首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Variations of solar total and spectral irradiance are prime solar quantities purported to have an influence on the Earth’s climate. Quantitative estimates of irradiance over as long a time as possible are needed to judge their effectiveness in forcing the climate. In order to do this reliably, first the measured record must be reproduced and a feeling for the physics underlying the irradiance variations must be developed. With the help of this knowledge combined with the available proxy data, reconstructions of irradiance in the past, generally since the Maunder minimum, are attempted. Here a brief introduction to some of the irradiance reconstruction work aiming at irradiance on time scales of days to the solar cycle is given, followed by a brief and incomplete overview of the longer-term reconstructions.  相似文献   

2.
太阳总辐照是指在地球大气层顶接收到的太阳总辐射照度,也叫"太阳常数",但它实际上并非常数。太阳总辐照随波长的分布即为太阳分光辐照。太阳辐照变化的研究,对理解太阳表面及内部活动的物理过程、机制,研究地球大气、日地关系,解决人类面临的全球气候变暖的挑战等,都具有重要意义。首先简单介绍了太阳辐照,回顾了太阳辐照的空间观测;接着介绍了观测数据的并合,以及对合成数据的一些研究;然后讨论了太阳辐照变化的原因,简述了太阳总辐照的重构及其在气候研究上的一些应用,并进行必要的评论;最后对未来的研究方向提出了一些看法。  相似文献   

3.
Accurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth’s atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth’s atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed.  相似文献   

4.
We present a new method to reconstruct the solar spectrum irradiance in the Ly α – 400 nm region, and its variability, based on the Mg ii index and neutron-monitor measurements. Measurements of the solar spectral irradiance available in the literature have been made with different instruments at different times and different spectral ranges. However, climate studies require harmonised data sets. This new approach has the advantage of being independent of the absolute calibration and aging of the instruments. First, the Mg ii index is derived using solar spectra from Ly α (121 nm) to 410 nm measured from 1978 to 2010 by several space missions. The variability of the spectra with respect to a chosen reference spectrum as a function of time and wavelength is scaled to the derived Mg ii index. The set of coefficients expressing the spectral variability can be applied to the chosen reference spectrum to reconstruct the solar spectra within a given time frame or Mg ii index values. The accuracy of this method is estimated using two approaches: direct comparison with particular cases where solar spectra are available from independent measurements, and calculating the standard deviation between the measured spectra and their reconstruction. From direct comparisons with measurements we obtain an accuracy of about 1 to 2%, which degrades towards Ly α. In a further step, we extend our solar spectral-irradiance reconstruction back to the Maunder Minimum introducing the relationship between the Mg ii index and the neutron-monitor data. Consistent measurements of the Mg ii index are not available prior to 1978. However, we remark that over the last three solar cycles, the Mg ii index shows strong correlation with the modulation potential determined from the neutron-monitor data. Assuming that this correlation can be applied to the past, we reconstruct the Mg ii index from the modulation potential back to the Maunder Minimum, and obtain the corresponding solar spectral-irradiance reconstruction back to that period. As there is no direct measurement of the spectral irradiance for this period we discuss this methodology in light of the other proposed approaches available in the literature. The use of the cosmogenic-isotope data provides a major advantage: it provides information about solar activity over several thousands years. Using technology of today, we can calibrate the solar irradiance against activity and thus reconstruct it for the times when cosmogenic-isotope data are available. This calibration can be re-assessed at any time, if necessary.  相似文献   

5.
6.
Owens  Mathew  Lang  Matthew  Barnard  Luke  Riley  Pete  Ben-Nun  Michal  Scott  Chris J.  Lockwood  Mike  Reiss  Martin A.  Arge  Charles N.  Gonzi  Siegfried 《Solar physics》2020,295(3):1-15

Solar radiation variability spans a wide range in time, ranging from seconds to decadal and longer. The nearly 40 years of measurements of solar irradiance from space established that the total solar irradiance varies by \(\approx 0.1\%\) in phase with the Sun’s magnetic cycle. Specific intervals of the solar spectrum, e.g., ultraviolet (UV), vary by orders of magnitude more. These variations can affect the Earth’s climate in a complex non-linear way. Specifically, some of the processes of interaction between solar UV radiation and the Earth’s atmosphere involve threshold processes and do not require a detailed reconstruction of the solar spectrum. For this reason a spectral UV index based on the (FUV-MUV) color has been recently introduced. This color is calculated using SORCE SOLSTICE integrated fluxes in the FUV and MUV bands. We present in this work the reconstructions of the solar (FUV-MUV) color and Ca ii K and Mg ii indices, from 1749–2015, using a semi-empirical approach based on the reconstruction of the area coverage of different solar magnetic features, i.e., sunspot, faculae and network. We remark that our results are in noteworthy agreement with latest solar UV proxy reconstructions that exploit more sophisticated techniques requiring historical full-disk observations. This makes us confident that our technique can represent an alternative approach which can complement classical solar reconstruction efforts. Moreover, this technique, based on broad-band observations, can be utilized to estimate the activity on Sun-like stars, that cannot be resolved spatially, hosting extra-solar planetary systems.

  相似文献   

7.
The solar extreme ultraviolet (EUV) irradiance, the dominant global energy source for Earth's atmosphere above 100 km, is not known accurately enough for many studies of the upper atmosphere. During the absence of direct solar EUV irradiance measurements from satellites, the solar EUV irradiance is often estimated at the 30–50% uncertainty level using both proxies of the solar irradiance and earlier solar EUV irradiance measurements, primarily from the Air Force Geophysics Laboratory (now Phillips Laboratory) rockets and Atmospheric Explorer (AE) instruments. Our sounding rocket measurements during solar cycle 22 include solar EUV irradiances below 120 nm with 0.2 nm spectral resolution, far ultraviolet (FUV) airglow spectra below 160 nm, and solar soft X-ray (XUV) images at 17.5 nm. Compared to the earlier observations, these rocket experiments provide a more accurate absolute measurement of the solar EUV irradiance, because these instruments are calibrated at the National Institute of Standards and Technology (NIST) with a radiometric uncertainty of about 8%. These more accurate sounding-rocket measurements suggest revisions of the previous reference AE–E spectra by as much as a factor of 2 at some wavelengths. Our sounding-rocket flights during the past several years (1988–1994) also provide information about solar EUV variability during solar cycle 22.  相似文献   

8.
Onboard the International Space Station (ISS), two instruments are observing the solar spectral irradiance (SSI) at wavelengths from 16 to 2900 nm. Although the ISS platform orientation generally precludes pointing at the Sun more than 10?–?14 days per month, in November/December 2012 a continuous period of measurements was obtained by implementing an ISS ‘bridging’ maneuver. This enabled observations to be made of the solar spectral irradiance (SSI) during a complete solar rotation. We present these measurements, which quantify the impact of active regions on SSI, and compare them with data simultaneously gathered from other platforms, and with models of spectral irradiance variability. Our analysis demonstrates that the instruments onboard the ISS have the capability to measure SSI variations consistent with other instruments in space. A comparison among all available SSI measurements during November–December 2012 in absolute units with reconstructions using solar proxies and observed solar activity features is presented and discussed in terms of accuracy.  相似文献   

9.
The growing interest in the Medieval Climate Anomaly (MCA) and its possible link to anomalous solar activity has prompted new reconstructions of solar activity based on cosmogenic radionuclides. However, these proxies do not sufficiently constrain the total solar irradiance (TSI) range and are often defined at low temporal resolution, inadequate to infer the solar-cycle length (SCL). We have reconstructed the SCL (average duration of 10.72±0.20 years) during the MCA using observations of naked-eye sunspot and aurora sightings. The solar activity was probably not exceptionally intense, supporting the view that internal variability of the coupled ocean–atmosphere system was the main driver of the MCA.  相似文献   

10.
Knowledge of solar spectral irradiance (SSI) is important in determining the impact of solar variability on climate. Observations of UV SSI have been made by the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the Upper Atmosphere Research Satellite (UARS), the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE), and the Solar Irradiance Monitor (SIM), both on the Solar Radiation and Climate Experiment (SORCE) satellite. Measurements by SUSIM and SORCE overlapped from 2003 to 2005. SUSIM and SORCE observations represent ~?20 years of absolute UV SSI. Unfortunately, significant differences exist between these two data sets. In particular, changes in SORCE UV SSI measurements, gathered at moderate and minimum solar activity, are a factor of two greater than the changes in SUSIM observations over the entire solar cycle. In addition, SORCE UV SSI have a substantially different relationship with the Mg ii index than did earlier UV SSI observations. Acceptance of these new SORCE results impose significant changes on our understanding of UV SSI variation. Alternatively, these differences in UV SSI observations indicate that some or all of these instruments have changes in instrument responsivity that are not fully accounted for by the current calibration. In this study, we compare UV SSI changes from SUSIM with those from SIM and SOLSTICE. The primary results are that (1) long-term observations by SUSIM and SORCE generally do not agree during the overlap period (2003?–?2005), (2) SUSIM observations during this overlap period are consistent with an SSI model based on Mg ii and early SUSIM SSI, and (3) when comparing the spectral irradiance for times of similar solar activity on either side of solar minimum, SUSIM observations show slight differences while the SORCE observations show variations that increase with time between spectra. Based on this work, we conclude that the instrument responsivity for SOLSTICE and SIM need to be reevaluated before these results can be used for climate-modeling studies.  相似文献   

11.
Pierrard  Viviane  Lazar  Marian  Štverák  Stepan 《Solar physics》2020,295(11):1-21

An understanding of solar variability over a broad spectral range and broad range of timescales is needed by scientists studying Earth’s climate. The Total and Spectral Solar Irradiance Sensor (TSIS) Spectral Irradiance Monitor (SIM), is designed to measure solar spectral irradiance (SSI) with unprecedented accuracy from 200 nm to 2400 nm. SIM started daily observations in March 2018. To maintain its accuracy over the course of its anticipated 5-year mission and beyond, TSIS SIM needs to be corrected for optical degradation, common for solar viewing instruments. The differing long-term trends of various independent solar-irradiance records attest to the challenge at hand.

The correction of TSIS SIM for optical degradation is based on piecewise linear fits that bring the three instrument channels into agreement. It is fundamentally different to the correction applied to the TSIS SIM predecessor on SORCE. The correction facilitates reproducibility, uncertainty estimation and is measurement-based. Corrected, integrated TSIS SIM SSI agrees with independent observations of total solar irradiance to within 45 ppm as well as various solar-irradiance models. TSIS SIM SSI is available at: http://lasp.colorado.edu/lisird/.

  相似文献   

12.
The NASA Earth Observing System (EOS) is an advanced study of Earth's long-term global changes of solid Earth, its atmosphere, and oceans and includes a coordinated collection of satellites, data systems, and modeling. The EOS program was conceived in the 1980s as part of NASA's Earth System Enterprise (ESE). The Solar Radiation and Climate Experiment (SORCE) is one of about 20 missions planned for the EOS program, and the SORCE measurement objectives include the total solar irradiance (TSI) and solar spectral irradiance (SSI) that are two of the 24 key measurement parameters defined for the EOS program. The SORCE satellite was launched in January 2003, and its observations are improving the understanding and generating new inquiry regarding how and why solar variability occurs and how it affects Earth's energy balance, atmosphere, and long-term climate changes.  相似文献   

13.
The solar spectral irradiance (SSI) dataset is a key record for studying and understanding the energetics and radiation balance in Earth’s environment. Understanding the long-term variations of the SSI over timescales of the 11-year solar activity cycle and longer is critical for many Sun–Earth research topics. Satellite measurements of the SSI have been made since the 1970s, most of them in the ultraviolet, but recently also in the visible and near-infrared. A limiting factor for the accuracy of previous solar variability results is the uncertainties for the instrument degradation corrections, which need fairly large corrections relative to the amount of solar cycle variability at some wavelengths. The primary objective of this investigation has been to separate out solar cycle variability and any residual uncorrected instrumental trends in the SSI measurements from the Solar Radiation and Climate Experiment (SORCE) mission and the Thermosphere, Mesosphere, Ionosphere, Energetic, and Dynamics (TIMED) mission. A new technique called the Multiple Same-Irradiance-Level (MuSIL) analysis has been developed, which examines an SSI time series at different levels of solar activity to provide long-term trends in an SSI record, and the most common result is a downward trend that most likely stems from uncorrected instrument degradation. This technique has been applied to each wavelength in the SSI records from SORCE (2003?–?present) and TIMED (2002?–?present) to provide new solar cycle variability results between 27 nm and 1600 nm with a resolution of about 1 nm at most wavelengths. This technique, which was validated with the highly accurate total solar irradiance (TSI) record, has an estimated relative uncertainty of about 5% of the measured solar cycle variability. The MuSIL results are further validated with the comparison of the new solar cycle variability results from different solar cycles.  相似文献   

14.
Solar soft X-ray (XUV) radiation is highly variable on all time scales and strongly affects Earth’s ionosphere and upper atmosphere; consequently, the solar XUV irradiance is important for atmospheric studies and for space weather applications. Although there have been several recent measurements of the solar XUV irradiance, detailed understanding of the solar XUV irradiance, especially its variability during flares, has been hampered by the broad bands measured in the XUV range. In particular, the simple conversion of the XUV photometer signal into irradiance, in which a static solar spectrum is assumed, overestimates the flare variations by more than a factor of two as compared to the atmospheric response to the flares. To address this deficiency in the simple conversion, an improved algorithm using CHIANTI spectral models has been developed to process the XUV Photometer System (XPS) measurements with its broadband photometers. Model spectra representative of quiet Sun, active region, and flares are combined to match the signals from the XPS and produce spectra from 0.1 to 40 nm in 0.1-nm intervals for the XPS Level 4 data product. The two XPS instruments are aboard NASA’s Solar Radiation and Climate Experiment (SORCE) and Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellites. In addition, the XPS responsivities have been updated for the latest XPS data processing version. The new XPS results are consistent with daily variations from the previous simple conversion technique used for XPS and are also consistent with spectral measurements made at wavelengths longer than 27 nm. Most importantly, the XPS flare variations are reduced by factors of 2 – 4 at wavelengths shorter than 14 nm and are more consistent, for the first time, with atmospheric response to solar flares. Along with the details of the new XPS algorithm, several comparisons to dayglow and photoelectron measurements and model results are also presented to help verify the accuracy of the new XUV irradiance spectra.  相似文献   

15.
Solar spectral irradiance at X-ray wavelengths show large variations over a period of solar cycle. We use X-ray irradiance data in three narrow spectral regimes deduced from Yohkoh SXT measurements to study coronal irradiance and their possible association with the activity in the lower atmosphere. Time variation of the X-ray irradiance is important in understanding the emergence of magnetic flux and the effects of such variation on the upper atmosphere of the Earth. We note that about 66% of the total (2 – 30 Å) X-ray irradiance arise from 10 to 20 Å spectral range, while 2 – 10 Å contribute only about 3% of the total. The time variation in 2 – 10 and 10 – 20 Å ranges follow each other closely. Further they follow closely the solar indices such as sunspot, F 10.7, and plage indices, although similarity in the variation of 10 – 20 Å is quite apparent. However, the variation in the other spectral band (20 – 30 Å) differ to a large extent except for the solar cycle dependent variation. We infer that in addition to the active regions, the remnants of active regions contribute considerably to the emission in this spectral range.  相似文献   

16.
Solar radiative output and its variability: evidence and mechanisms   总被引:2,自引:0,他引:2  
Electromagnetic radiation from the Sun is Earths primary energy source. Space-based radiometric measurements in the past two decades have begun to establish the nature, magnitude and origins of its variability. An 11-year cycle with peak-to-peak amplitude of order 0.1 % is now well established in recent total solar irradiance observations, as are larger variations of order 0.2 % associated with the Suns 27-day rotation period. The ultraviolet, visible and infrared spectral regions all participate in these variations, with larger changes at shorter wavelengths. Linkages of solar radiative output variations with solar magnetism are clearly identified. Active regions alter the local radiance, and their wavelength-dependent contrasts relative to the quiet Sun control the relative spectrum of irradiance variability. Solar radiative output also responds to sub-surface convection and to eruptive events on the Sun. On the shortest time scales, total irradiance exhibits five minute fluctuations of amplitude %, and can increase to as much as 0.015 % during the very largest solar flares. Unknown is whether multi-decadal changes in solar activity produce longer-term irradiance variations larger than observed thus far in the contemporary epoch. Empirical associations with solar activity proxies suggest reduced total solar irradiance during the anomalously low activity in the seventeenth century Maunder Minimum relative to the present. Uncertainties in understanding the physical relationships between direct magnetic modulation of solar radiative output and heliospheric modulation of cosmogenic proxies preclude definitive historical irradiance estimates, as yet.Received: 26 August 2004, Published online: 16 November 2004 Correspondence to: Claus Fröhlich  相似文献   

17.
We have extended the proxy relationship between irradiance and microwaves by using the daily solar fluxes from Toyokawa Observatory at 1000, 2000, 3750 and 9400 MHz in addition to the Ottawa 2800 MHz flux for the years 1980–1989. It turns out that the flux at 1000 MHz is better correlated with irradiance than the flux at higher frequencies-an unexpected result. We have also found that the spectrum of the flux shows shape changes that are related to the number and type of active regions. Because of this the five-frequency spectral measurements of microwave flux allow one to separate the sunspot and coronal features, providing an improved proxy of solar variability.  相似文献   

18.
The study of variations in total solar irradiance (TSI) and spectral irradiance is important for understanding how the Sun affects the Earth’s climate. A data-driven approach is used in this article to analyze and model the temporal variation of the TSI and Mg?ii index back to 1947. In both cases, observed data in the time interval of the satellite era, 1978?–?2013, were used for neural network (NN) model-design and testing. For this particular purpose, the evolution of the solar magnetic field is assumed to be the main driver for the day-to-day irradiance variability. First, we design a model for the Mg?ii index data from F10.7 cm solar radio-flux using the NN approach in the time span of 1978 through 2013. Results of Mg?ii index model were tested using various numbers of hidden nodes. The predicted values of the hidden layer with five nodes correspond well to the composite Mg?ii values. The model reproduces 94% of the variability in the composite Mg?ii index, including the secular decline between the 1996 and 2008 solar cycle minima. Finally, the extrapolation of the Mg?ii index was performed using the developed model from F10.7 cm back to 1947. Similarly, the NN model was designed for TSI variability study over the time span of the satellite era using data from the Physikalisch-Meteorologisches Observatorium Davos (PMOD) as a target, and solar activity indices as model inputs. This model was able to reproduce the daily irradiance variations with a correlation coefficient of 0.937 from sunspot and facular measurements in the time span of 1978?–?2013. Finally, the temporal variation of the TSI was analyzed using the designed NN model back to 1947 from the Photometric Sunspot Index (PSI) and the extrapolated Mg?ii index. The extrapolated TSI result indicates that the amplitudes of Solar Cycles 19 and 21 are closely comparable to each other, and Solar Cycle 20 appears to be of lower irradiance during its maximum.  相似文献   

19.
The Solar–Stellar Irradiance Comparison Experiment {II (SOLSTICE {II), aboard the Solar Radiation and Climate Experiment (SORCE) spacecraft, consists of a pair of identical scanning grating monochromators, which have the capability to observe both solar spectral irradiance and stellar spectral irradiance using a single optical system. The SOLSTICE science objectives are to measure solar spectral irradiance from 115 to 320 nm with a spectral resolution of 1 nm, a cadence of 6 h, and an accuracy of 5%, to determine its variability with a long-term relative accuracy of 0.5% per year during a 5-year nominal mission, and to determine the ratio of solar irradiance to that of an ensemble of bright B and A stars to an accuracy of 2%. Those objectives are met by calibrating instrument radiometric sensitivity before launch using the Synchrotron Ultraviolet Radiation Facility at the National Institute for Standards and Technology in Gaithersburg, Maryland. During orbital operations irradiance measurements from an ensemble of bright, stable, main-sequence B and A stars are used to track instrument sensitivity. SORCE was launched on 25 January 2003. After spacecraft and instrument check out, SOLSTICE {II first observed a series of three stars to establish an on-orbit performance baseline. Since 6 March 2003, both instruments have been making daily measurements of both the Sun and stars. This paper describes the pre-flight and in-flight calibration and characterization measurements that are required to achieve the SOLSTICE science objectives and compares early SOLSTICE{II measurements of both solar and stellar irradiance with those obtained by SOLSTICE {I on the Upper Atmosphere Research Satellite.  相似文献   

20.
Simultaneous solar total irradiance observations performed by absolute radiometers on board satellites during the quiet-Sun period between solar cycles 21 and 22 (1985–1987), are analyzed to determine the solar total irradiance at 1 AU for the solar minimum. During the quiet-Sun period the total solar irradiance, UV irradiance, and the various solar activity indices show very little fluctuation. However, the absolute value of the solar total irradiance derived from the observations differ within the accuracy of the radiometers used in the measurements. Therefore, the question often arises about a reference value of the solar total irradiance for use in climate models and for computation of geophysical, and atmospheric parameters. This research is conducted as a part of the Solar Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22). On the basis of the study we recommended a reference value of 1367.0 ± 0.04 W m-2 for the solar total irradiance at 1 AU for a truly quiet Sun. We also find that the total solar irradiance data for the quiet-Sun period reveals strong short-term irradiance variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号