首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High arsenic (As) groundwater is widely distributed in northwestern Hetao Plain, an arid region with sluggish groundwater flow. Observed As concentration in groundwater from wells ranges from 76 to 1,093 μg/l. Most water samples have high total dissolved solids, with Cl and HCO3 as the dominant anions and Na as the dominant cation. The major hydrochemical types of most saline groundwaters are Na–Mg–Cl–HCO3 and Na–Mg–Cl. By contrast, fresh groundwaters generally belong to the Na–Mg–HCO3 type. High concentrations of arsenic in shallow aquifers are associated with strongly reducing conditions, as evidenced by high concentrations of dissolved organic carbon, ammonium, as well as dissolved sulfide and Fe, dominance of arsenite, relatively low concentrations of nitrate and sulfate, and occasionally high content of dissolved methane (CH4). High As groundwaters from different places at Hetao Plain experienced different redox processes. Fluoride is also present in high As groundwater, ranging between 0.40 and 3.36 mg/l. Although fluorosis poses an additional health problem in the region, it does not correlate well with As in spatial distribution. Geochemical analysis indicates that evapotranspiration is an important process controlling the enrichment of Na and Cl, as well as trace elements such as As, B, and Br in groundwater. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Water management in semiarid and arid catchments such as the Poopó Lake Basin requires improved understanding of the complex behavior of the various contaminants, which affect the drinking water quality and considered as crucial for sustainable development of the region. Mechanisms of arsenic (As) release in the surface and groundwater were studied. Hydrochemical data for surface water (4 samples) and groundwater (28 samples) were collected in a small watershed in the Poopó catchment at the highland of the Bolivian Andes (Altiplano). All of them show high electrical conductivity values and moderately oxidizing conditions. The surface water contains high concentration of sulfate and the trace elements As, Zn and Pb in the zone affected by acid mine drainage. There is a large variability of the concentration of As and of the trace elements in the groundwater in the five different regions within the Poopó catchment. The metal concentrations sensitive to changes of redox state and results of speciation modeling suggest that As (V) is a predominant aqueous species, which conforms to the prevailing oxidizing conditions in the shallow groundwater environment. Two generalized trends for As distribution were identified in groundwater: (a) high concentrations are found in the arid zone (100–250 μg/L) in the southern (region III) and in the northwestern (region V) regions, and (b) low concentrations (<50 μg/L) are found in the remaining part of the basin (region I, II and IV). However, the spatial distribution within these regions needs to be investigated further. A conclusion from the present study is that there are multiple sources of As as well as other trace elements (such as Cd, Mn and Zn) in the Poopó Lake Basin. Among the sources and the processes which led to the mobility of As and other trace metals in the region are: (a) weathering of sulfide minerals, (b) oxidation of pyrite and/or arsenopyrite in mineralized areas and (c) desorption from hydrous ferric oxide (HFO) surfaces. In non-mining areas, volcanic ash is suggested to be a significant source of As.  相似文献   

3.
On the origin of oil-field water in the Biyang Depression of China   总被引:1,自引:0,他引:1  
We have surveyed groundwater samples collected from oil and gas reservoirs in the Biyang Depression of China and quantitatively analyzed the chemical features of those samples using the proportional coefficients. Three different proportional coefficients, namely the de-calcium–magnesium, the boron–calcium–magnesium, and the chloration coefficients have been calculated. These three coefficients reflect the strength of de-calcium–magnesium reaction, the trace elements concentrations, and the degree of diagenesis of the oil-field water, respectively. The concentrations of calcium and magnesium ions are found to be very low in the groundwater of the Biyang Depression. The concentration of anion in the oil-field groundwater changes greatly with the salinity of groundwater in the Biyang Depression. In low salinity oil field, bicarbonate is generally the dominating anion; but when salinity increases, sulfate gradually replaces bicarbonate to become the dominating anion. However, in high salinity oil field, chloride is the dominating anion. Bromine, iodine, and boron are found to be relatively rich in oil-field water of Biyang Depression. The results show that extensive dolomite deposited near the center of the depression was resulted from de-calcium–magnesium reaction, and the degree of diagenesis of the oil-field water and concentrations of trace elements increase with buried depth in the reservoir.  相似文献   

4.
The water system in a rural area of Lanmuchang in Southwest Guizhou is facing a risk of thallium (Tl) contamination due to Tl mineralization around the area. The major trace elements and Tl in the water system are studied to understand the hydrogeochemical processes of Tl constrained by Tl mineralization. The results showed that the dispersion pattern of Tl follows a descending order in concentration from mine groundwater (deep groundwater) →stream water→shallow groundwater→background water, reflecting the impact of Tl mineralization on the hydrogeochemical composition. Tl concentrations in stream water in both regimes are remarkably higher (2-30 fold) downstream than up- and mid-streams, probably caused by the unidentified discharge of deep groundwater. Low Tl levels are detected in the current drinking water, however, the highly elevated Tl in stream water and ground water may pose a potential environmental risk through daily washing and agricultural irrigation. This study suggests that human activities, such as agricultural irrigation, could intensify the environmental risk of Tl.  相似文献   

5.
Hydrogeochemical evaluation of groundwater in the lower Offin basin,Ghana   总被引:3,自引:0,他引:3  
Alumino-silicate mineral dissolution, cation exchange, reductive dissolution of hematite and goethite, oxidation of pyrite and arsenopyrite are processes that influence groundwater quality in the Offin Basin. The main aim of this study was to characterise groundwater and delineate relevant water–rock interactions that control the evolution of water quality in Offin Basin, a major gold mining area in Ghana. Boreholes, dug wells, springs and mine drainage samples were analysed for major ions, minor and trace elements. Major ion study results show that the groundwater is, principally, Ca–Mg–HCO3 or Na–Mg–Ca–HCO3 in character, mildly acidic and low in conductivity. Groundwater acidification is principally due to natural biogeochemical processes. Though acidic, the groundwater has positive acid neutralising potential provided by the dissolution of alumino-silicates and mafic rocks. Trace elements’ loading (except arsenic and iron) of groundwater is generally low. Reductive dissolution of iron minerals in the presence of organic matter is responsible for high-iron concentration in areas underlain by granitoids. Elsewhere pyrite and arsenopyrite oxidation is the plausible process for iron and arsenic mobilisation. Approximately 19 and 46% of the boreholes have arsenic and iron concentrations exceeding the WHO’s (Guidelines for drinking water quality. Final task group meeting. WHO Press, World Health Organization, Geneva, 2004) maximum acceptable limits of 10 μg l−1 and 0.3 mg l−1, for drinking water.  相似文献   

6.
Industrial development has increased fast in China during the last decades. This has led to a range of environmental problems. Deposition of trace elements to forest ecosystems via the atmosphere is one potential problem. In this paper, we report the results from a pilot study where the trace element levels of the sub-alpine forest soils on the eastern edge of the Tibetan Plateau have been measured. Possible relationships between soil properties and trace element concentrations have also been investigated. The obtained concentrations (mg kg−1) were boron (B) 48.06–53.70, molybdenum (Mo) 1.53–2.26, zinc (Zn) 68.18–79.53, copper (Cu) 36.81–42.44, selenium (Se) 0.33–0.49, cadmium (Cd) 0.16–0.29, lead (Pb) 25.80–30.71, chromium (Cr) 96.10–110.08, nickel (Ni) 30.16–45.60, mercury (Hg) 0.05–0.11, and arsenic (As) 3.09–4.17. With a few exceptions, the element concentration can be characterized as low in the investigated sub-alpine forest soils. No clear differences in trace element levels were found between topsoil and subsoil samples, indicating that the atmospheric deposition of trace element has been low. The soil parent material plays a key role to determine trace element levels. Soil properties, including pHw, organic carbon (OC), clay fraction, cation-exchange capacity (CEC), total iron (Fe), and total aluminum (Al) concentrations were related to trace element concentration using correlation analysis. Total Fe and Al showed the strongest relationships with concentrations of most trace elements in the sub-alpine forest soils. PCA analyses indicated that a significant increase in the number of cars with the fast development of local tourism may result in higher Pb concentration in the future.  相似文献   

7.
The Trifilia karst aquifer presents a complex hydrochemical character due to the intricate geochemical processes that take place in the area. Their discernment was achieved by using the chemical analyses of major, trace elements and boron isotopes. Major ion composition indicates mixing between seawater and freshwater is occurring. Five hydrochemical zones corresponding to five respective groundwater types were distinguished, in which the chemical composition of groundwater is influenced mainly due to the different salinization grade of the aquifer. The relatively increased temperature of the aquifer indicates the presence of hydrothermal waters. Boron isotopes and trace elements indicate that the intruding seawater has been hydrothermally altered, as it is shown by the δ11B depleted signature and the increased concentrations of Li and Sr. Trace elements analyses showed that the groundwater is enriched in various metallic elements, which derive from the solid hydrocarbons (bitumens), contained in the carbonate sediments of the Tripolis zone. The concentration of these trace elements depends on the redox environment. Thus, in reductive conditions As, Mn, Co and NH4 concentrations are high, in oxidized conditions the V, Se, Mo, Tl and U concentration increases while Ni is not redox sensitive and present high concentration in both environments.  相似文献   

8.
The objective of this study was to examine the possible natural sources of fluorides and boron in Silurian–Ordovician (S–O) aquifer system, as the anomaly of these elements has been distinguished in groundwater of western Estonia. Water–rock interactions, such as dissolution and leaching of the host rock, are considered to be the main source of high fluoride and boron concentrations in groundwater. Altogether 91 rock samples were analysed to determine if high F and B levels in groundwater could be attributed to certain aquifer forming rock types. Fluorine and boron contents in limestones and dolomites vary from 100 to 500 mg/kg and 5 to 20 mg/kg, reaching up to 1,000 and 150 mg/kg in marlstones, respectively. K-bentonites, altered volcanic ash beds, are rich in fluorine (400–4,500 mg/kg) and boron (50–1,000 mg/kg). Thus, clay-rich sediments, providing ion-exchange and adsorption sites for F and B, are the probable sources of both elements in S–O aquifer system in western Estonia.  相似文献   

9.
 The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2–1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5 months) and subsequent to (1 month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Received: October 1997 Revised: May 1998 Accepted: December 1998  相似文献   

10.
Trace element concentrations in shallow marine sediments of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of industrial gold mine tailings and unregulated dumping of tailings and wastewater from small-scale gold mining using mercury amalgamation. Industrial mine tailings contained 590–690 ppm arsenic, 490–580 ppm antimony, and 0.8–5.8 ppm mercury. Tailings-affected sediment As and Sb concentrations were 20–30 times higher than in muddy sediments not contaminated with tailings, and 50–60 times higher than pre-mining average. Highest mercury concentrations were observed in sediments affected by small-scale mining using mercury amalgamation (5–29 ppm). Concentrations of most other trace elements were comparable in sediments affected by both types of mining and were slightly higher than regional averages for sediments collected before the onset of industrial mining. Elevated concentrations of both As and Sb in approximately equal proportions suggest tailings dispersal of at least 3.5 km. Mercury released from artisanal gold mining dispersed up to 4 km from river mouths. Slight increases in concentrations of non-mercury trace elements in areas affected by artisanal mining over pre-industrial mining concentrations were probably caused by increased rates of erosion. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

11.
Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As–Cu–Pb–Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19–994 mg kg−1 for As, 41–4,890 mg kg−1 for Pb, 95–897 mg kg−1 for Zn and of 27–1,160 mg kg−1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.  相似文献   

12.
 The marine coastal sediments from Togo have been analysed for the trace elements Cd, Cr, Cu, Ni, Pb, Sr, V, Zn and Zr to ascertain the geo-ecological impact of dumping of phosphorite tailings into the sea. Trace element concentrations ranged from 2–44 ppm for Cd, 22–184 ppm for Cu, 19–281 ppm for Ni, 22–176 ppm for Pb, 179–643 ppm for Sr, 38–329 ppm for V, 60–632 ppm for Zn and 18–8928 ppm for Zr. Regional distribution of trace elements in the marine environment indicates that the concentrations of Cr, Cu, Ni, Pb, V, Sr and Zn increase seawards and along the coastal line outwards of the tailing outfall, whereas Cd and Zr showed reversed spatial patterns. Sorting and transport of phosphorite particles by coastal currents are the main factors controlling the distribution of particle-bound trace metals in the coastal environment. The Cd, Sr and Zn concentrations decrease with decreasing grain size in marine coastal sediments, whereas Cr, Cu, Ni and Zn concentrations increase with decreasing grain size. Percolation and shaking experiments were carried out in laboratory using raw phosphate material and artificial sea water. Enhanced mobilization of Cd from phosphorites by contact with the sea water was observed. Received: 11 May 1998 · Accepted: 20 October 1998  相似文献   

13.
A natural, altered zircon crystal from an alkaline pegmatite from the Zomba–Malosa Complex of the Chilwa Alkaline Province in Malawi has been studied by a wide range of analytical techniques to understand the alteration process. The investigated zircon shows two texturally and chemically different domains. Whereas the central parts of the grain (zircon I) appear homogeneous in backscattered electron images and are characterised by high concentrations of trace elements, particularly Th, U, and Y, the outer regions (zircon II) contain significantly less trace elements, numerous pores, and inclusions of thorite, ytttrialite, and fergusonite. Zircon II contains very low or undetectable concentrations of non-formula elements such as Ca, Al, and Fe, which are commonly observed in high concentrations in altered radiation-damaged zircon. U–Pb dating of both zircon domains by LA-ICPMS and SHRIMP yielded statistically indistinguishable U–Pb weighted average ages of 119.3 ± 2.1 (2σ) and 118 ± 1.2 (2σ) Ma, respectively, demonstrating that the zircon had not accumulated a significant amount of self-irradiation damage at the time of the alteration event. Electron microprobe dating of thorite inclusions in zircon II yielded a Th–U-total Pb model age of 122 ± 5 (2σ) Ma, supporting the age relationship between both zircon domains. The hydrothermal solution responsible for the alteration of the investigated zircon was alkaline and rich in CO3 2−, as suggested by the occurrence of REE carbonates and CO2-bearing fluid inclusions. The alteration of the crystalline, trace element-rich zircon is explained by an interface-coupled dissolution-reprecipitation mechanism. During such a process, the congruent dissolution of the trace element-rich parent zircon I was spatially and temporally coupled to the precipitation of the trace element-poor zircon II at an inward moving dissolution-precipitation front. The driving force for such a process was merely the difference between the solubility of the trace element-rich and -poor zircon in the hydrothermal solution. The replacement process and the occurrence of mineral inclusions and porosity in the product zircon II is explained by the thermodynamics of solid solution-aqueous solution systems.  相似文献   

14.
Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4–1190 μg/g, 4–466 μg/g, 11–297 μg/g, 11–194 μg/g, 9–139 μg/g, 1–120 μg/g, 4–76 μg/g, 2–62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation–reduction-changing conditions of sediments.  相似文献   

15.
 An unconfined aquifer system suggests an open system in the study area. Hydrochemical evolution is related to the flow path of groundwater. The groundwaters are divided into two hydrochemical facies in the study area, 1) Ca–Mg–HCO3 and 2) Ca–Mg–SO4HCO3. Facies 1 has shallow (young) waters which dominate in recharge areas during rapid flow conditions, whereas facies 2 may show shallow and mixed waters which dominate intermediate or discharge areas during low flow conditions. Ionic concentrations, TDS, EC and water quality are related to groundwater residence time and groundwater types. The groundwaters in the plain are chemically potable and suitable for both domestic and agricultural purposes. Received: 20 May 1996 · Accepted: 30 July 1996  相似文献   

16.
Hydrochemical data are presented for groundwater samples, collected from fractured aquifers in parts of northern Ghana. The data was collected to assess the groundwater suitability for domestic and agricultural use. Results of the study reveal that the pH of the groundwater in the area is slightly acidic to slightly alkaline. The electrical conductivity values, total dissolved solids (TDS) values and calcium, magnesium and sodium concentrations in the groundwater are generally below the limit set by the WHO for potable water supply. On the basis of activity diagrams, groundwater from the fractured aquifers appears to be stable within the montmorillonite field, suggesting weathering of silicate minerals. An inverse distance weighting interpolator with a power of 2 was applied to the data points to produce prediction maps for nitrate and fluoride. The distribution maps show the presence of high nitrate concentrations (50–194 mg/l) in some of the boreholes in the western part of the study area indicating anthropogenic impact on the groundwater. Elevated fluoride level (1.5–4 mg/l), higher than the WHO allowable fluoride concentration of 1.5, is recorded in the groundwater underlying the northeastern part of the study area, more specifically Bongo and its surrounding communities of the Upper East region. Results of this study suggest that groundwater from the fractured aquifers in the area exhibit low sodicity–low salinity (S1–C1), low sodicity–medium salinity (S1–C2) characteristics [United States Salinity Laboratory (USSL) classification scheme]. All data points from this study plot within the ‘Excellent to good’ category on a Wilcox diagram. Groundwater in this area thus appears to provide irrigation water of excellent quality. The hydrochemical results indicate that, although nitrate and fluoride concentrations in some boreholes are high, the groundwater in the study area, based on the parameters analyzed, is chemically potable and suitable for domestic and agricultural purposes.  相似文献   

17.
The geochemical study of groundwaters and core sediments from the Old Brahmaputra plain of Bangladesh was conducted to investigate the distribution of arsenic and related trace elements. Groundwaters from tube wells are characterized by pH of 6.4–7.4, dissolved oxygen (DO) of 0.8–1.8 mg/l, Ca contents of 5–50 mg/l, and Fe contents of 0.2–12.9 mg/l. Arsenic concentrations ranged from 8 to 251 μg/l, with an average value of 63 μg/l. A strong positive correlation exists between As and Fe (r 2 = 0.802; p = 0.001) concentrations in groundwater. The stratigraphic sequences in the cores consist of yellowish silty clays at top, passing downward into grayish to yellowish clays and sands. The uppermost 3 m and lower parts (from 13 to 31 m) of the core sediments are oxidized (average oxidation reduction potential (ORP) +170 and +220 mV, respectively), and the ORP values gradually become negative from 3 to 13 m depths (−35 to −180 mV), indicating that anoxic conditions prevail in the shallow aquifers of the Brahmaputra plain. Age determinations suggest that clay horizons at ~10 m depth were deposited at around 2,000 and 5,000 years BP (14C ages) during the transgressive phase of sea-level change. Elevated concentrations of As, Pb, Zn, Cu, Ni, Cr, and V are present in the silts and clays, probably due to adsorption onto clay particles. Significant concentrations of As occur in black peat and peaty sediments at depths between 9 and 13 m. A strong positive correlation between As and Fe was found in the sediments, indicating As may be adsorbed onto Fe oxides in aquifer sediments.  相似文献   

18.
Hazaribagh is a densely populated area of Dhaka city where about 185 leather processing industries have been operating and discharging solid and liquid wastes directly to the low-lying areas, river and natural canals without proper treatment. The area is covered by alluvial deposits of Holocene age and is underlain by Pleistocene Madhupur clay. The Dupi Tila Formation of Mio-Pliocene age underlain by this yellowish gray to brick red clay bed serves as the main water-bearing aquifer of Dhaka city. To assess the environmental degradation as well as the groundwater environment, major anions, cations and heavy metals of water samples, heavy metals and organic carbon content of sediment samples were analyzed in this study. Analyses of tannery effluent detect high concentration of Na+, Mg2+, Cl and SO 4 2− followed by Ca2+, NH 4 + and K+ with remarkable contents of some trace elements, mainly Cr, Fe, Mn, S, Ni and Pb. Higher accumulations of Cr, Al and Fe are observed in topsoil samples with significant amounts of Mn, Zn, Ni and Cu. Concentrations of ions and all the investigated trace elements of sampled groundwater were within the maximum allowable limit for drinking water of the Department of Environment, Bangladesh (DoE), and World Health Organization (WHO). However, excessive concentrations of Cr, Pb, etc., have already been reported in the shallow groundwater (10–20 m) of the area. Due to excessive withdrawal the vulnerability of groundwater contamination in deeper parts cannot be avoided for the future.  相似文献   

19.
Fresh water lakes are found in basement rock basins in the Larsemann Hills, East Antarctica, during the summer months. These lakes constitute a relatively simple natural laboratory to investigate the effects of recent and well-documented anthropogenic impact on a “pristine” environment. Larsemann Hills freshwaters have extremely low salinity (typically <1‰), and contain very low concentrations of trace elements of environmental significance such as Pb, U, and Zn. Typical Pb concentrations range from less than 5 ppt to 250 ppt. Although trace metal concentrations appear to be higher in lakes situated in the vicinity of stations, they are consistently lower (by several orders of magnitude, for some elements) than Standard International Drinking Water Guidelines. The chemistry of the lake waters is dominated by sea-spray input. Consequently, it is primarily a function of geographical factors, such as distance from the shore and exposure to winds. Shallow-level groundwater and surface water also contribute to the lake chemistry. No evidence was found for contamination from global air circulation. Although contamination resulting from activities at the research stations is generally near or below detection levels, very low levels of trace metal anthropogenic contamination were found in the vicinity of some research stations. Received: 13 November 1998 · Revised: 23 March 1999 Accepted: 12 April 1999  相似文献   

20.
Muzaffarnagar is an economically rich district situated in the most fertile plains of two great rivers Ganga and Yamuna in the Indo-gangetic plains, with agricultural land irrigated by both surface water as well as groundwater. An investigation has been carried out to understand the hydrochemistry of the groundwater and its suitability for irrigation uses. Groundwater in the study area is neutral to moderately alkaline in nature. Chemistry of groundwater suggests that alkaline earths (Ca + Mg) significantly exceed the alkalis (Na + K) and weak acids exceed the strong acids (Cl + SO4), suggesting the dominance of carbonate weathering followed by silicate weathering. Majority of the groundwater samples (62%) posses Ca–Mg–HCO3 type of hydrochemical species, followed by Ca–Na–Mg–HCO3, Na–Ca–Mg–HCO3, Ca–Mg–Na–HCO3–Cl and Na–Ca–HCO3–SO4 types. A positive high correlation (r 2 = 0.928) between Na and Cl suggests that the salinity of groundwater is due to intermixing of two or more groundwater bodies with different hydrochemical compositions. Barring a few locations, most of the groundwater samples are suitable for irrigation uses. Chemical fertilizers, sugar factories and anthropogenic activities are contributing to the sulphate and chloride concentrations in the groundwater of the study area. Overexploitation of aquifers induced multi componential mixing of groundwater with agricultural return flow waters is responsible for generating groundwater of various compositions in its lateral extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号