首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The current study broadens the biodiversity information available for the Black Sea and neighbouring regions and improves our knowledge about the polychaete biogeographic patterns to be discerned in them. There appears to be a well-defined zoogeocline from the Marmara Sea and Bosphorus Strait to the inner parts of the region (Azov Sea), depicted both as a multivariate pattern and in terms of species (or taxa) numbers. The emergent multivariate pattern complies, to a certain extent, with Jakubova’s (1935) views: three main sectors can be defined in the basin: (a) Prebosphoric, (b) the Black Sea and, (c) the Azov Sea, whereas the Bosphorus Strait and Marmara Sea show less faunal affinities with the afore-mentioned sectors. Patterns derived both from the cosmopolitan and Atlanto-Mediterranean species closely follow the one coming from the polychaete species and genera inventories. As a general trend, species numbers decrease along with the decrease in salinity towards the inner parts of the region. The trend is homologous to that seen in the benthic invertebrate inventories of all the major European semi-enclosed regional seas. Salinity and food availability appear to be the dominant abiotic factors correlated, though weakly, with the various patterns deriving from the taxonomic/zoogeographic categories. With the exception of the Anatolia, polychaete inventories from all sectors appear to be random samples of the total inventory of the region, in terms of taxonomic distinctness values. Therefore, these sectoral inventories can be used for future biodiversity/environmental impact assessment studies. A massive invasion of Mediterranean species after the opening of the Black Sea, in the lower Quaternary period, appears to be the likely biogeographic mechanism through which the old Sarmatic fauna was almost completely replaced by species of marine origin.  相似文献   

2.
In October 2005 spatial distribution of live and dead Acartia clausi and Acartia tonsa was studied in the Black and Marmara Seas and near the Marmara Sea inlet of the Bosphorus, in order to understand their fate upon transportation between two seas. The morphometric characteristics in both species from all studied areas, and the decreased abundance of A. clausi and A. tonsa from the Black Sea towards the Marmara Sea indicate that the Marmara Sea Acartia populations are formed by recruitment from the Black Sea. We observed mass mortality of A. clausi in the Marmara Sea near the Prince Islands. The majority of carcasses (66% of total A. clausi numbers in the Marmara Sea) were found in the salinity gradient layer.  相似文献   

3.
Dissolved gaseous mercury (DGM) was measured continuously using two newly developed techniques and a manual technique. The continuous techniques were based on the equilibrium between the aqueous and gaseous phase (DGM = Hgextr / H', Hgextr is the measured mercury concentration in the gas phase, H' is the Henry's Law coefficient at the desired temperature). In order to calculate the annual mercury evasion from the Mediterranean Sea, diurnal and seasonal measurements of DGM, total gaseous mercury in air (TGM), water temperature and wind speed were performed. During August 2003, March–April 2004 and October–November 2004 measurements of these parameters were conducted on board the RV Urania. The continuous measurements of DGM showed a diurnal variation in concentration, at both coastal and off shore sites, with higher concentrations during daytime than nighttime. The concentration difference could be as large as 130 fM between day and night. The degree of saturation was calculated directly from the measurements, S = Hgextr / TGM and was found to vary between the different seasons. The highest average degree of saturation (850%) and the largest variation in saturation (600–1150%) was observed during the summer. The spring showed the lowest variation (260–360%) and the lowest average degree of saturation (320%). The autumn also showed a large variation in saturation (500–1070%) but a lower average (740%) compared to the summer cruise. This might be explained by the temperature difference between the different seasons, since that parameter varied the most. The flux from the sea surface was calculated using the gas exchange model developed by Nightingale et al. [Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., Upstill-Goddard, R. C., 2000. In situ evaluation of air–sea gas exchange parameterization using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1):373–387]. The evasion varied between the different seasons with the highest evasion during the autumn, 24.6 pmol m− 2 h− 1. The summer value was estimated to 22.3 pmol m− 2 h− 1 and the spring to 7.6 pmol m− 2 h− 1. Using this data the yearly evasion from the Mediterranean Sea surface was estimated to 77 tons.  相似文献   

4.
Dissolved gaseous mercury (DGM) was measured continuously using two newly developed techniques and a manual technique. The continuous techniques were based on the equilibrium between the aqueous and gaseous phase (DGM = Hgextr / H', Hgextr is the measured mercury concentration in the gas phase, H' is the Henry's Law coefficient at the desired temperature). In order to calculate the annual mercury evasion from the Mediterranean Sea, diurnal and seasonal measurements of DGM, total gaseous mercury in air (TGM), water temperature and wind speed were performed. During August 2003, March–April 2004 and October–November 2004 measurements of these parameters were conducted on board the RV Urania. The continuous measurements of DGM showed a diurnal variation in concentration, at both coastal and off shore sites, with higher concentrations during daytime than nighttime. The concentration difference could be as large as 130 fM between day and night. The degree of saturation was calculated directly from the measurements, S = Hgextr / TGM and was found to vary between the different seasons. The highest average degree of saturation (850%) and the largest variation in saturation (600–1150%) was observed during the summer. The spring showed the lowest variation (260–360%) and the lowest average degree of saturation (320%). The autumn also showed a large variation in saturation (500–1070%) but a lower average (740%) compared to the summer cruise. This might be explained by the temperature difference between the different seasons, since that parameter varied the most. The flux from the sea surface was calculated using the gas exchange model developed by Nightingale et al. [Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., Upstill-Goddard, R. C., 2000. In situ evaluation of air–sea gas exchange parameterization using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1):373–387]. The evasion varied between the different seasons with the highest evasion during the autumn, 24.6 pmol m− 2 h− 1. The summer value was estimated to 22.3 pmol m− 2 h− 1 and the spring to 7.6 pmol m− 2 h− 1. Using this data the yearly evasion from the Mediterranean Sea surface was estimated to 77 tons.  相似文献   

5.
The variability of dissolved organic carbon (DOC) over days to a multi-year time span has been investigated in the Gulf of Trieste (northern Adriatic Sea) over a period of 5 years (January 1999 to December 2003). Samples were collected in a grid of 9 to 12 stations on monthly frequency and in one station on weekly (2003) and daily (1-month) frequency. DOC samples were analyzed by the HTCO method. DOC concentration varied over the five years in the range of 50 to 194 μM with annual median values ranging from 88 to 98 μM. Over the years 1999–2002, DOC showed a clear annual periodicity with winter minima and late summer maxima, higher in 1999 and 2000. During 2003 no seasonality was detected. The absence of DOC seasonality and the lower DOC concentrations during 2003 are most likely related to the drought that characterized the whole year. Accumulation was calculated as the difference between averaged winter minima (59 ± 7 μM) and the monthly averaged integrated value. DOC that had accumulated from spring to summer totally disappeared from the water column in winter when DOC concentrations reached the background value. The Gulf of Trieste, as with the rest of the Northern Adriatic each year, seems to be able to bring back DOC concentrations at low levels despite the significant external (mainly Isonzo River inputs) and internal organic matter loads. DOC concentration exhibited quite wide fluctuations weekly and daily, suggesting there might be DOC of different turnover time through production, consumption, migration and accumulation.  相似文献   

6.
In order to characterize the seasonal, bathymetric, and spatial distribution of the species, Palaemon adspersus, Palaemon elegans, and Crangon crangon, shrimps were sampled with a beam trawl in four stations at depths between 1 and 30 m from February 2002 to January 2004 on the Sinop Peninsula coasts of the southern Black Sea. One-way analysis of similarity (ANOSIM) results demonstrated that the caridean composition was significantly different (p < 0.001) between seasons and between sampling areas. No significant relationship of the caridean composition was evident between depth zones ranging from 1 to 30 m. These three carideans occurred together in 28.5% of the sampling occasions. Different seasonal migration pattern was evident for all the three species. Palaemon adspersus migrated inshore during relatively higher water temperatures, whereas C. crangon density decreased in the shallow waters during the same period, and P. elegans population was mostly observed at depth zones of 5–10 m and was only observed in the 30 m depth zone in winter. The abiotic factors that characterize the coexistence of these three carideans were primarily determined by the habitat types and bottom structures.  相似文献   

7.
We investigated the cover, community structure and abiotic environment of nine shipwrecks lying at increasing distance from the Belgian coast. Results indicated that all shipwrecks were strongly dominated by cnidarians in terms of biomass and by amphipods in terms of abundances. Based on their epifaunal composition, three groups of shipwrecks could be determined. Metridium senile dominated a species poor community of the coastal sites. On the same sites, a Tubularia larynx community with a more species-rich assemblage was also developing. The T. larynx community had a lower biomass value (102 g AFDW m−2) and significantly lower species richness compared to the other sites. The coastal sites were characterized by periodic salinity decreases, large seasonal temperature fluctuation, high total suspended matter load and reduced current velocity. Channel water masses influence the offshore sites causing a more stable temperature and salinity environment, less turbid waters and high current speed. Tubularia indivisa dominated this community, with an average biomass of 229 g AFDW m−2. Intermediate sites were also dominated by T. indivisa, but a higher biomass (424 g AFDW m−2) was observed. They showed intermediate results for the abiotic parameters and fast current velocities. Hypotheses for the observed variation in community structures are discussed in the light of the abiotic characterization of the shipwrecks.  相似文献   

8.
2013年南海东北部春季共享航次采用走航观测方式,现场测定了表层海水和大气的二氧化碳分压(pCO2)及相应参数。结合水文、化学等同步观测要素资料,对该海域pCO2的分布变化进行了探讨。结果表明,陆架区受珠江冲淡水、沿岸上升流及生物活动的影响,呈现CO2的强汇特征;吕宋海峡附近及吕宋岛西北附近海域受海表高温、黑潮分支"西伸"、吕宋岛西北海域上升流等因素影响,呈现强源特征。根据Wanninkhof的通量模式,春季整个南海东北部海域共向大气释放约4.25×104 t碳。  相似文献   

9.
近年来,东海原甲藻赤潮在我国东海近岸海域频繁发生。本研究利用生物-物理耦合模型对发生于2005年的东海原甲藻赤潮进行后报模拟,并对控制其起始与发展的因素展开研究。该模型由东海原甲藻种群动力学模型与多层嵌套的水动力模型组合。通过对比模拟结果与室内实验结果,证实种群动力学模型能够很好地重现东海原甲藻在不同光照与磷营养限制条件下的生长过程,同时能够再现藻细胞内部磷含量及藻类对外部营养盐浓度的影响。耦合模型能够较好地再现模拟海域水动力(见Sun et al.,2016)与东海原甲藻赤潮的时空分布。模拟的赤潮发展过程与此前研究中的观测结果一致,且模拟结果表明模型能够捕捉到赤潮初期种群的次表层孕育现象。随后模拟结果被用于诊断决定赤潮垂直分布的决定性因素,结果表明磷酸盐是控制这一现象的关键因素。同时,表层风场在决定赤潮的分布中扮演着重要角色。模拟结果强调了营养盐限制在东海原甲藻次表层孕育及消散过程中的作用,本文所建立的耦合模型需要进一步优化并应用于其它条件下东海原甲藻赤潮的研究中。  相似文献   

10.
Year-long time-series of temperature, salinity and velocity from 12 locations throughout the Chukchi Sea from September 1990 to October 1991 document physical transformations and significant seasonal changes in the throughflow from the Pacific to the Arctic Ocean for one year. In most of the Chukchi, the flow field responds rapidly to the local wind, with high spatial coherence over the basin scale—effectively the ocean takes on the lengthscales of the wind forcing. Although weekly transport variability is very large (ca. -2 to ), the mean flow is northwards, opposed by the mean wind (which is southward), but presumably forced by a sea-level slope between the Pacific and the Arctic, which these data suggest may have significant variability on long (order a year) timescales. The high flow variability yields a significant range of residence times for waters in the Chukchi (i.e. one to six months for half the transit) with the larger values applicable in winter.Temperature and salinity (TS) records show a strong annual cycle of freezing, salinization, freshening and warming, with sizable interannual variability. The largest seasonal variability is seen in the east, where warm, fresh waters escape from the buoyant, coastally trapped Alaskan Coastal Current into the interior Chukchi. In the west, the seasonally present Siberian Coastal Current provides a source of cold, fresh waters and a flow field less linked to the local wind. Cold, dense polynya waters are observed near Cape Lisburne and occasional upwelling events bring lower Arctic Ocean halocline waters to the head of Barrow Canyon. For about half the year, at least at depth, the entire Chukchi is condensed into a small region of TS-space at the freezing temperature, suggesting ventilation occurs to near-bottom, driven by cooling and brine rejection in autumn/winter and by storm-mixing all year.In 1990–1991, the ca. 0.8 Sv annual mean inflow through Bering Strait exits the Chukchi in four outflows—via Long Strait, Herald Valley, the Central Channel, and Barrow Canyon—each outflow being comparable (order 0.1–0.3 Sv) and showing significant changes in volume and water properties (and hence equilibrium depth in the Arctic Ocean) throughout the year. The clearest seasonal cycle in properties and flow is in Herald Valley, where the outflow is only weakly related to the local wind. In this one year, the outflows ventilate above and below (but not in) the Arctic halocline mode of 33.1 psu. A volumetric comparison with Bering Strait indicates significant cooling during transit through the Chukchi, but remarkably little change in salinity, at least in the denser waters. This suggests that, with the exception of (in this year small) polynya events, the salinity cycle in the Chukchi can be considered as being set by the input through Bering Strait and thus, since density is dominated by salinity at these temperatures, Bering Strait salinities are a reasonable predictor of ventilation of the Arctic Ocean.  相似文献   

11.
After the breeding season, Slavonian grebes (Podiceps auritus) leave their freshwater breeding habitats and migrate to wintering grounds in marine or brackish waters. The most important wintering area in northwestern Europe is located in the southern Baltic Sea, with the largest concentrations in the offshore area of the Pommeranian Bight. Analysis of ship-based surveys revealed that the habitat selection of Slavonian grebes in this brackish area is significantly influenced by water depth and bottom sediment type. The grebes prefer shallow waters of 4–14 m depth and occur only over sandy sediments. While the diving depths of endothermic animals is limited due to energetic constraints and thermoregulation, sediment type is regarded to be a proxy for food choice. The diet of Slavonian grebes in the Pomeranian Bight consists mainly of demersal gobies (Gobiidae) that frequently occur over sandy bottom substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号