首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys   总被引:3,自引:0,他引:3  
Many of the heaviest and lightest natural zinc (Zn) isotope ratios have been discovered in hydrothermal ore deposits. However, the processes responsible for fractionating Zn isotopes in hydrothermal systems are poorly understood. In order to better assess the total range of Zn isotopes in hydrothermal systems and to understand the factors which are responsible for this isotopic fractionation, we have measured Zn isotopes in seafloor hydrothermal fluids from numerous vents at 9–10°N and 21°N on the East Pacific Rise (EPR), the TAG hydrothermal field on the Mid-Atlantic Ridge, and in the Guaymas Basin. Fluid δ66Zn values measured at these sites range from + 0.00‰ to + 1.04‰. Of the many physical and chemical parameters examined, only temperature was found to correlate with fluid δ66Zn values. Lower temperature fluids (< 250 °C) had both heavier and more variable δ66Zn values compared to higher temperature fluids from the same hydrothermal fields. We suggest that subsurface cooling of hydrothermal fluids leads to precipitation of isotopically light sphalerite (Zn sulfide), and that this process is a primary cause of Zn isotope variation in hydrothermal fluids. Thermodynamic calculations carried out to determine saturation state of sphalerite in the vent fluids support this hypothesis with isotopically heaviest Zn found in fluids that were calculated to be saturated with respect to sphalerite. We have also measured Zn isotopes in chimney sulfides recovered from a high-temperature (383 °C) and a low-temperature (203 °C) vent at 9–10°N on the EPR and, in both cases, found that the δ66Zn of chimney minerals was lighter or similar to the fluid δ66Zn. The first measurements of Zn isotopes in hydrothermal fluids have revealed large variations in hydrothermal fluid δ66Zn, and suggest that subsurface Zn sulfide precipitation is a primary factor in causing variations in fluid δ66Zn. By understanding how chemical processes that occur beneath the seafloor affect hydrothermal fluid δ66Zn, Zn isotopes may be used as a tracer for studying hydrothermal processes.  相似文献   

2.
The new data presented here from a 10–24°N segment of the North Mid-Atlantic Ridge show that this segment is the most depleted of the 10–70°N ridge section. They also show the existence of: (1) a geochemical gradient from the 14°N anomaly to 17°10′N; (2) a very depleted mantle source (the lowest Sr isotopic ratios found so far in the North Atlantic); and (3) a geochemical limit located at about 17°10′N without any obvious relation with any structural feature. The 15°20′N fracture zone does not show any relationship with respect to this gradient. The basalts located north of 17°10′N have very homogeneous features, which allow their characteristics to be averaged (i.e., 87Sr/86Sr= 0.70238 ± 0.00004, (Nb/Zr)N = 0.28 ± 0.1) and they are defined as normal mid-ocean ridge basalts. The basaltic glasses located south of 17°10′N present a wide spectrum of isotopic compositions and extended rare earth element patterns (from depleted to enriched). Despite this, they have a constant K/Nb of 233 ± 9 (1sM, n = 18) whereas this ratio is 344 ± 29 north of 17°10′N. These observations illustrate the strong coherence of behaviour between K and Nb (Ta) during the petrogenic processes involved in the generation of these mid-ocean ridge basalts and also their fractionation during previous mantle processes. Possible interpretations of mixing processes are discussed and sources at the ridge segment scale are favoured. However, when looking in detail, local heterogeneities are still common and can even be traced back off-axis to 115 my.

Placed in the context of the North Atlantic Ridge from 10° to 70°N, the Sr isotopic ratios reveal the Azores superstructure (23–50°N), whereas the trace element ratios (La/Sm-Nb/Zr) trace the second-order structures (33–40°N, 42–48°N) superimposed on the superstructure. This study illustrates the complementarity of information given by certain well chosen trace element ratios on the one hand and by isotopic ratios on the other. Since there is evidence of decoupling between isotopic ratios and/or trace element ratios, it introduces the notion of complementary “chemical memory” as recorded by a given type of trace element ratio or a given type of isotopic ratio  相似文献   


3.
The segmentation of the Mid-Atlantic Ridge between 29°N and 31°30′ N during the last 10 Ma was studied. Within our survey area the spreading center is segmented at a scale of 25–100 km by non-transform discontinuities and by the 70 km offset Atlantis Transform. The morphology of the spreading center differs north and south of the Atlantis Transform. The spreading axis between 30°30′N and 31°30′N consists of enéchelon volcanic ridges, located within a rift valley with a regional trend of 040°. South of the transform, the spreading center is associated with a well-defined rift valley trending 015°. Magnetic anomalies and the bathymetric traces left by non-transform discontinuities on the flanks of the Mid-Atlantic Ridge provide a record of the evolution of this slow-spreading center over the last 10 Ma. Migration of non-transform offsets was predominantly to the south, except perhaps in the last 2 Ma. The discontinuity traces and the pattern of crustal thickness variations calculated from gravity data suggest that focused mantle upwelling has been maintained for at least 10 Ma south of 30°30′ N. In contrast, north of 30°30′N, the present segmentation configuration and the mantle upwelling centers inferred from gravity data appear to have been established more recently. The orientation of the bathymetric traces suggests that the migration of non-transform offsets is not controlled by the motion of the ridge axis with respect to the mantle. The evolution of the spreading center and the pattern of segmentation is influenced by relative plate motion changes, and by local processes, perhaps related to the amount of melt delivered to spreading segments. Relative plate motion changes over the last 10 Ma in our survey area have included a decrease in spreading rate from 32 mm a−1 to 24 mm a−1, as well as a clockwise change in spreading direction of 13° between anomalies 5 and 4, followed by a counterclockwise change of 4° between anomaly 4 and the present. Interpretation of magnetic anomalies indicates that there are significant variations in spreading asymmetry and rate within and between segments for a given anomaly time. These differences, as well as variations in crustal thickness inferred from gravity data on the flanks of spreading segments, indicate that magmatic and tectonic activity are, in general, not coordinated between adjacent spreading segments.  相似文献   

4.
In July 1985 the first high-temperature, hydrothermal vents ever discovered on the MAR were found at 26°N (TAG). A transponder-navigated survey of a 4 × 8 km area was begun when on-board measurements of manganese revealed concentrated hydrothermal plumes in the water column comparable in size and intensity to those found over geothermal fields on the EPR. These plumes also possess anomalously high light scattering properties and anomalously warm potential temperatures. Using relay-transponder navigation with a rosette-CTD system, it was possible to sample bottom waters with temperature anomalies of several decidegrees. Samples collected near vent orifices possessed silica anomalies of up to 17 μM and dissolved manganese anomalies as large as 360 nmol/kg. These manganese and silica anomalies are linearly related and predict aMn/Si ratio of 20 mmol/mol for these MAR vent fluids, a value essentially identical to that measured in 350°C fluid from the EPR at 21°N. The distribution of temperature anomalies in the water column over this area requires the presence of more than one active vent site. A rough estimate of the convective heat loss from this section of the MAR based onθ-z profiles is 1.2 × 108 cal/s which is similar to the heat loss estimated for the vent field on the EPR at 21°N.  相似文献   

5.
Hydrothermal vent fluids were collected from the Lucky Strike site at 37°17′N on the Mid-Atlantic Ridge in both 1993 and 1996. Seven vents were sampled with the DSV Alvin in 1993 and six vents were sampled in 1996 using the ROV Jason during the LUSTRE '96 Cruise. As three of the vents were sampled in both 1993 and in 1996, a time series of vent fluid chemistry is also reported. Measured temperatures ranged from 202 to 333°C at the 1618–1726 m depth of the vent field, which is located on Lucky Strike Seamount. These fluids are either equal to or less than the local bottom seawater in chlorinity. While the range in fluid compositions at Lucky Strike is generally within that observed elsewhere, the unusual aspects of the fluid chemistries are the relatively high pH and low Fe, Mn, Li and Zn. We attribute this, as well as an usually low Sr/Ca ratio, to reaction with a highly altered substrate. The high Si and Cu contents suggest a deep, as well as hot, source for these fluids. The fluid compositions therefore suggest formation by super-critical phase separation at a depth not less than 1300 m below the seafloor, and reaction with a relatively oxic, and previously altered, substrate. There is temporal variability in some of the vent fluid compositions as Li, K, Ca and Fe concentrations have increased in some of the vents, as has the Fe/Mn (molar) ratio, although the chlorinities have remained essentially constant from 1993 to 1996. While there is not a simple relationship between vent fluid compositions (or temperatures) and distance from the lava lake at the summit of the seamount, the vent fluids from many of the vents can be shown to be related to others, often at distances >200 m. The most southeasterly vents (Eiffel Tower and the Marker/Mounds vents) are distinct in chlorinity and other chemical parameters from the rest of the vents, although closely related to each other within the southeastern area. Similarly all of the vents not in this one area, appear closely related to each other. This suggests one or two source fluids for many of the vents, as is also inferred to be the case at TAG, but which is in contrast to observations on faster spreading ridges. This may suggest inherently different plumbing for hydrothermal systems at slower versus faster spreading ridges.  相似文献   

6.
Hydrothermal activity has been investigated along three different sections of the slow-spreading Mid-Atlantic Ridge (MAR): 11°20′–30°N, 36–38°N and the Reykjanes Ridge, 57°45′–63°06′N. When considered in total, the incidence of venting along these three sections of the MAR compares well with the predictions of a model in which frequency of venting is linearly related to ridge-crest spreading-rate. At the scale of individual study areas, however, departure from the model is observed by up to an order of magnitude. Venting is anomalously rare along the Reykjanes Ridge but anomalously abundant along the MAR 36–38°N. Whilst such variability may be within the error of the linear spreading-rate model, we note that the interplay between magmatic and tectonic processes also differs between the three study areas. In the case of the Reykjanes Ridge we propose that the low incidence of venting reported may reflect a limitation of the sampling/investigative strategy because the style of venting which predominates may not give rise to conventional black-smoker hydrothermal plumes. Along the oblique and broadly segmented MAR 36–38°N, we propose that vigorous hydrothermal venting in broad segment-end non-transform discontinuities may be focussed along deeply penetrating active faults with the requisite heat supply being supported through some combination of along-axis magmatic intrusions and thermal release associated with the serpentinisation of crustal peridotites.  相似文献   

7.
We report a comprehensive morphological, gravity and magnetic survey of the oblique- and slow-spreading Reykjanes Ridge near the Iceland mantle plume. The survey extends from 57.9°N to 62.1°N and from the spreading axis to between 30 km (3 Ma) and 100 km (10 Ma) off-axis; it includes 100 km of one arm of a diachronous ‘V-shaped' or ‘chevron' ridge. Observed isochrons are extremely linear and 28° oblique to the spreading normal with no significant offsets. Along-axis there are ubiquitous, en-echelon axial volcanic ridges (AVRs), sub-normal to the spreading direction, with average spacing of 14 km and overlap of about one third of their lengths. Relict AVRs occur off-axis, but are most obvious where there has been least axial faulting, suggesting that elsewhere they are rapidly eroded tectonically. AVRs maintain similar plan views but have reduced heights nearer Iceland. They are flanked by normal faults sub-parallel to the ridge axis, the innermost of which occur slightly closer to the axis towards Iceland, suggesting a gradual reduction of the effective lithospheric thickness there. Generally, the amplitude of faulting decreases towards Iceland. We interpret this pattern of AVRs and faults as the response of the lithosphere to oblique spreading, as suggested by theory and physical modelling. An axial, 10–15 km wide zone of high acoustic backscatter marks the most recent volcanic activity. The zone's width is independent of the presence of a median valley, so axial volcanism is not primarily delimited by median valley walls, but is probably controlled by the lateral distance that the oblique AVRs can propagate into off-axis lithosphere. The mantle Bouguer anomaly (MBA) exhibits little mid- to short-wavelength variation above a few milliGals, and along-axis variations are small compared with other parts of the Mid-Atlantic Ridge. Nevertheless, there are small axial deeps and MBA highs spaced some 130 km along-axis that may represent subdued third-order segment boundaries. They lack coherent off-axis traces and cannot be linked to Oligocene fracture zones on the ridge flanks. The surveyed chevron ridge is morphologically discontinuous, comprising several parallel bands of closely spaced, elevated blocks. These reflect the surrounding tectonic fabric but have higher fault scarps. There is no evidence for off-axis volcanism or greater abundance of seamounts on the chevron. Free-air gravity over it is greater than expected from the observed bathymetry, suggesting compensation via regional rather than pointwise isostasy. Most of the observed variation along the ridge can be ascribed to varying distance from the mantle plume, reflecting changes in mantle temperature and consequently in crustal thickness and lithospheric strength. However, a second-order variation is superimposed. In particular, between 59°30′N and 61°30′N there is a minimum of large-scale faulting and crustal magnetisation, maximum density of seamounts, and maximum axial free-air gravity high. To the north the scale of faulting increases slightly, seamounts are less common, and there is a relative axial free-air low. We interpret the 59°30′N to 61°30′N region as where the latest chevron ridge intersects the Reykjanes Ridge axis, and suggest that the morphological changes that culminate there reflect a local temperature high associated with a transient pulse of high plume output at its apex.  相似文献   

8.
We have developed techniques to determine238U,234U and232Th concentrations in seawater by isotope dilution mass spectrometry. U measurements are made using a233U236U double spike to correct for instrumental fractionation. Measurements on uranium standards demonstrate that234U/238U ratios can be measured accurately and reproducibly.234U/238U can be measured routinely to ± 5‰ (2σ) for a sample of 5 × 109 atoms of234U (3 × 10−8 g of total U, 10 ml of seawater). Data acquisition time is 1 hour. The small sample size, high precision and short data acquisition time are superior to-counting techniques.238U is measured to ± 2‰ (2σ) for a sample of 8 × 1012 atoms of238U ( 3 × 10−9 g of U, 1 ml of seawater).232Th is measured to ± 20‰ with 3 × 1011232Th atoms (10−10 g232Th, 1 1 of seawater). This small sample size will greatly facilitate investigation of the232Th concentration in the oceans. Using these techniques, we have measured238U,234U and232Th in vertical profiles of unfiltered, acidified seawater from the Atlantic and238U and234U in vertical profiles from the Pacific. Determinations of234U/238U at depths ranging from 0 to 4900 m in the Atlantic (7°44′N, 40°43′W) and the Pacific (14°41′N, 160°01′W) Oceans are the same within experimental error (± 5‰,2σ). The average of these234U/238U measurements is 144 ± 2‰ (2σ) higher than the equilibrium ratio of 5.472 × 10−5. U concentrations, normalized to 35‰ salinity, range from 3.162 to 3.281 ng/g, a range of 3.8%. The average concentration of the Pacific samples (31°4′N, 159°1′W) is 1% higher than that of the Atlantic (7°44′N, 40°43′W and 31°49′N, 64°6′W).232Th concentrations from an Atlantic profile range from 0.092 to 0.145 pg/g. The observed constancy of the234U/238U ratio is consistent with the predicted range of234U/238U using a simple two-☐ model and the residence time of deep water in the ocean determined from14C. The variation in salinity-normalized U concentrations suggests that U may be much more reactive in the marine environment than previously thought.  相似文献   

9.
Laboratory culturing experiments with living Globigerina bulloides indicate that Mg/Ca is primarily a function of seawater temperature and suggest that Mg/Ca of fossil specimens is an effective paleotemperature proxy. Using culturing results and a core-top Neogloboquadrina pachyderma calibration, we have estimated glacial–interglacial changes in sea surface temperature (SST) using planktonic Mg/Ca records from core RC11-120 in the Subantarctic Indian Ocean (43°S, 80°E) and core E11-2 in the Subantarctic Pacific Ocean (56°S, 115°W). Our results suggest that glacial SST was about 4°C cooler in the Subantarctic Indian Ocean and 2.5°C cooler in the Subantarctic Pacific. Comparison of SST and planktonic δ18O records indicates that changes in SST lead changes in δ18O by on average 1–3 kyr. The glacial–interglacial temperature change indicated by the Subantarctic Mg/Ca records suggests that temperature accounts for 40–60% of the foraminiferal δ18O change. We have used the Mg/Ca-based SST estimates and δ18O determinations to generate site-specific seawater δ18O records, which suggest that seawater δ18O was on average 1‰ more positive during glacial episodes compared with interglacial episodes.  相似文献   

10.
Shallow submarine hydrothermal activity has been observed in the Bahía Concepción bay, located at the Gulf coast of the Baja California Peninsula, along faults probably related to the extensional tectonics of the Gulf of California region. Diffuse and focused venting of hydrothermal water and gas occurs in the intertidal and shallow subtidal areas down to 15 m along a NW–SE-trending onshore–offshore fault. Temperatures in the fluid discharge area vary from 50 °C at the sea bottom up to 87 °C at a depth of 10 cm in the sediments.Chemical analyses revealed that thermal water is enriched in Ca, As, Hg, Mn, Ba, HCO3, Li, Sr, B, I, Cs, Fe and Si, and it has lower concentrations of Cl, Na, SO4 and Br than seawater. The chemical characteristics of the water samples indicate the occurrence of mixing between seawater and a thermal end-member. Stable isotopic oxygen and hydrogen composition of thermal samples plot close to the Local Meteoric Water Line on a mixing trend between a thermal end-member and seawater. The composition of the thermal end-member was calculated from the chemistry of the submarine samples data by assuming a negligible amount of Mg for the thermal end-member. The results of the mixing model based on the chemical and isotopic composition indicate a maximum of 40% of the thermal end-member in the submarine vent fluid.Chemical geothermometers (Na/Li, Na–K–Ca and Si) were applied to the thermal end-member concentration and indicate a reservoir temperature of approximately 200 °C. The application of K–Mg and Na/Li geothermometers for vent fluids points to a shallow equilibrium temperature of about 120 °C.Results were integrated in a hydrogeological conceptual model that describes formation of thermal fluids by infiltration and subsequent heating of meteoric water. Vent fluid is generated by further mixing with seawater.  相似文献   

11.
The mixing of seawater/hydrothermal fluid within the large seafloor hydrothermal sulfide deposits plays a key role in the formation processes of the sulfide deposits. Some issues attract considerable attentions in the study of seafloor hydrothermal system in recent years, such as the relationships among different types of vent fluids, the characteristics of chemical compositions and mineral assemblages of the hydrothermal deposits and their governing factors. Combined with the measured data of hydrothermal fluid in the TAG field, the thermodynamic model of mixing processes of the heated seawater at different temperatures and the hydrothermal fluid is calculated to understand the precipitation mechanism of anhydrite and the genetic relationships between the black and white smoker fluids within the TAG mound. The results indicate that the heating of seawater and the mixing of hydrothermal fluid/seawater are largely responsible for anhydrite precipitation and the temperature of the heated seawater is not higher than 150°C and the temperature of the end-member hydrothermal fluid is not lower than 400°C. Based on the simulated results, the evolving patterns of fluids within the TAG deposit are discussed. The mixed fluid of the end-member hydrothermal fluid and the seawater heated by wall rock undergoes conductive cooling during upflowing within the deposit and forms “White Smoker” eventually. In addition, the end-member hydrothermal fluid without mixed with seawater, but undergoing conductive cooling, vents out of the deposit and forms “Black Smoker”. Supported by China Ocean Mineral Resources Research and Development Association Program (Grant No. DY115-02-1-01) and National Basic Research Program of China (Grant No. G2000078503)  相似文献   

12.
DSDP Hole 504B is the deepest basement hole in the oceanic crust, penetrating through a 571.5 m pillow section, a 209 m lithologic transition zone, and 295 m into a sheeted dike complex. An oxygen isotopic profile through the upper crust at Site 504 is similar to that in many ophiolite complexes, where the extrusive section is enriched in18O relative to unaltered basalts, and the dike section is variably depleted and enriched. Basalts in the pillow section at Site 504 haveδ18O values generally ranging from +6.1 to +8.5‰ SMOW(mean= +7.0‰), although minor zeolite-rich samples range up to 12.7‰. Rocks depleted in18O appear abruptly at 624 m sub-basement in the lithologic transition from 100% pillows to 100% dikes, coinciding with the appearance of greenschist facies minerals in the rocks. Whole-rock values range to as low as +3.6‰, but the mean values for the lithologic transition zone and dike section are +5.8 and +5.4‰, respectively.

Oxygen and carbon isotopic data for secondary vein minerals combined with the whole rock data provide evidence for the former presence of two distinct circulation systems separated by a relatively sharp boundary at the top of the lithologic transition zone. The pillow section reacted with seawater at low temperatures (near 0°C up to a maximum of around 150°C) and relatively high water/rock mass ratios (10–100); water/rock ratios were greater and conditions were more oxidizing during submarine weathering of the uppermost 320 m than deeper in the pillow section. The transition zone and dikes were altered at much higher temperatures (up to about 350°C) and generally low water/rock mass ratios ( 1), and hydrothermal fluids probably contained mantle-derived CO2. Mixing of axial hydrothermal fluids upwelling through the dike section with cooler seawater circulating in the overlying pillow section resulted in a steep temperature gradient ( 2.5°C/m) across a 70 m interval at the top of the lithologic transition zone. Progressive reaction during axial hydrothermal metamorphism and later off-axis alteration led to the formation of albite- and Ca-zeolite-rich alteration halos around fractures. This enhanced the effects of cooling and18O enrichment of fluids, resulting in local increases inδ18O of rocks which had been previously depleted in18O during prior axial metamorphism.  相似文献   


13.
Mapping and sampling with DSRV “Alvin” has established that sulfide blocks 0.5 m across, dredged from the axial valley of the Endeavour Segment at 47°57′N, are samples of unusually large sulfide structures. The steep-sided structures, up to 30 m in length, 20 m in height, and 10–15 m across, are localized by venting along normal faults at the base of the western axial valley wall, and are distributed for about 200 m along strike paralleling the 020 trend of the ridge crest. High-temperature fluids (350 to more than 400°C) pass through the massive sulfide structures and enter seawater through small, concentric “nozzle-like” features projecting from the top or the sides of the larger vent structures. Diffuse, low-temperature flow is pervasive in the vicinity of the active sulfide structures, exiting from basalt and sulfide surfaces alike. Evidence of recent volcanic activity is sparse.The two largest samples taken with the dredge would not have been recoverable using the submersible. These samples represent massive, complex portions of the sulfide structures which were not closely associated with rapid high-temperature fluid flow at the time of sampling; they contain textural evidence of sealed hydrothermal fluid exit channels. Mineralogy is dominated by Fe sulfides nnd amorphous silica. Pyrite, marcasite, wurtzite, chalcopyrite, and iss are the most common sulfide phases. Pyrrhotite, galena, and sphalerite are present in trace amounts. Barite, amorphous silica, and chalcedony are the only non-sulfide phases; anhydrite is not observed in any of the dredge samples, although it is common in the chimney-like samples recovered by “Alvin”.Specific mineralogical-textural zones within the dredge samples are anaoogous to individual layers in East Pacific Rise at 21°N and southern Juan de Fuca Ridge samples, with two exceptions: a coarse-grained, highly porous Fe sulfide-rich interior containing sulfidized tubeworm casts, and a 2–5 cm thick zone near the outer margin of the samples dominated by late stage amorphous silica. The porous interior may have formed by dendritic crystal growth from a slowly circulating fluid within a large enclosed chamber. The amorphous silica deposited from a seawater/hydrothermal fluid mixture percolating slowly through the walls of the enclosed chamber; conductive cooling of the fluid as it traversed the walls allowed amorphous silica to precipitate. These silica-rich zones are the densest, most durable portions of the structures and may be responsible for the lasting stability of the large sulfide features.Observations in these samples are consistent with two distinct phases of development. Phase 1 is analogous to chimney growth and construction at 21°N and ends when flow channels become sealed to rapid flow of through-going fluid. The flow is evidently redirected within the structure. Phase 2 includes dissolution of anhydrite and precipitation of amorphous silica during conductive cooling of sluggishly circulating hydrothermal fluid or seawater/hydrothermal fluid mixtures. Evolution of vent structures through phase 2 allows lateral and vertical growth of unusually large structures.  相似文献   

14.
Two sandy sediment cores (Cores D227-120 and D380) were collected from inside a deep-sea giant clam (Calyptogena soyoae) community off Hatsushima Island, western Sagami Bay, central Japan (35°59.9′N, 139°13.6′E; 1160 m deep) and a muddy sediment core (Core D227-202) was obtained from outside the community by the submersibleShinkai 2000. The chloride concentration of the pore waters is constant vertically and sulfate reduction using sedimentary organic matter occurs in Core D227-202 (21 cm long). The chloride concentrations are lower by 7% at the 7.5–9 cm depth in Core D227-120 (9 cm long) and by 3% at the 11–12 cm depth in Core D380 (16 cm long) than those of the overlying bottom waters in the cores from inside of the community. Sulfate concentration decreases remarkably and dissolved inorganic carbon, alkalinity, ammonium-N, and hydrogen sulfide concentrations increase significantly with increasing depth in Core D380.δ34S values of sulfate ions increase from +20.5 to +35.3‰ andδ13C values of dissolved inorganic carbon decrease drastically from −7.0 to −45‰ with increasing depth from the top to the bottom of the core, although theδ13C values of the organic carbon of the sediments are−23.7 ± 0.9‰ in Core D380. These results indicate that sulfate reduction using methane is active within the sediments just beneath the living clams and that the hydrogen sulfide produced can be used by endosymbiotic sulfur oxidizing bacteria living in the gills ofC. soyoae in the community.  相似文献   

15.
Twenty stations were established in the near-shore regions of South Fujian Shoal (116°10′–119°00 E, 21°20′–24°10′ N) on summer and winter cruises during the period from August 1997 and February to March 1998. The distribution pattern of marine bacterial β-glucosidase activity (β-GlcA) has been investigated by using fluorogenic model substrate (FMS) technique in order to have better understanding of the β-GlcA, as well as its relation to marine bacterial biomass, productivity and environmental factors in Taiwan strait. The results showed that: (1) In summer, the average of β-GlcA at the Southern stations of Taiwan strait was 1.94 nmol/1 h. While in winter, the average of β-GlcA at the Northern stations was 0.86 nmol/1 h and the range of variation (0.34–1.89 nmol/1 h) was much more narrow than that in summer (0.31–8.1 nmol/1 h). (2) According to the carbon conversion factor, the β-GlcA was 0.14 and 0.062 ugc/1 h in summer and winter respectively. These β-GlcA values were higher than the bacterial production of the two seasons respectively. (3) The β-GlcA gradually rises from offshore water to near-shore water. (4) The correlation between the β-GlcA and the bacterial secondary production was not so obvious. (5) The correlation between the section distributions, daily varying of the β-GlcA and the bacterial production was not obvious. (6) In the surface water, the distribution character of free-state β-GlcA from bacteria was equal to that of the total β-GlcA in the whole sea area.  相似文献   

16.
Melting relations of β-quartz were experimentally determined at 1.0 GPa (1900±20 °C), 1.5 GPa (2033±20 °C), and 2.0 GPa (2145±20 °C) using a new high-pressure assembly in a piston–cylinder apparatus and substantial differences were found with data previously reported. The new melting data of β-quartz were combined and optimized with all available thermodynamic, volumetric, and phase equilibria data for β-cristobalite, β-quartz and coesite to produce a PT liquidus diagram for silica valid up to 6.0 GPa. Using the new optimized thermodynamic parameters, the invariant point β-cristobalite+β-quartz+liquid and β-quartz+coesite+liquid were determined to lie at 1687±17 °C and 0.457 GPa, and 2425±25 °C and 5.00 GPa, respectively.  相似文献   

17.
We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3–7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02′S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48′S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an  18 km2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005−06 at the East Pacific Rise, 9°50′N and reference to global seismic catalogues reveals that a swarm of large (M 4.6−5.6) seismic events was centred on the 5°S segment over a  24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at  3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.  相似文献   

18.
Sea floor hydrothermal activity in the Guaymas Basin, Gulf of California, is quite different from that associated with ridge crest spreading centers. Injection of hydrothermal fluids occurs in the bottom of a semi-enclosed basin and water column anomalies produced by this activity increase to much higher values than in the open ocean. In the Guaymas Basin the hydrothermal venting generates large clouds of fine suspended particulate matter (SPM) 100–300 m above active mounds and chimneys. These hydrothermal clouds have potential temperature anomalies of about 0.010–0.020°C, are enriched in dissolved silica, particulate manganese, and depleted in dissolved oxygen relative to areas away from the vents. The particulate manganese values increase from about 3 nmol/kg at ~ 1000 m, well above the enclosing topography of the subsill basin, to 100–150 nmol/kg in the clouds of SPM and in the bottom nepheloid layer. The particulate Mn in the hydrothermal clouds appears to originate from both direct precipitation of dissolved Mn2+ injected by the vents and entrainment of Mn-rich SPM in the rising hydrothermal plumes. Injection of silica-rich vent fluids into the basin bottom waters produces a silica anomaly of 10–15 μmol relative to the other deep basins of the Gulf of California. Spillover of Guaymas Basin deep water produces a silica plume just above the basin sill depth which is detectable to the mouth of the Gulf. A simple two-endmember mixing model indicates that the deep waters of the Guaymas Basin contain approximately 0.1% hydrothermal fluid. Oxygen anomalies associated with the hydrothermal clouds are on the order of 5 μmol relative to regions away from active vents. The basin as a whole shows a depletion in oxygen of about 13 μmol relative to the other deep basins of the Gulf. The mixing model shows that this oxygen consumption can be explained by the oxidation of dissolved sulfide and methane injected by the hydrothermal vents. Box models of the deep basins of the southern Gulf of California indicate that the Guaymas Basin has a significantly higher source term for dissolved silica and sink term for dissolved oxygen than the other basins. The calculated flux of hydrothermal fluids into the Guaymas Basin is 10–12 m3/s.  相似文献   

19.
Combining textural, petrological, chemical and isotopic (Sr, H and O) data for amphiboles and whole rocks from the Zabargad peridotite diapir allows three different events to be distinguished. During each event, which can be related to a specific tectonic process of the rifting of the Red Sea, hydrous fluids produced amphiboles.

The first and the second generations of amphiboles have characteristics consistent with the involvement of mantle-derived hydrous fluids. The first generation consists of scarce Ti-pargasites which crystallized from small amounts of fluid at temperatures of around 900–1000°C. Their growth was linked to magma percolation in the peridotites before their deformation during diapiric uplift. The second generation consists of Cr-pargasites which crystallized locally (and abundantly) during reaction between the peridotites and a sodium/potassium-bearing hydrous fluid at temperatures of around 700–800°C. These amphiboles grew synchronously with the diapiric uplift. The hydrous fluids probably originated in the sub-continental mantle and were released during the diapiric uplift of the peridotites.

The third generation consists of amphiboles (pargasitic hornblende, hornblende sensu lato and tremolite) which are localized in shear zones and veins. They crystallized at temperatures estimated between 700°C and 450°C, again from a sodium/potassium-bearing hydrous fluid. However, this fluid is extraneous to the peridotites, as shown by the Sr, H and O isotope compositions which suggest seawater penetration either during or after the final emplacement of the peridotite diapir.

Although the peridotite diapir was emplaced in granulitic gneisses of the pan-African deep continental crust, no evidence was found for a contribution of hydrous continental fluids in the production of the amphiboles present in the peridotite bodies of Zabargad Island.  相似文献   


20.
Since 1938, untreated copper mine tailings of Potrerillos and El Salvador have been disposed into the sea at Chañaral, Chile (26° 21′ Lat. S., 70° 42′ Long. W.). Over 220×106 t of sediments have been dumped. This pollution has caused drastic geomorphological changes in the c. 16 km contaminated area. The occurrence of new artificial beaches and modification of coastal contours are reported. Sandy beach macrofauna monitoring (1975–1982) demonstrated a progressive lowering of density and biomass in those communities affected by copper mine tailings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号