粒岩相岩石组成 ,其化学成分以镁铁质为主 ,深度范围为 2 5~ 4 2km。上地幔由超镁铁质的二辉橄榄岩组成 ,在尖晶石二辉橄榄岩和石榴石二辉橄榄岩之间有一过渡层。由地温线确定的壳幔边界位于 4 2km附近 ,与地震资料确定的莫霍面一致 ,但在壳幔边界之上的下地壳底部有下地壳麻粒岩和超镁铁质岩的互层。这一现象可以解释在下地壳底部常见的层状反射层。该区岩石圈底界大约在 95km ,其下的软流层仍由石榴石二辉橄榄岩组成  相似文献   

8.
Ferromanganese crusts (hereinafter crusts) form in aerobic environment and the environmental oxida-tion degree is recorded by the redox sensitive element Co in the crusts. The ages of the layers from the surface to bottom of the crusts are determined, and main element contents at high resolution along the depth sections of three crusts from the Pacific Ocean are analyzed by an electron microprobe. Thus the variations of Co/(Fe Mn) and Co/(Ni Cu) with age/depth of the crust layers are obtained. By comparing the ratios of Co/(Fe Mn) and Co/(Ni Cu) with the δ 18O curves of the Pacific benthic foraminifera, we find that these two ratios can reflect the variation of the environmental oxidation state under which the crust layers deposit. The evolution of the oxidation degree reflected by the two indexes resembles the evo-lution of temperature since the Oligocene reflected by the δ 18O curves of the Pacific benthic foraminif-era. This suggests that the crust-forming environment after the Oligocene is controlled mainly by the oxygen-rich bottom water originated from the Antarctic bottom water (AABW). However it is not the case prior to the Oligocene. Furthermore it suggests that the environmental oxidation degree controls the formation of the crusts and the Co contents in the crusts. This explains why the Co contents in the crusts increase with time up to now.  相似文献   

9.
Distribution of trace elements in spinel and garnet peridotites   总被引:6,自引:1,他引:5  
The distribution of trace elements in the upper mantle has been discussed on the basis of the trace element abundances in bulk rocks and constituent minerals of two spinel and garnet facies peridotite xenoliths in alkali basalts from eastern China. The data presented are consistent with the suggestion that highly incompatible elements (Rb, Ba, Th, U, Sr, Nb, Ta) mainly reside in intergranular components, and to a lesser extent in fluid inclusions in minerals. The LILE composition in olivine and orthopyroxene can be seriously affected by the presence of fluid inclusions. Consequently the subsolidus partitioning of the LILE cannot be used to infer the olivine-melt and orthopyroxene-melt partition coefficients for these elements. There is a significant difference in (Opx/Cpx)HREE ratios for spinel and garnet peridotites, suggesting a P-T control on equilibrium partition coefficients.  相似文献   

10.
中国东部橄榄岩和榴辉岩深源包体的地理分布构成了全球环太平洋深源包体分布带的重要组成部分。深源包体的产出与地球内部构造密切相关。尖晶石橄榄岩和镁铝榴石橄榄岩两种包体与上地幔的构造分带相一致,榴辉岩包体代表上地幔中局部的分凝体。碱性玄武岩浆的活动和深源岩石带的形成应为板块构造运动的结果。  相似文献   

11.
Depletion of Nb relative to K and La is characteristic of lavas in subduction-related magmatic arcs, as distinct from mid-ocean ridge basalts. Nb depletion is also characteristic of the continental crust. This and other geochemical similarities between the continental crust and high-Mg# andesite magmas found in arcs suggests that the continental crust may have formed by accretion of andesites. Previous studies have shown that the major element characteristics of high-Mg# andesites may be produced by melt/rock reaction in the upper mantle. In this paper, new data on partitioning of K, Nb, La and Ce between garnet, orthopyroxene and clinopyroxene in mantle xenoliths, and on partitioning of Nb and La between orthopyroxene and liquid, show that garnet and orthopyroxene have Nb crystal/liquid distribution coefficients which are much larger than those of K and La. Similar fractionations of Nb from K and La are expected in spinel and olivine. For this reason, reactions between migrating melt and large masses of mantle peridotite can produce substantial depletion of Nb in derivative liquids. Modeling shows that reaction between ascending, mantle-derived melts and mantle peridotite is a viable mechanism for producing the trace element characteristics of high-Mg# andesite magmas and the continental crust.

Alternatively, small-degree melts of metabasalt and/or metasediment in the subducting slab may leave rutile in their residue, and will thus have large Nb depletions relative to K and La [1]. Slab melts are too rich in light rare earth elements and other incompatible elements, and too poor in compatible elements, to be parental to arc magmas. However, ascending slab melts may be modified by reaction with the mantle. Our new data permit modeling of the trace element effects of reaction between small-degree melts of the slab and mantle peridotite. Modeling shows that this type of reaction is also a viable mechanism for producing the trace element characteristics of high-Mg# andesites and the continental crust. These findings, in combination with previous results, suggest that melt/rock reaction in the upper mantle has been an important process in forming the continental crust and mantle lithosphere.  相似文献   


12.
Latest Oligocene and Early Miocene volcanic rocks occur on the Northland Peninsula, New Zealand, and record the inception of Cenozoic subduction-related volcanism in the North Island that eventually evolved to its present manifestation in the Taupo Volcanic Zone. This NW-striking Northland Arc is continuous with the Reinga Ridge and comprises two parallel belts of volcanic centres ca. 60 km apart. A plethora of tectonic models have been proposed for its origins. We acquired new trace element and Sr–Nd isotope data to better constrain such models. All Northland Arc rocks carry an arc-type trace element signature, however distinct differences exist between rocks of the eastern and western belt. Eastern belt rocks are typically andesites and dacites and have relatively evolved isotope ratios indicating assimilated crustal material, and commonly contain hornblende. Additionally some eastern belt rocks with highly evolved isotope compositions show fractionated REE compositions consistent with residual garnet, and some contain garnetiferous inclusions in addition to schistose crustal fragments. In contrast, western belt rocks are mostly basalts or basaltic andesites with relatively primitive Sr–Nd isotope compositions, do not contain hornblende and show no rare earth element evidence for cryptic amphibole fractionation. Eastern and western belt rocks contain comparable slab-derived fractions of fluid-mobile trace elements and invariably possess an arc signature. Therefore the difference between the belts may be best explained as due to variation in crustal thickness across the Northland Peninsula, where western belt centres erupted onto a thinner crustal section than eastern belt rocks.The consistent arc signature throughout the Northland arc favours an origin in response to an actual, if short-lived subduction event, rather than slab detachment as proposed in some models. No Northland Arc rocks possess a convincing adakite-like composition that might reflect the subduction of very young oceanic lithosphere such as that of the Oligocene South Fiji Basin. Therefore we favour a model in which subduction of old (Cretaceous) lithosphere drove subduction.  相似文献   

13.
West Yunnan is made of the Yangtze Craton, theSouth China Block, the Indochina Block and severalother micro-terranes formed at different times. It iscross-cut by the NW-SE-trending Ailao Shan-RedRiver (ASRR) fault, which runs over 1000 km fromthe eastern margin of the Qinghai-Tibet Plateau,through Vietnam and to the North Gulf (fig. 1). TheASRR fault is an important geological and topog-raphic boundary in East Asia. The sinistral movementof the Indochina Block along this fault ev…  相似文献   

14.
Late Cenozoic alkali basaltic lavas of the Lunar Crater Volcanic Field (LCVF), located in the center of the Great Basin of the Western U.S.A., contain a diverse suite of nodule samples of the lower crust and upper mantle. This paper documents a composite nodule from the Marcath flow in which an amphibole-bearing wehrlite (59% olivine, 30% clinopyroxene, 6% amphibole) is cut by a 6–9 mm wide vein of andesine-amphibolite (80% kaersutite, 15% andesine, 3% ilmenite). Aside from nodule-basalt reaction at the nodule exterior, there is little chemical variation either within or between individual grains of hydrous and anhydrous phases in the vein and host wehrlite. Furthermore, there is no systematic compositional zoning in the wehrlite relative to vein proximity. The whole-rock major and trace element composition of the vein is similar to a primitive (Mg/(Mg+Fe)=0.692) basaltic liquid and has Al, Fe, Mg, Ca, Mn, Na, K, Zr, Y and Sr contents similar to basalts observed in the LCVF. In contrast to the Sr isotopic equilibrium displayed by vein feldspar and vein amphibole, Sr isotopic disequilibrium is exhibited between the vein (0.70318(4)), wehrlite (0.70322(4)), and host basalt (0.70357(5) n=3). However, the Sr isotopic ratios of older LCVF basalts (0.7030–0.7038; n=14) overlap those of the vein and wehrlite, and the magmatic activity leading to vein and wehrlite formation could be related to this older phase of LCVF volcanism. Petrographic and geochemical evidence is not consistent with a metasomatic origin for the vein and instead supports the view that the vein originated by the intrusion into a wehrlite mass and subsequent crystallization of a relatively primitive alkali basaltic magma in the lower crust or upper mantle. The wehrlite contains olivine of FO71 and probably originated by crystal separation and accumulation from a relatively differentiated basaltic magma in the lower crust or upper mantle.  相似文献   

15.
Haixiang  Zhang  Hecai  Niu  Hiroaki  Sato  Xueyuan  Yu  Qiang  Shan  Boyou  Zhang  Jun'ichi  Ito  Takashi  Nagao 《Island Arc》2005,14(1):55-68
Abstract   Volcanic rocks consisting of adakite and Nb-enriched basalt are found in the early Devonian Tuoranggekuduke Group in the northern margin of the Kazakhstan-Junggar Plate, northern Xinjiang, northwest China. The geochemical characteristics of the andesitic and dacitic rocks in this area resemble that of adakites. The relatively high Al2O3, Na2O and MgO content and Mg values indicate that the adakites were generated in relation to oceanic slab subduction rather than the partial melting of basaltic crust. A slightly higher SrI and a lower ɛ Nd( t  = 375 Ma) compared to adakites of mid-oceanic ridge basalt (MORB) imply that slab sediments were incorporated into these adakites during slab melting. The Nb-enriched basalt lavas, which are intercalated in adakite lava suite, are silica saturated and are distinguished from the typical arc basalts by their higher Nb and Ti content (high field strength element enrichment). They are derived from the partial melting of the slab melt-metasomatized mantle wedge peridotite. Apparently, positive Sr anomalies and a slightly higher heavy rare earth element content in these adakites compared to their Cenozoic counterparts indicate that the geothermal gradient in the Paleo-Asian Oceanic subduction zone and the depth of the Paleo-Asian Oceanic slab melting are between those of their Archean and Cenozoic counterparts. The distribution of the adakites and Nb-enriched basalts in the northern margin of the Kazakhstan-Junggar Plate, northern Xinjiang, indicates that the Paleo-Asian Oceanic Plate subducted southward beneath the Kazakhstan-Junggar Plate in the early Devonian period.  相似文献   

16.
Seismic anisotropy of upper mantle in eastern China   总被引:6,自引:0,他引:6  
Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by use of SC method and the stacking analysis method, and then the image of upper mantle anisotropy in eastern China was acquired. In the study region, from south to north, the fast-wave polarization directions are basically EW in South China, gradually clockwise rotate to NWW-SEE in North China, then to NW-SE in Northeast China. The delay time falls into the interval [0.41 s, 1.52 s]. Anisotropic characteristics in eastern China indicate that the upper mantle anisotropy is possibly caused by both the collision between the Indian and Eurasian Plates and the subduction from the Pacific and Philippine Sea Plates to the Eurasian Plate. The collision between two plates made the crust of western China thickening and uplifting and the material eastwards extruding, and then caused the upper mantle flow eastwards and southeastwards. The subduction of Pacific Plate and Philippine Sea Plate has resulted in the lithosphere and the asthenosphere deformation in eastern China, and made the alignment of upper mantle peridotite lattice parallel to the deformation direction. The fast-wave polarization direction is consistent with the direction of lithosphere extension and the GPS velocity direction, implying that the crust-upper mantle deformation is possibly a vertically coherent deformation. Supported by Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB06B06), Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100), China Digital Earthquake Observation Network Project “North China Seismic Array”, and National Natural Science Foundation of China (Grant Nos. 40334041 and 40774037)  相似文献   

17.
Widespread dike swarm, including diorite-, monzonite-porphyry and lamprophyre, intruded in the al- tered breccia gold deposits along basin marginal faults, Guocheng, Jiaodong Peninsula. Petrography exhibits biotite enclaves in amphibole phenocrysts and the presence of acicular apatites in these dikes. Electron probe microanalyses (EPMA) show that the amphibole and clinopyroxene phenocryst’s mantle in diorite porphyry and lamprophyre respectively has sharply higher MgO (Mg#) and Cr2O3 contents in contrast to their cores. The plagioclase phenocryst in monzonite porphyry has reverse zoning. These results indicate that the magma mixing between mantle-derived mafic and crust-derived felsic magmas occurred in the original process of the dikes. Zircon cathodoluminescence (CL) images show well-developed magmatic oscillatory zones and the acquired LA-ICP-MS zircon U-Pb weighted mean 206Pb/238U ages are 114±2 Ma (MSDW=1.5) for monzonite porphyry (GS1) and 116±1 Ma (MSDW=0.8) for diorite porphyry (GS2), respectively. Earlier magmatic events in the northwest Jiaodong Peninsula represented by some inherited or captured zircons also occur in these dikes. Magmatic zircons from GS1 and GS2 display consistent chondrite-normalized REE patterns and Nb/Ta values, implying that they may share a similar or same source. HREE enrichment and obvious negative Eu anomalies of these zircons preclude garnet presented in their source. Our results, combined with preciously pub- lished data, indicate that dike intrusion and gold mineralization among quartz vein, altered tectonite and altered breccia gold deposits are broadly contemporaneous throughout the Jiaodong Peninsula. These also imply that the intensive crust-mantle interaction and asthenospheric underplating had oc- curred in the Early Cretaceous in the Peninsula, together with foundering of lower crust in the early Mesozoic, representing the different stages of lithosphere thinning in the North China Craton (NNC).  相似文献   

18.
Mahshar  Raza  MohdShamim  Khan  MohdSafdare  Azam 《Island Arc》2007,16(4):536-552
Abstract   The northern part of the Aravalli mountain belt of northwestern Indian shield is broadly composed of three Proterozoic volcano-sedimentary domains, i.e. the Bayana, the Alwar and the Khetri basins, comprising collectively the north Delhi fold belt. Major, trace and rare earth element concentrations of mafic volcanic rocks of the three basins exhibit considerable diversity. Bayana and Alwar volcanics are typical tholeiites showing close similarity with low Ti–continental flood basalts (CFB) with the difference that the former shows enriched and the latter flat incompatible trace element and rare earth element (REE) patterns. However, the Khetri volcanics exhibit a transitional composition between tholeiite and calc-alkaline basalts. It appears that the melts of Bayana and Alwar tholeiites were generated by partial melting of a common source within the spinel stability field possibly in the presence of mantle plume. During ascent to the surface the Bayana tholeiites suffered crustal contamination but the Alwar tholeiites erupted unaffected. Geochemically, the Khetri volcanics are arc-like basalts which were generated in a segment of mantle overlying a Proterozoic subduction zone. It is suggested that at about 1800 Ma the continental lithosphere in northeastern Rajasthan stretched, attenuated and fractured in response to a rising plume. The produced rifts have undergone variable degrees of crustal extension. The extension and attenuation of the crust facilitated shallowing of the asthenosphere which suffered variable degree of melting to produce tholeiitic melts – different batches of which underwent different degrees of lithospheric contamination depending upon the thickness of the crust in different rifted basins. The occurrence of subduction-related basaltic rocks of Khetri Belt suggests that a basin on the western margin of the craton developed into a mature oceanic basin.  相似文献   

19.
Basalts from the Marquesas Archipelago display significant variations according to magmatic type in 143Nd/144Nd (0.512710–0.512925) and 87Sr/86Sr (0.70288–0.70561) suggesting heterogeneities at various scales in the mantle source, with respectively the highest and lowest values in tholeiites compared to alkali basalts. This relationship is the reverse from that observed in the Hawaiian islands. Systematic indications of magma mixing are recognized from the relationships between trace element and isotopic ratios. Tholeiites from Ua Pou Island which have unradiogenic Sr (about 0.7028) plot close to basalts from Tubuai and St. Helena, i.e. distinctly below the main mantle trend in the Nd vs. Sr isotopic diagram. It is suggested that the source of these tholeiites is ancient subducted lithosphere which has suffered previous extraction of liquid with island arc tholeiite composition. The trace element and isotopic data of the basalts from the other Marquesas Islands imply the contamination of an equivalent source by an enriched component. This latter has trace element characteristics of the upper crust.  相似文献   

20.
Accompanying with the shortening,thickening and uplifting of the lithosphere,a series of Cenozoic potassic volcanic rock zones are developed in the northern Qinghai-Tibet Plateau.From south to north,the volcanic rocks can be divided into three volcanicrock belts:Qiangtang-Nangqian volcanic belt,Middle Kunlun-Hoh Xil volcanic belt and Western Kunlun-Eastern Kunlun volcanic belt[1].Spatiotemporal evolu-tion of the volcanism and the origins of magmas con-strains on the pulsing uplifting and …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号