首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from a 20-year, high-resolution ocean model experiment for the Atlantic and Arctic Oceans. The atmospheric forcing is taken from the final 20 years of a twentieth-century control run with a coupled atmosphere–ocean general circulation model. The ocean model results from the regional ocean model are validated using observations of hydrography from repeat cruises in the Barents Sea. Validation is performed for average quantities and for probability distributions in space and time. The validation results reveal that, though the regional model is forced by a coupled global model that has a noticeable sea ice bias in the Barents Sea, the hydrography and its variability are reproduced with an encouraging quality. We attribute this improvement to the realistic transport of warm, salty waters into the Barents Sea in the regional model. These lateral fluxes in the ocean are severely underestimated by the global model. The added value with the regional model that we have documented here lends hope to advance the quality of oceanic climate change impact studies.  相似文献   

2.
Wang  Xuezhu  Wang  Qiang  Sidorenko  Dmitry  Danilov  Sergey  Schr&#;ter  Jens  Jung  Thomas 《Ocean Dynamics》2012,62(10):1471-1486

The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.

  相似文献   

3.
The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.  相似文献   

4.
On the physics of the Atlantic Multidecadal Oscillation   总被引:1,自引:0,他引:1  
The Atlantic Multidecadal Oscillation (AMO) is a pronounced signal of climate variability in the North Atlantic sea-surface temperature field. In this paper, we propose an explanation of the physical processes responsible for the timescale and the spatial pattern of the AMO. Our approach involves the analysis of solutions of a hierarchy of models. In the lowest member of the model hierarchy, which is an ocean-only model for flow in an idealized basin, the variability shows up as a multidecadal oscillatory mode which is able to destabilize the mean thermohaline circulation. In the highest member of the model hierarchy, which is the Geophysical Fluid Dynamics Laboratory R30 climate model, multidecadal variability is found as a dominant statistical mode of variability. The connection between both results is established by tracing the spatial and temporal expression of the multidecadal mode through the model hierarchy while monitoring changes in specific quantities (mechanistic indicators) associated with its physics. The proposed explanation of the properties of the AMO is eventually based on the changes in the spatial patterns of variability through the model hierarchy.Responsible Editor: Tal Ezer  相似文献   

5.
Seasonal climate prediction for the Indian summer monsoon season is critical for strategic planning of the region. The mean features of the Indian summer monsoon and its variability, produced by versions of the ‘Florida State University Coupled Ocean-Atmosphere General Circulation Model’ (FSUCGCM) hindcasts, are investigated for the period 1987 to 2002. The coupled system has full global ocean and atmospheric models with coupled assimilation. Four member models were created by choosing different combinations of parameterizations of the physical processes in the atmospheric model component. Lower level wind flow patterns and rainfall associated with the summer monsoon season are examined from this fully coupled model seasonal integrations. By comparing with observations, the mean monsoon condition simulated by this coupled model for the June, July and August periods is seen to be reasonably realistic. The overall spatial low-level wind flow patterns and the precipitation distributions over the Indian continent and adjoining oceanic regions are comparable with the respective analyses. The anomalous below normal large-scale precipitation and the associated anomalous low-level wind circulation pattern for the summer monsoon season of 2002 was predicted by the model three months in advance. For the Indian summer monsoon, the ensemble mean is able to reproduce the mean features better compared to individual member models.  相似文献   

6.
Halifax Harbour is located on the Atlantic coast of Nova Scotia, Canada. It is one of the world’s largest, ice-free natural harbours and of great economic importance to the region. A good understanding of the physical processes controlling tides, flooding, transport and dispersion, and hydrographic variability is required for pollution control and sustainable development of the Harbour. For the first time, a multi-nested, finite difference coastal ocean circulation model is used to reconstruct the three-dimensional circulation and hydrography of the Harbour and its variability on timescales of hours to months for 2006. The model is driven by tides, wind and sea level pressure, air-sea fluxes of heat, and terrestrial buoyancy fluxes associated with river and sewage discharge. The predictive skill of the model is assessed by comparing the model simulations with independent observations of sea level from coastal tide gauges and currents from moored instruments. The simulated hydrography is also compared against a new monthly climatology created from all available temperature and salinity observations made in the Harbour over the last century. It is shown that the model can reproduce accurately the main features of the observed tides and storm surge, seasonal mean circulation and hydrography, and wind driven variations. The model is next used to examine the main physical processes controlling the circulation and hydrography of the Harbour. It is shown that non-linear interaction between tidal currents and complex topography occurs over the Narrows. The overall circulation can be characterized as a two-layer estuarine circulation with seaward flow in the thin upper layer and landward flow in the broad lower layer. An important component of this estuarine circulation is a relatively strong, vertically sheared jet situated over a narrow sill connecting the inner Harbour to the deep and relatively quiescent Bedford Basin. Local wind driven variability is strongest in winter as expected but it is also shown that a significant part of the temperature and salinity variability is driven by physical processes occurring on the adjacent inner continental shelf, especially during storm and coastal upwelling events.  相似文献   

7.
A numerical model of the Atlantic Ocean was used to study the low-frequency variability of meridional transports in the North Atlantic. The model shows a behaviour similar to those used in previous studies, and the temporal variability of certain variables compares favourably to observed time series. By changing the depth and width of the sills between the subpolar North Atlantic and the Nordic Seas, the mean horizontal and overturning circulation as well as some water mass properties are modified significantly. The reaction of meridional oceanic transports to atmospheric forcing fluctuations remains, however, unchanged. The critical role of the surface heat flux retroaction term for the meridional heat transport in stand-alone ocean models is discussed. The experiments underline the role of atmospheric variability for fluctuations of the large-scale ocean circulation on time scales from years to decades, and they support the hypothesis that the mean overturning strength is controlled by the model representation of the density of the overflow water masses.Responsible Editor: Dirk Olbers  相似文献   

8.
Nested non-assimilative simulations of the West Florida Shelf for 2004–2005 are used to quantify the impact of initial and boundary conditions provided by Global Ocean Data Assimilation Experiment ocean products. Simulations are nested within an optimum interpolation hindcast of the Atlantic Ocean, the initial test of the US Navy Coupled Ocean Data Assimilation system for the Gulf of Mexico, and a global ocean hindcast that used the latter assimilation system. These simulations are compared to one that is nested in a non-assimilative Gulf of Mexico model to document the importance of assimilation in the outer model. Simulations are evaluated by comparing model results to moored Acoustic Doppler Current Profiler measurements and moored sea surface temperature time series. The choice of outer model has little influence on simulated velocity fluctuations over the inner and middle shelf where fluctuations are dominated by the deterministic wind-driven response. Improvement is documented in the representation of alongshore flow variability over the outer shelf, driven in part by the intrusion of the Loop Current and associated cyclones at the shelf edge near the Dry Tortugas. This improvement was realized in the simulation nested in the global ocean hindcast, the only outer model choice that contained a realistic representation of Loop Current transport associated with basin-scale wind-driven gyre circulation and the Atlantic Meridional Overturning Circulation. For temperature, the non-assimilative outer model had a cold bias in the upper ocean that was substantially corrected in the data-assimilative outer models, leading to improved temperature representation in the simulations nested in the assimilative outer models.  相似文献   

9.
Tal Ezer 《Ocean Dynamics》2017,67(5):651-664
Two aspects of the interactions between the Gulf Stream (GS) and the bottom topography are investigated: 1. the spatial variations associated with the north-south tilt of mean sea level along the US East Coast and 2. the high-frequency temporal variations of coastal sea level (CSL) that are related to Gulf Stream dynamics. A regional ocean circulation model is used to assess the role of topography; this is done by conducting numerical simulations of the GS with two different topographies–one case with a realistic topography and another case with an idealized smooth topography that neglects the details of the coastline and the very deep ocean. High-frequency oscillations (with a 5-day period) in the zonal wind and in the GS transport are imposed on the model; the source of the GS variability is either the Florida Current (FC) in the south or the Slope Current (SC) in the north. The results demonstrate that the abrupt change of topography at Cape Hatteras, near the point where the GS separates from the coast, amplifies the northward downward mean sea level tilt along the coast there. The results suggest that idealized or coarse resolution models that do not resolve the details of the coastline may underestimate the difference between the higher mean sea level in the South Atlantic Bight (SAB) and the lower mean sea level in the Mid-Atlantic Bight (MAB). Imposed variations in the model’s GS transport can generate coherent sea level variability along the coast, similar to the observations. However, when the bottom topography in the model is modified (or not well resolved), the shape of the coastline and the continental shelf influence the propagation of coastal-trapped waves and impact the CSL variability. The results can explain the different characteristics of sea level variability in the SAB and in the MAB and help understand unexpected water level anomalies and flooding related to remote influence of the GS.  相似文献   

10.
Recently Thompson et al. (2006. A simple method for reducing seasonal bias and drift in eddy resolving ocean models. Ocean Modelling 13, 109–125.) proposed a new method for suppressing the bias and drift of ocean circulation models. The basic idea is to nudge the model toward gridded climatologies of observed temperature and salinity in prescribed frequency–wavenumber bands; outside of these bands the model's dynamics are not directly affected by the nudging and the model state can evolve prognostically. Given the restriction of the nudging to certain frequency–wavenumber bands, the method is termed spectral nudging. The frequency–wavenumber bands are chosen to capture the information in the climatology and thus are centered on the climatological frequencies of zero, one cycle per year and its harmonics, and also low wavenumbers (reflecting the smooth nature of gridded climatologies). The new method is applied in this study to a fully nonlinear, 3D baroclinic circulation model of the continental shelves and inland seas of Atlantic Canada and the northeast US. It is shown that the scheme can suppress drift and bias in a nine month integration (February–October, 2002) while still allowing realistic evolution of tides, surges and wind and tide-driven coastal upwelling. It is also shown that density stratification can affect significantly tidal elevations in some regions. The implications for ocean hindcasting and short-term forecasting are discussed.  相似文献   

11.
Electromagnetic induction in the Earth’s interior is an important contributor to the near-Earth magnetic and electric fields. The oceans play a special role in this induction due to their relatively high conductivity which leads to large lateral variability in surface conductance. Electric currents that generate secondary fields are induced in the oceans by two different processes: (a) by time varying external magnetic fields, and (b) by the motion of the conducting ocean water through the Earth’s main magnetic field. Significant progress in accurate and detailed predictions of the electric and magnetic fields induced by these sources has been achieved during the last few years, via realistic three-dimensional (3-D) conductivity models of the oceans, crust and mantle along with realistic source models. In this review a summary is given of the results of recent 3-D modeling studies in which estimates are obtained for the magnetic and electric signals at both the ground and satellite altitudes induced by a variety of natural current sources. 3-D induction effects due to magnetospheric currents (magnetic storms), ionospheric currents (Sq, polar and equatorial electrojets), ocean tides, global ocean circulation and tsunami are considered. These modeling studies demonstrate that the 3-D induction (ocean) effect and motionally-induced signals from the oceans contribute significantly (in the range from a few to tens nanotesla) to the near-Earth magnetic field. A 3-D numerical solution based on an integral equation approach is shown to predict these induction effects with the accuracy and spatial detail required to explain observations both on the ground and at satellite altitudes. On leave from Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia.  相似文献   

12.
This paper addresses the impact of atmospheric variability on ocean circulation in tidal and non-tidal basins. The data are generated by an unstructured-grid numerical model resolving the dynamics in the coastal area, as well as in the straits connecting the North Sea and Baltic Sea. The model response to atmospheric forcing in different frequency intervals is quantified. The results demonstrate that the effects of the two mechanical drivers, tides and wind, are not additive, yet non-linear interactions play an important role. There is a tendency for tidally and wind-driven circulations to be coupled, in particular in the coastal areas and straits. High-frequency atmospheric variability tends to amplify the mean circulation and modify the exchange between the North and the Baltic Sea. The ocean response to different frequency ranges in the wind forcing is area-selective depending on specific local dynamics. The work done by wind on the oceanic circulation depends strongly upon whether the regional circulation is tidally or predominantly wind-driven. It has been demonstrated that the atmospheric variability affects the spring-neap variability very strongly.  相似文献   

13.
Tropical instability waves (TIWs) are not easily simulated by ocean circulation models primarily because such waves are very sensitive to wind forcing. In this study, we investigate the impact of assimilating sea surface height (SSH) observations on the control of TIWs in an observing system simulation experiment (OSSE) context based on a regional model configuration of the tropical Atlantic. A Kalman filtering method with suitable adaptations is found to be successful when altimetric data are assimilated in conjunction with sea surface temperature and some in situ temperature/salinity profiles. In this rather realistic system, the TIW phase is roughly controlled with a single nadir observing satellite. However, a right correction of the TIW structure and amplitude requires at least two nadir observing satellites or a wide swath observing satellite. The significant impact of orbital parameters is also demonstrated: in particular, the Jason or GFO satellite orbits are found to be more suitable than the ENVISAT orbit. More generally, it is found that as soon as adequate sub-sampling exists (with periods of 5–10?days), the length of the repetitivity cycle of orbits does not have a significant impact.  相似文献   

14.
The characteristics of a global set-up of the Finite-Element Sea-Ice Ocean Model under forcing of the period 1958–2004 are presented. The model set-up is designed to study the variability in the deep-water mass formation areas and was therefore regionally better resolved in the deep-water formation areas in the Labrador Sea, Greenland Sea, Weddell Sea and Ross Sea. The sea-ice model reproduces realistic sea-ice distributions and variabilities in the sea-ice extent of both hemispheres as well as sea-ice transport that compares well with observational data. Based on a comparison between model and ocean weather ship data in the North Atlantic, we observe that the vertical structure is well captured in areas with a high resolution. In our model set-up, we are able to simulate decadal ocean variability including several salinity anomaly events and corresponding fingerprint in the vertical hydrography. The ocean state of the model set-up features pronounced variability in the Atlantic Meridional Overturning Circulation as well as the associated mixed layer depth pattern in the North Atlantic deep-water formation areas.  相似文献   

15.
The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high latitude and Arctic is expected to undergo changes although to date it is challenging to accurately quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time of around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean circulation and transport variability in the high latitude and Arctic Ocean. In this respect, this study combines in situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice–ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE-derived mean dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean.  相似文献   

16.
We examine the equilibrated and time-evolving adjoint solutions of an ocean general circulation model. Adjoint models calculate the sensitivity of a diagnostic, (here, the strength of the meridional overturning) to all forcing fields in a single integration. The time evolution of the sensitivity patterns demonstrates the validity of the adjoint modeling approach over climatological time scales in coarse-resolution ocean models. Our objective is to identify the principle adjustment mechanisms through which the meridional overturning strength adapts to perturbations in wind and buoyancy forcing. The adjoint approach is shown to be a valuable alternative to traditional perturbation methods in highlighting the processes and time scales important to ocean and climate modeling.  相似文献   

17.
This paper aims to provide a comprehensive review of previous studies and concepts concerning the North Atlantic Oscillation. The North Atlantic Oscillation (NAO) and its recent homologue, the Arctic Oscillation/Northern Hemisphere annular mode (AO/NAM), are the most prominent modes of variability in the Northern Hemisphere winter climate. The NAO teleconnection is characterised by a meridional displacement of atmospheric mass over the North Atlantic area. Its state is usually expressed by the standardised air pressure difference between the Azores High and the Iceland Low. ThisNAO index is a measure of the strength of the westerly flow (positive with strong westerlies, and vice versa). Together with the El Niño/Southern Oscillation (ENSO) phenomenon, the NAO is a major source of seasonal to interdecadal variability in the global atmosphere. On interannual and shorter time scales, the NAO dynamics can be explained as a purely internal mode of variability of the atmospheric circulation. Interdecadal variability maybe influenced, however, by ocean and sea-ice processes.  相似文献   

18.
W. P. Budgell 《Ocean Dynamics》2005,55(3-4):370-387
A dynamic–thermodynamic sea ice model has been coupled to a three-dimensional ocean general circulation model for the purpose of conducting ocean climate dynamical downscaling experiments for the Barents Sea region. To assess model performance and suitability for such an application, the coupled model has been used to conduct a hindcast for the period 1990–2002. A comparison with available observations shows that the model successfully tracks seasonal and inter-annual variability in the ocean temperature field and that the simulated horizontal and vertical distribution of temperature are in good agreement with observations. The model results follow the seasonal and inter-annual variability in sea ice cover in the region, with the exception that the model results show too much ice melting in the northern Barents Sea during summer. The spatial distribution of the winter simulated sea ice cover is in close agreement with observations. Modelled temperatures and ice concentrations in the central Barents Sea are biased too high and too low, respectively. The probable cause is too high inflow of Atlantic Water into the Barents. The seasonal and inter-annual fluctuations in temperature and sea ice cover in the central Barents are, however, in excellent agreement with observations. Salt release during the freezing process in the numerical simulation exhibits considerable inter-annual variability and tends to vary in an opposite manner to the net inflow volume flux at the western entrance of the Barents Sea. Overall, the model produces realistic ice-ocean seasonal and inter-annual variability and should prove to be a useful tool for dynamical downscaling applications.  相似文献   

19.
An intermediate ocean-atmosphere coupled model is developed to simulate and predict the tropical interannual variability. Originating from the basic physical framework of the Zebiak-Cane(ZC) model, this tropical intermediate couple model(TICM) extends to the entire global tropics, with a surface heat flux parameterization and a surface wind bias correction added to improve model performance and inter-basin connections. The model well reproduces the variabilities in the tropical Pacific and Indian basins. The simulated El Ni?o-Southern Oscillation(ENSO) shows a period of 3–4 years and an amplitude of about 2°C, similar to those observed. The variabilities in the Indian Ocean, including the Indian Ocean basin mode(IOBM) and the Indian Ocean Dipole(IOD), are also reasonably captured with a realistic relationship to the Pacific. However, the tropical Atlantic variability in the TICM has a westward bias and is overly influenced by the tropical Pacific. A 47-year hindcast experiment using the TICM for the period of 1970–2016 indicates that ENSO is the most predictable mode in the tropics. Skillful predictions of ENSO can be made one year ahead, similar to the skill of the latest version of the ZC model, while a "spring predictability barrier" still exists as in other models. In the tropical Indian Ocean, the predictability seems much higher in the west than in the east. The correlation skill of IOD prediction reaches 0.5 at a 5-month lead, which is comparable to that of the state-of-the-art coupled general circulation models. The prediction of IOD shows a significant "winter-spring predictability barrier", implying combined influences from the tropical Pacific and the local sea-air interaction in the eastern Indian Ocean. The TICM has little predictive skill in the equatorial Atlantic for lead times longer than 3 months, which is a common problem of current climate models badly in need of further investigation.  相似文献   

20.
A growing body of research suggests that the marine environments of south Florida provide a critical link between the tropical and high-latitude Atlantic. Changes in the characteristics of water masses off south Florida may therefore have important implications for our understanding of climatic and oceanographic variability over a broad spatial scale; however, the sources of variability within this oceanic corridor remain poorly understood. Measurements of ΔR, the local offset of the radiocarbon reservoir age, from shallow-water marine environments can serve as a powerful tracer of water-mass sources that can be used to reconstruct variability in local-to regional-scale oceanography and hydrology. We combined radiocarbon and U-series measurements of Holocene-aged corals from the shallow-water environments of the Florida Keys reef tract (FKRT) with robust statistical modeling to quantify the millennial-scale variability in ΔR at locations with (“nearshore”) and without (“open ocean”) substantial terrestrial influence. Our reconstructions demonstrate that there was significant spatial and temporal variability in ΔR on the FKRT during the Holocene. Whereas ΔR was similar throughout the region after ∼4000 years ago, nearshore ΔR was significantly higher than in the open ocean during the middle Holocene. We suggest that the elevated nearshore ΔR from ∼8000 to 5000 years ago was most likely the result of greater groundwater influence associated with lower sea level at this time. In the open ocean, which would have been isolated from the influence of groundwater, ΔR was lowest ∼7000 years ago, and was highest ∼3000 years ago. We evaluated our open-ocean model of ΔR variability against records of local-to regional-scale oceanography and conclude that local upwelling was not a significant driver of open-ocean radiocarbon variability in this region. Instead, the millennial-scale trends in open-ocean ΔR were more likely a result of broader-scale changes in western Atlantic circulation associated with an increase in the supply of equatorial South Atlantic water to the Caribbean and shifts in the character of South Atlantic waters resulting from variation in the intensity of upwelling off the southwest coast of Africa. Because accurate estimates of ΔR are critical to precise calibrations of radiocarbon dates from marine samples, we also developed models of nearshore and open-ocean ΔR versus conventional 14C ages that can be used for regional radiocarbon calibrations for the Holocene. Our study provides new insights into the patterns and drivers of oceanographic and hydrologic variability in the Straits of Florida and highlights the value of the paleoceanographic records from south Florida to our understanding of Holocene changes in climate and ocean circulation throughout the Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号