首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Measurement and Estimative Models of Glacier Mass Balance in China   总被引:1,自引:0,他引:1  
Attributed to high altitude and inland location, the glaciers in China are characterized by very low temperature. The non-negligible contribution of up to 25% of superimposed ice to the net balance has been taken into account in the mass budget calculation. So too has the internal the accumulation in the infiltration zone of the accumulation area.
The prevailing monsoon climate delivers most of the annual precipitation over glaciated areas of China in the summer, making the major accumulation on those glaciers coincide with the ablation period. Therefore, the annual mass balance should be calculated neither by giving the place of annual accumulation to winter balance, nor annual ablation to summer balance. Rather, it is better done by net accumulation and net ablation during the year. In order to get the annual accumulation and the annual ablation on a glacier, the summer precipitation should be measured at the same time.
Frequent snowfall in the summer season results in intensive fluctuation of surface albedo. This means that, for lack of data on the extremes of ablation, reconstruction of mass balance is unsatisfactory when based on the relationships of accumulation and ablation to precipitation and temperature. The establishment of models, either on the relationship of multi-year mass balance to the equilibrium line and the mass balance gradient of a glacier in steady-state, or on the maximum entropy principle and the hydrometeorological data, helps to estimate the multi-year mass balance of the glacierized area in a mountain range or drainage basin.  相似文献   

2.
《Geomorphology》2006,73(1-2):166-184
Understanding aspect effects on present-day glaciers provides essential background to the palaeoclimatic interpretation of reconstructed former glaciers or glacial cirques. Several factors influencing glacier mass balance vary with slope aspect: these give more glaciers, lower glaciers and possibly larger glaciers on favoured aspects. Their effects can be measured by either vector analysis of the number of glaciers with each aspect or Fourier regression of glacier altitude or size against aspect. Both approaches are applied here to large data sets from the World Glacier Inventory, for all available regions.Favoured aspect is measured by direction of the resultant vector mean and by the direction of minimum glacier altitude, for 51 regions with a total of 66,084 glaciers. The two directions are broadly consistent in mid-latitudes and in the tropics, but large differences occur in the Arctic and Nepal. Poleward aspects dominate, especially in mid-latitudes: radiation receipt is the major factor, with strong wind effects limited to areas with only moderate relief. Strength of asymmetry is measured by vector strength (from glacier numbers) or by a combination of first Fourier coefficients (from glacier altitudes). Measuring two different facets of degree of asymmetry, they are essentially unrelated. The Fourier measure is the best estimate of local climatic asymmetry, as vector strength is more influenced by topography.  相似文献   

3.
Snow deposition and redistribution are major drivers of snow cover dynamics in mountainous terrain and contribute to the mass balance of alpine glaciers. The quantitative understanding of inhomogeneous snow distribution in mountains has recently benefited from advances in measuring technologies, such as airborne laser scanning (ALS). This contribution further advances the quantitative understanding of snow distribution by analysing the areas of maximum surface elevation changes in a mountain catchment with large and small glaciers. Using multi‐annual ALS observations, we found extreme surface elevation changes on rather thin borders along the glacier margins. While snow depth distribution patterns in less extreme terrain have presented high inter‐annual persistence, there is little persistence of those extreme glacier accumulations between winters. We therefore interpret the lack of persistence as the result of a predominance of gravity‐driven redistribution, which has an inherently higher random component because it does not occur with all conditions in all winters. In highly crevassed zones, the lidar‐derived surface elevation changes are caused by a complex interaction of ice flux divergence, the propagation of crevasses and snow accumulation. In general, the relative contribution of gravitational mass transport to glacier snow cover volume was found to decrease for glaciers larger than 5 km2 in the investigated region. We therefore suggest that extreme accumulations caused by gravitational snow transport play a significant role in the glacier mass balance of small to medium‐size glaciers and that they may be successfully parameterized by simple mass redistribution algorithms, which have been presented in the literature.  相似文献   

4.
A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th–18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.  相似文献   

5.
Although Himalayan glaciers are of particular interest in terms of future water supplies, regional climate changes, and sea-level rises, little is known about them due to lack of reliable and consistent data. There is a need for monitoring these glaciers to bridge this knowledge gap and to provide field measurements necessary to calibrate and validate the results from different remote sensing operations. Therefore, glaciological observations have been carried out by the Cryosphere Monitoring Project(CMP) since September 2011 on Rikha Samba Glacier in Hidden valley, Mustang district in western Nepal in order to study its annual mass balance. This paper presents the first results of that study. There are 10 glaciers in Hidden Valley, named G1, G2, G3, up to G10. Of these, G5 is the Rikha Samba Glacier, which has the largest area(5.37 km2) in this valley and the highest and lowest altitudes(6,476 and 5,392 m a.s.l., respectively). The glacier mass balance discussed in this paper was calculated using the glaciological method and the equilibrium line altitude(ELA). The glacier showed a negative annual point mass balance along the longitudinal profile of its lower part from September 10, 2011 to October 3, 2012. Stake measurements from October 4, 2012 to September 30, 2013 indicated a negative areal average of annual mass balance-0.088±0.019 m w.e. for the whole glacier. Based on these observations, the ELA of the Rikha Samba Glacier is estimated at 5,800 m a.s.l. in 2013. This negative balance may be due to rising air temperatures in the region, which have been incrementally rising since 1980 accompanied by little or no significant increase in precipitation in that period. The negative mass balance confirms the general shrinking trend of the glacier.  相似文献   

6.
喀喇昆仑山区冰川由于存在正物质平衡或跃动、前进现象,被称之为“喀喇昆仑异常”,不过该地区冰川变化差异显著,尤其是大型表碛覆盖冰川,呈现与其他类型冰川明显的差异性响应,为理解喀喇昆仑冰川异常的机理,冰川尺度的详细变化研究十分必要。音苏盖提冰川位于喀喇昆仑山乔戈里峰北坡,是中国面积最大的冰川,是典型的大型表碛覆盖冰川。通过应用TanDEM-X/TerraSAR-X(2014年2月)与SRTM-X DEM(2000年2月)的差分干涉测量方法计算音苏盖提冰川表面高程变化,并结合冰川表面流速对冰川表面高程变化和跃动进行分析和讨论。结果表明:2000—2014年音苏盖提冰川表面高程平均下降了1.68±0.94 m,即冰川整体厚度在减薄,年变化率为-0.12±0.07 m·a-1。冰川表面高程变化分布不均,其中南分支(S)冰流冰川整体减薄较为显著,冰川南分支冰流运动速度较快,前进/跃动的末端占据了冰川的主干,阻滞原主干冰川物质的向下运移(跃动),导致原主干冰舌表面高程上升;冰川厚度减薄随着海拔升高先下降后保持稳定,同时呈现一定的波动性;低海拔表碛区域消融大于裸冰区,可能存在较薄表碛,因热传导高、覆盖大量冰面湖塘和冰崖存在,加速了冰川消融;在坡度小于30 °的区域,冰川厚度减薄随着坡度的减小而加剧;坡向朝南冰川厚度略微增加(0.01 m),西南坡向冰川厚度略微减薄(-0.03 m),其他坡向冰川厚度减薄明显。近14 a来,表碛覆盖的音苏盖提冰川表面高程整体下降表明物质处于亏损状态,冰川跃动导致局部冰川表面高程的增加。  相似文献   

7.
Projections of changes in glacier mass balance caused by climate changes involve modelling present mass balance in terms of climate and then perturbing the climate variables to calculate future mass balance. The simplest model involves linear regression of mass balance time series on temperature and precipitation data at stations close to the glacier but we prefer the degree-day model. This model uses temperature and precipitation to calculate snow accumulation, snow and ice melting, and possible refreezing of meltwater at regular altitude intervals on a glacier. Model parameters are still somewhat uncertain and are established for individual glaciers by tuning the model mass balance as a function of altitude to fit observed data. The model has been applied to 37 glaciers in different parts of the world so far and some details are given for Storglaciären to illustrate the approach. The sensitivity of modelled mass balance to a +1°C temperature increase shows a wide range for the 37 glaciers from about 0.1 to 1.3 m water a−1 . Sub-polar glaciers have lower temperature sensitivities, and maritime and tropical glaciers have higher sensitivities.  相似文献   

8.
《极地研究》1991,2(1):10-21
From the surface mass accumulation data in year of 1987/88, the distribution and variation of annual mass balance on Mizuho Plateau are discussed. The authors also analyze the effects of shortterm climatic and topographical variations on the mass balance. It is found that there are some differences in spatial distribution and annual average state in the year of 1987/88 and other years. Ia the area at elevation lower than 550 m near the coast, the mass balance appears to be negative. The annual mass balance over 80 km distance from S_(16) to inland is 0.84m snow depth. A low mass balance zone from 80 km site to Mizuho Station, is considered to be only 0.14 m snow depth. It is found from the comparison of mass balances that the mass-balance level on the glaciers in West China is 9 times higher than that on Mizuho Plateau, where the massbalance level appears to be low accumulative and low expensive, but inverse in middle and low latitude regions, such as on glaciers in West China. The effects of short-term  相似文献   

9.
自1997年以来,乌鲁木齐河源1号冰川消融极为强烈,物质平衡呈大幅度亏损,连续12 a都处于强负平衡状态,平均物质平衡达-708 mm,且在2008年物质平衡达到历史最低值-999 mm,然而2009年出现了物质正平衡,物质平衡63 mm,年际变化量达1 062 mm。以2008-2009年物质平衡实测资料为基础,根据该地区的气温和降水资料分析,结果表明,造成这种现象的主要原因是夏季气温(5~8月)的降低,较2008年低1.8℃,致使冰川消融期的开始时间推迟至了7月份,结束时间提前到8月份,大大削弱了冰川的消融强度,其次是2005年以来逐渐增多的连续性降水,增加了冰川的积累量。  相似文献   

10.
We present a radiocarbon data set of 71 samples of wood and peat material that melted out or sheared out from underneath eight presentday mid‐latitude glaciers in the Central Swiss Alps. Results indicated that in the past several glaciers have been repeatedly less extensive than they were in the 1990s. The periods when glaciers had a smaller volume and shorter length persisted between 320 and 2500 years. This data set provides greater insight into glacier variability than previously possible, especially for the early and middle Holocene. The radiocarbon‐dated periods defined with less extensive glaciers coincide with periods of reduced radio‐production, pointing to a connection between solar activity and glacier melting processes. Measured long‐term series of glacier length variations show significant correlation with the total solar irradiance. Incoming solar irradiance and changing albedo can account for a direct forcing of the glacier mass balances. Long‐term investigations of atmospheric processes that are in interaction with changing solar activity are needed in order to understand the feedback mechanisms with glacier mass balances.  相似文献   

11.
Mean net annual balance and the related spatio-temporal variations have been determined on the basis of well-dated artificial layers in shallow ice cores (Chernobyl, 1986, and atmospheric thermonuclear tests, mainly in 1961-62 in Novaya Zemlya). Seventy ice cores from 13 Svalbard glaciers have been analysed. On each glacier, in its accumulation area and at the highest elevation, one ice core was recovered down to about 40 m and sampled for radioactivity measurements to determine the 1986 and 1962-63 layer (1954 was the initial date of the nuclear tests). For each glacier, at least five complementary ice cores from the accumulation area were analysed to determine the Chernobyl reference layer. Six ice cores exhibit both the Chernobyl and nuclear tests layers and are of special interest in this study.
This work provides new data on the deposition rates of natural and artificial radioisotopes. Using ice cores samples from the Arctic glaciers, even with superimposed ice accumulation, it is possible to distinguish between the Chernobyl and the nuclear tests fallouts. This work also shows that the mean annual net balance did not significantly change for at least five ice core locations in the Svalbard glaciers for the two periods extending from 1963 to 1986 to the recent date of drilling.  相似文献   

12.
Mass Balance Methods on Kongsvegen, Svalbard   总被引:3,自引:0,他引:3  
On the glacier Kongsvegen (102 km2) in northwest Spitsbergen, Svalbard, traditional mass balance measurements by stake readings and snow surveying have been conducted annually since 1987. In addition, repeated global positioning system (GPS) profiling, shallow core analysis and ground-penetrating radar (GPR) surveying have been applied. The purpose of this paper is to evaluate the input from the different methods, especially the GPS profiling, using the results from the traditional direct method as a reference. The annual flow rate on Kongsvegen is low (2 ? 3 m a?1), and the emergence velocity is almost negligible. Thus the geometry changes of the glacier, i.e. the change in altitude per distance from the head of the glacier, should reflect the change in net balance of the glacier. The mean annual altitude change from the longitudinal, centreline GPS profiles was compared to the direct stake readings and showed a very good agreement. On Kongsvegen the measured actual ice flux is so low that the mass transfer down-glacier at the mean equlibrium line altitude is less than 10% of what is needed to maintain steady-state geometry. This is clearly shown in the changing altitude profiles. GPS profiling can be used on large glaciers in remote areas to monitor geometry changes, ice flow and net mass balance changes. However, it requires that the centreline profile changes are representative for the area/altitude intervals, i.e. that the accumulation and ablation pattern is evenly distributed. For this purpose the GPR surveying quickly gave the snow distribution variability over long distances. Shallow cores drilled in different altitudes in the accumulation area were analysed to detect radioactive reference layers from the fallout after the Chernobyl accident in 1986, and showed very good agreement to the direct measured net balance. Thus older reference horizons from bomb tests in 1962 could be used to extend the net balance series backwards.  相似文献   

13.
Sentinel‐2 images were used for mapping debris‐free glaciers for the first time in Cordillera Blanca. Landsat‐8 and Sentinel‐2 data were compared for glacier area estimation in 2016, obtaining comparable results. It was observed that normalized difference snow index method for glacier mapping using MSI data is less sensitive to cast shadows and steep terrain compared with Landsat data. Estimated total glacier areas in 1975, 1994, and 2016 were 726 ± 20.3 km2, 576.9 ± 15.1 km2 and 482.8 ± 7.4 km2, respectively. Glacier area in 2016 using Landsat was slightly lower (475.7 ± 16.8 km2) compared to the area estimated using MSI data. Observed glacier shrinkage between 1975 and 2016 was 33.5 per cent, which is lower compared to observed glacier area loss in the eastern cordilleras of Peru. Glacier shrinkage was higher at northern and northeastern slopes (47.9 per cent and 48.1 per cent, respectively) compared to the south‐western slopes (11.1 per cent).  相似文献   

14.
Measurements and Models of the Mass Balance of Hintereisferner   总被引:1,自引:0,他引:1  
This paper summarizes the methods applied to determine the mass balance of Hintereisferner and several other glaciers in the Tyrolean Alps since 1952. On an annual basis the direct glaciological method was applied with fixed date measurements on 10–15 accumulation pits and 30–90 ablation stakes on 9 km2.
Indirect mass balance determination from equilibrium line altitude, accumulation area ratios or representative stakes, yield fair results and some exceptions could be related to anomalous meteorological conditions.
Monthly or more frequent stake readings supplied time series of ablation at various altitudes and slope aspects that served as basis for the calibration of energy and mass balance models. Of various models developed, two are presented in this paper. Both are based on degree days, one using daily values from a valley station to predict the mean annual balance of the entire glacier, while the other calculates day-to-day changes at 50-m grid points on the glacier.
The geodetic method has been applied for longer periods and yields results consistent with those of the glaciological method. The balance velocity calculated from recent ice thickness soundings and accumulation measurements is significantly less than observed velocity.  相似文献   

15.
北极斯瓦尔巴群岛冰川大多数属于亚极地型(sub-polar)或多热型(polythermal)。Austre Br(?)ggerbreen和Midre Lovénbreen冰川(<10km~2)长时间系列物质平衡研究显示,自小冰期结束以来几乎所有的观测年中夏季消融比冬季积累更大,导致冰体稳定地减小;而面积更大、海拔高度更高的冰川如Kongsvegen冰川(105km~2)则更加接近稳定态的平衡。斯瓦尔巴群岛冰川流动速率一般较低,但跃动相当频繁,控制跃动型冰川空间分布的因素包括冰川长度、基底岩性和多热场。可通过冰川水文特征、钻孔温度测量和无线电回波探测获取斯瓦尔巴群岛冰川热场的信息。斯瓦尔巴群岛冰川的低流速和多热性结构对冰川上的排水系统相当重要,整个群岛淡水径流的四个主要来源分别是冰川消融、雪融化、夏季降雨和冰崩解,经验回归方法和模式方法用于计算淡水径流量。因夏季融水渗浸作用、采样分辨率低和化学成分分析有限,早期斯瓦尔巴群岛冰芯的准确定年受到严重影响,但最近的研究显示,来自斯瓦尔巴群岛冰帽的冰芯数据仍然能够提供重要的气候和环境信息。通过我国北极黄河站2005年度科学考察,我们已初步建立了Austre Lovénbreen冰川和Pedersenbreen冰川监测系统,并计划在Austre Lovénbreen冰川进行钻孔温度测量、冰川气象要素观测、冰川前缘水文观测以及冰川厚度和内部结构测量,重点开展斯瓦尔巴群岛冰川基本特征和发育条件、冰川表面能量和物质平衡、冰川波动与气候变化关系、淡水径流年际和季节性变化和气/雪/冰界面过程等方面的研究。  相似文献   

16.
过去44年乌鲁木齐河源一号冰川物质平衡结果及其过程研究   总被引:12,自引:2,他引:10  
通过1997—2003年度天山乌鲁木齐河源一号冰川物质平衡的观测结果,分析比较了过去44年间一号冰川物质平衡、累积物质平衡的变化过程,以及反映气候一地形要素和冰川发育条件要素的平衡线高度和冰川积累区比率,认为一号冰川负平衡波动期随时间推移而递增,目前处于其观测历史上物质平衡亏损最为强烈的时期。  相似文献   

17.
为认识全球变暖背景下中国西部大陆性冰川与海洋性冰川物质平衡变化及其对气候响应,本研究以天山乌鲁木齐河源1号冰川和藏东南帕隆94号冰川为例,结合大西沟与察隅站气象资料,对1980 — 2015年两条冰川的物质平衡变化特征及差异进行了分析。结果表明:36 a来乌源1号冰川与帕隆94号冰川物质平衡总体上均呈下降趋势,累积物质平衡达-17102与-8159 mm w.e.,相当于冰川厚度减薄19与9.01 m,且分别于1996、2004年左右发生突变。同期两条冰川所处区域年均温呈显著上升趋势,而降水量却表现出不同的变化态势;二者年内气温分配相仿,但降水分配差异较大。初步分析认为气温上升是导致乌源1号冰川与帕隆94号冰川物质亏损的主要原因,冰川区气温和降水变化幅度的差异和地性因子(坡度、冰川面积)的不同使得乌源1号冰川对气候变化响应的敏感性高于帕隆94号冰川,由于目前海洋性冰川物质平衡监测时段相对较短,为深入研究中国西部冰川物质平衡变化及过程仍需加强对冰川的持续观测。  相似文献   

18.
卡鲁雄曲是喜马拉雅that坡唯一具有长期常规水文气象观测资料的冰川流域.根据中国冰川水文和气候的分布特征,可推导出一组以水文、气象观测数据计算流域冰川平均物质平衡的公式.据此恢复了1983-2006年卡鲁雄曲流域冰川平均物质平衡各分量的逐年值序列,并用SPSS软件对计算结果进行r统计分析.结果表明:1983-2006年的24 a里,卡鲁雄曲流域的冰川消融逐步加剧:多年平均值为-136.3 mm/a,前12 a(1983-1994年)多年平均值为-83.61 mm/a,后12 a(1995-2006年)多年平均值为-188.98 mm/a,且1986、1998和2005年出现较大的波动,冰川物质平衡值分别为:149.19mm、-654.36 mm和-316.43 mm.通过对影响冰川物质平衡动态变化的影响因素进行分析,发现冰川物质平衡变化主要由强烈消融期(5-9月)的平均温度决定,二者的相关系数达到-0.786,并具有很好的线性关系:MB=-331.8T_(5-9)+2683.5.  相似文献   

19.
The most labour-intensive and time-consuming part of many mass balance programmes is the acquisition of snow depth data. The standard technique, which involves probing the snow cover at intervals along a series of profiles, generally by an individual on skis, may involve more than 300 discrete measurements along a total of more than 20 km of profiling at a single glacier. Kinematic surveying with a global positioning system (GPS) in differential mode provides much more information about changes of glacier surface level and snow thickness between surveys. The positions of a large number of points can be fixed in a relatively short time by GPS surveying, and the technique is usable in adverse weather conditions. With real-time kinematic GPS surveying, it is possible to return to the same positions (longitude, latitude) during successive field programmes, and a previously followed route can be retraced precisely. GPS surveying facilitates the production of accurate glacier maps for mass balance programmes. Data obtained by snow depth probing and GPS surveying in 1995 at Austre Okstindbreen, the largest glacier of the Okstindan area, Norway (66°N), indicate that repeated GPS surveys are likely to provide a large amount of information on withinyear and between-year changes of surface topography and are not subject to the errors in mass balance calculations which arise from probing snow depths along selected profiles. Kinematic GPS surveying of several glaciers within an area would overcome the difficulties arising when mass balance studies are confined to a single glacier within a particular area.  相似文献   

20.
人类活动与天山现代冰川退缩   总被引:6,自引:1,他引:5  
在系统分析了中亚天山山两个长期进行物质平衡监测的乌鲁木齐河源1号冰川和图尤克苏冰川的资料,并引用其他研究成果后,发现中亚天山现代冰川1970年-1990年比1930年-1970年明显的退化。近20年多来,中亚天山冰川加速退缩,解体,与被工业排放污染了大气有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号