首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A comparative analysis of the Late Cretaceous-Paleocene volcanism was conducted for four areas of Kamchatka: the Pravyi Tolbachik-Levaya Shchapina-Adrianovka interlfuve (the northern part of the Tumrok Range), the area south of the Ipuin River and Mt. Khrebtovaya (the northern Valaginsky Range), the area of Mt. Savul’ch (the upper reaches of the Kitil’gina River, northern Valaginsky Range), and the Kirganik-Levaya Kolpakova interfluve (the Sredinny Range). New petrochemical, geochemical, and isotopic data on the volcanic rocks from these areas are reported. The examination of this material, together with already published data on volcanic and plutonic rocks of similar composition and age, made it possible to establish the following: (1) the considered basaltoids are ascribed to the subalkali basalt-trachyandesite series with transition toward a meymechite-picrite rock association; (2) the alkali content in the rocks of the Valaginsky-Tumrok-Sredinny ranges increases simultaneously with the increase of the Rb content, while the contents of HFSE and radioactive elements decrease and then again increase. Two trends are identified in the Ybn-Cen diagram: a positive trend spanning most of the volcanic and plutonic rocks and a negative trend defined by the data points of the meymechite-picrite association. The first trend reflects the rock evolution during crystallization differentiation, while the second trend was produced by different degrees of melting of initial protolith. The possible geodynamic reconstructions of this volcanism are discussed as well.  相似文献   

3.
王尹  李祥辉  周勇  刘玲 《沉积学报》2015,33(1):116-123
利用陆源沉积中的碎屑组份(泥岩中的碎屑黏土矿物种类和砂岩中砂、粉砂碎屑类型)相对含量变化,对广东北部和江西南部的南雄盆地晚白垩世-古新世古气候进行了分析.结果显示,砂岩碎屑组份含量气候指数(长石/石英比,F/Q)介于0.02~0.14之间;(碎屑)黏土矿物组合主要以伊利石为主,平均79%;伊利石结晶度指数与化学指数分别为0.25~0.39、0.31~0.7.进一步分析表明,研究区这一时期以干旱气候为主,存在暖湿气候间断,古气候演化可分为三个阶段:晚白垩世马斯特里赫特期以干旱-半干旱性气候为主,古新世丹尼期早期转变为相对湿热或与干旱-半干旱气候交替,古新世丹尼期晚期恢复到半干旱性气候,但比第一阶段湿度可能稍有增加.这一总体干旱-半干旱气候格局及其变化总体与同期全球气候变化一致.  相似文献   

4.
《地学前缘(英文版)》2020,11(4):1289-1303
This paper presents the results of geochronological(~(40)Ar-~(39)Ar,U-Pb SHRIMP Ⅱ),petrological and geochemical studies of the Late Paleozoic complexes of alkaline rocks(Zimovechinsky,Tuchinsky and Koma) located within the Vitim Plateau(the western part of the Mongol-Okhotsk Orogenic Belt).The rocks were formed at 310-280 Ma.It is coeval with Late Paleozoic magmatism within the Central Asian Orogenic Belt.The ε_(Nd)(T) values show large variations from-2.1 to +3.3 as well as the initial Sr(I) isotopic ratios from 0.7042 to 0.7138,that demonstrate strong isotopic heterogeneity of the magmatic source.The geochemical characteristics of the rocks show pronounced positive Pb and negative Ti,Zr-Hf anomalies that can be explained by involvement of the subducted component in primary melts.The rocks intruded in a setting of extension at the active continental margin of the Siberian Craton during subduction of Mongol-Okhotsk oceanic crust under the Siberian Craton.  相似文献   

5.
This paper summarizes the results of long-term geological, petrological, and geochemical investigations of the Mesozoic-Cenozoic complexes of the Stanovoy Range in order to determine the main reasons for their generation and evolution. The analysis of this material showed that the compositionally variable Late Mesozoic igneous complexes of the Stanovoy Range were formed in various depth facies, from abyssal to surficial. The majority of their salic complexes show minor compositional variations, whereas the mafic complexes are more variable, especially in the southeast of the region. The southeastern Stanovoy Range comprises comparable amounts of both subalkaline and low-alkali igneous rocks, whereas the central part is dominated by subalkaline rocks, and the northwestern part contains rocks only of the shoshonite-latite series. This zoning is fundamentally different from that of typical island arcs, which are characterized by the occurrence of volcanic rocks of similar alkalinity in each zone. Extrusive and intrusive rocks with similar alkali and silica contents (and schlieren-like inclusions in the granitoids of the region) were formed from common magmas of corresponding chemical compositions. In addition, the mafic and most of the salic magmas were formed as independent melting products, whereas the magmas of intermediate composition were formed mainly by mixing of chemically contrasting liquids (i.e., salic and basic). It was shown that the available information on the magmatism of the region is best interpreted in terms of the model of mantle diapirism. In particular, mantle diapirs ascended rather slowly during the Mesozoic and occurred over the whole territory of the Stanovoy Range during the Jurassic-Cretaceous stage (J3-K1), when alkaline and subalkaline basalts were formed. During the Early-Late Cretaceous stage, mantle diapirs produced alkali-poor basalts in the central and eastern parts. During the Cenozoic, the diapir ascended rather rapidly but only in a small area in the eastern part of the region forming alkali basalts. In contrast to the Cenozoic, the Earth’s crust was strongly affected by mantle diapirs and related mafic magmas in the Mesozoic. As a result, crustal sequences were reworked by fluids and subsequently yielded tremendous volumes of compositionally corresponding salic magmas, which interacted and mixed with mafic magmas producing the corresponding chemical zoning. The maximum generation of crustal magmas was confined to the axial zones of ascending diapirs, where the highest energy effects took place, whereas the role of autochthonous gneissic granites increased away from the axis at the expense of typical intrusive complexes.  相似文献   

6.
7.
8.
金川铜镍硫化物岩浆矿床前锋岩浆与岩浆通道   总被引:3,自引:0,他引:3       下载免费PDF全文
金川铜镍矿床是世界第三大镍、铜硫化物岩浆矿床,长期以来备受国内外矿床地质学家的关注.金川铜镍矿床Ⅳ矿区是金川矿床的有机组成部分,由于品位低(Ni 0.71%、Cu 0.48%)并且隐伏于地下140 m以下,生产与研究工作相对滞后.由于F23断裂构造的影响,金川矿床勘查以来,研究者均将其作为Ⅱ矿区2#岩体的东延部分.最近的详查钻探工程获得了较系统的样品测试,结果显示Ⅳ矿区含矿岩体是一个具有单独演化过程的独立含矿岩体,其Ni/Cu比值远高于其他矿区各个岩体,PGE强烈亏损,并且“R”因子数值低(30),微量、稀土元素配分也显示出独立的、复杂的演化过程,岩石结构与岩相变化显著,具有典型的岩浆通道前锋岩浆的特点.文章通过对比金川矿床几个主要含矿岩体的成矿元素与PGE特征,初步确定了金川铜镍硫化物成矿岩浆通道的空间位置,指出了金川深部资源勘查的关键问题与勘查方向.  相似文献   

9.
The Hercynian mobile belts in Central Asia comprise the Hercynian proper and the Late Hercynian (Indosinian) belts separated by the South Gobi microcontinent, the origin of which is related to the evolution of the South Mongolian and Inner Mongolian basins with the oceanic crust. Crystalline complexes within these belts occur as tectonic sheets of a variety of sizes. At the early stages, the metamorphic grade of these complexes reached conditions of high-temperature subfacies of amphibolite and locally developed granulite facies. In tectonic terms, the Hercynian belt of metamorphic rocks is situated at the margin of the North Asian Caledonian continent and extends from the southeast to the northwest along the southern slope of the Gobi, Mongolian, and Chinese Altai to East Kazakhstan, where metamorphic rocks are localized in the Irtysh Shear Zone. All these rocks are combined into the South Altai metamorphic belt of more than 1500 km in extent. Another belt of isolated outcrops of crystalline rocks conventionally combined into the Indosinian South Gobi metamorphic belt is traced along the junction of the Hercynides with the South Gobi microcontinent. The high-grade metamorphic rocks within both belts are not fragments of an ensialic Caledonian or older basement. These rocks were formed 390–360 and 230–220 Ma ago as a result of the closure of the Tethian South Mongolian and Inner Mongolian oceanic basins (Paleotethys I and Paleotethys II). The spatial position of the South Altai and South Gobi metamorphic belts is caused by the asymmetric structure of the Tethian basins, where active continental margins are expressed most distinctly along their northern parts, while passive margins extend along the southern parts (in present-day coordinates).  相似文献   

10.
Geochemical, isotopic-geochemical, and geochronological information was obtained on magmatic rocks from the Saltychan anticlinorium in the Azov domain of the Ukrainian Shield. The rocks affiliate with the calc-alkaline series and a high-Mg series. The rocks of these series notably differ in concentrations of trace elements and REE and range from gabbro to granodiorite-quartz diorite in composition. The NORDSIM ionprobe U-Pb zircons ages of rocks belonging to the Obitochnen Complex and having both elevated and normal mg# correspond to 2908–2940 Ma. The Osipenkovskaya intrusion has an age of 2855 ± 19 Ma. The most alkaline North Obitochnen intrusion was emplaced in the Proterozoic, at 2074 ± 11 Ma. The age of the amphibolite metamorphism of the host gneisses is reliably dated at 3120–3000 Ma. The model Sm-Nd ages of the intrusive rocks do not exceed 3150 Ma. According to geochemical evidence, the parental melts of the magmatic rocks were derived from mantle domains variably enriched in lithophile elements. The results obtained by studying the Sm-Nd isotopic system corroborate the conclusion drawn from geochemical evidence that most of the melts were derived from the mildly enriched mantle, practically without involvement of ancient crustal material. The mantle became enriched in LREE at approximately 3000 Ma, which corresponds to the age of metamorphism of the supracrustal rocks. This process was separated from the derivation of the melts by a time span of 70–80 Ma. The relative age of the intrusive rocks and their variable composition can be most adequately explained by a contribution of heat and material from a plume to the derivation of the parental melts of these rocks.  相似文献   

11.
Geochemical and geochronological studies of the main types of granitoids of the Angara-Vitim batholith (AVB) and granites of the Zaza complex in western Transbaikalia were carried out. U-Pb (SHRIMP-II) and Rb-Sr dating yielded the age of autochthonous gneiss-granites of the Zelenaya Griva massif (325.3±2.8 Ma), quartz syenites of the Khangintui pluton (302.3±3.7 Ma) and intruding leucogranites of the Zaza complex (294.4±1 Ma), monzonites of the Khasurta massif (283.7±5.3 Ma), and quartz monzonites of the Romanovka massif (278.5±2.4 Ma). The U-Pb and Rb-Sr dates show that the Late Paleozoic magmatism in western Transbaikalia proceeded in two stages: (1) 340–320 Ma, when predominantly mesocratic granites of the Barguzin complex, including autochthonous ones, formed, and (2) 310–270 Ma, when most AVB granitoids formed. We suggest that at the early stage, crustal peraluminous granites formed in collision geodynamic setting. At the late (main) stage, magmatism occurred in postorogenic-extension setting and was accompanied by the formation of several geochemical types of granitoids: (1) typical intrusive mesocratic granites of the Barguzin complex, similar to those produced at the first stage; (2) melanocratic granitoids (monzonitoids, quartz syenites), which were earlier dated to the early stage of the AVB evolution; (3) leucocratic medium-alkali (peraluminous) granites of the Zaza intrusive complex; and (4) some alkali-granite and syenite intrusions accompanied by alkaline mafic rocks. The diversity of granitoids that formed at the late stage of magmatism was due to the heterogeneous composition of crust protoliths and different degrees of mantle-magma participation in their formation.  相似文献   

12.
13.
The dike and volcanic complexes in the upper parts of the ophiolitic sections in the Paleozoides of the South Urals and Mugodzhary are Ordovician and Devonian in age. Two types of Ordovician complexes are distinguished by petrology and geochemistry. One of these types is characterized by a suprasubduction forearc formation setting and the second type developed in spreading basins in close proximity to island arcs. The Ordovician dikes formed in the setting of suprasubduction forearc spreading occur as blocks in the melange of the Sakmara Zone. Zircons from the plagiogranite associated with the dikes are dated at 456 ± 4 Ma. The Polyakovka dike complex in the north of the Cis-Sakmara-Voznesenka Zone is associated with basalts and cherts containing Ordovician conodonts. The dikes were probably formed during subduction of the spreading center; contributions of mantle-plume and subduction-related components are noted. Dike and volcanic complexes of Early-Middle Devonian age determined using isotopic and biostratigraphic methods are widespread. Two groups of complexes are distinguished by structural and geochemical features. The first group was formed in the setting of dispersed spreading in the second half of the Early Devonian. Boninites occur among the rocks of this group. The second group was formed in the setting of fast focused backarc spreading that developed up to the late Eifelian. Dike-in-dike suites close to the first group in composition cut through the Early Eifelian island-arc complexes in the frontal part of the arc. Zircons from the granitoid veins accompanying these dolerite dikes are dated at 391.9 ± 3 Ma (late Eifelian).  相似文献   

14.
A comparative analysis of the geological setting and composition was carried out for the Cretaceous, Eocene, and Miocene-Pliocene granitoids of Kamchatka. New petrochemical, geochemical, and isotope data are reported. The alkaline granitoids and granites of the Sredinny Range in Kamchatka have an enriched isotope composition and elevated contents of Rb, Th, U, and LREE as compared to their analogs in the eastern part of the region. The largest scale Cretaceous crustal magmatism was formed in a setting of intense tectonic motions and metamorphism. The smaller scale Eocene magmatism produced crustal granitoid melts in the Sredinny Range of Kamchatka and mantle initially basaltic melts that evolved to granites in the southeastern Kamchatka and Ganalsky Range. These processes were accompanied by the rejuvenated of the older crust and the local formation of a new crust. The low-volume crustal-mantle Miocene-Pliocene magmatism of variable composition was developed in volcanic belts, forming the upper crustal horizons on the existing crystalline basement.  相似文献   

15.
The conditions of magma formation were reconstructed on the basis of characteristic features of the evolution of the Kurile-Kamchatka island-arc system, structural and chemical zoning patterns of volcanic complexes, and available published data on peridotite and basalt melting and stability of hydrous minerals. It was shown that the volcanic arc of the Sredinnyi Range of Kamchatka occurs now at the final stage of subduction, whereas subduction beneath the volcanic arc of eastern Kamchatka began at the end of the Miocene, after its jump into the present-day position. The volcanism of Southern Kamchatka and the Kuriles has occurred under steady-state subduction conditions since the Miocene and is represented by typical island-arc magmas. The latter are generated in a mantle wedge, where the melting of water-saturated peridotite occurs in a high-temperature zone under the influence of fluid. The formation of the frontal and rear volcanic zones was related to the existence of two levels of water release from various hydrous minerals. During the initial and final stages of subduction, as well as in the zone of Kamchatka—Aleutian junction, partial melting is possible in the upper part of the subducted slab in contact with a hotter mantle material compared with the mantle in a steady-state regime. This is responsible for the coexistence of predominant typical island-arc rocks, rocks with intraplate geochemical signatures, and highly magnesian rocks, including adakites.  相似文献   

16.
17.
We present results of isotope-geochemical studies of Late Paleoproterozoic basites from intrusions located in different parts of a dike swarm traceable for more than 200 km within the Baikal marginal salient of the Siberian craton basement (northern Baikal area). The basites of the southern (Khibelen site) and northern (Chaya site) parts of the dike swarm show both similarity and difference in their sources and formation conditions. For example, the Khibelen basites correspond in chemical composition to basalts and trachybasalts, and the Chaya basites, to basalts and andesite-basalts. Based on petrographic and petrochemical data, the basites of both sites can be referred to as medium-alkali (subalkalic) series. All analyzed basites show distinct negative Nb–Ta and Ti anomalies on element spidergrams, negative εNd(t) values, and indicative geochemical ratios Th/Nbpm, La/Nbpm, and La/Smn > 1. All this points to the formation of basites of both sites from mantle sources contaminated with continental crust. Contamination might have occurred in intermediate magma chambers localized in crust. Differentiated basic varieties of both sites resulted from fractionation of clinopyroxene. For the Khibelen basites, the mantle source (probably, with geochemical parameters close to those of IAB) might have been initially contaminated with middle-crust rocks and then, with lower/upper-crust material.The source of the Chaya basites was probably produced during the interaction of mantle components similar in composition to IAB and N-MORB with a crustal component. The performed studies testify to the heterogeneous composition of the upper mantle beneath different sites of the Siberian craton basement.  相似文献   

18.
新疆北部石炭-二叠纪存在大规模岩浆成矿作用,但对成矿地球动力学机制缺乏系统认识。在前人工作和我们近年来工作的基础上,文中扼要总结了我们新的初步认识,旨在为深化研究奠定思想基础。文中指出新疆北部泥盆-石炭纪岩浆活动和成矿作用是板块构造的直接产物。石炭纪的板块消减及有关的岩浆作用可能一直持续到三叠纪。地幔柱岩浆作用的起始时间不详,可能在晚石炭世,但集中表现在二叠纪。两种岩浆构造体系在时间上的叠加和空间上的并存造就了成矿作用的集中爆发以及成矿类型上的时空变化。与之有关的成矿作用和相应的成矿类型主要有:赋存于晚泥盆世-早石炭世海相火山岩中的磁铁矿床(有火山岩浆喷溢成因的可能,但更具有夕卡岩型铁矿的特征)、泥盆纪末到早三叠世与中酸性侵入岩有关的斑岩型(夕卡岩型)铜(钼)矿床以及早二叠世与镁铁超镁铁质侵入岩有关的岩浆铜镍硫化物矿床。后者与南疆塔里木盆地已知溢流玄武岩在时代上((280±5)Ma)的一致性意味着包括该溢流玄武岩的基性大火成岩省可能分布很广泛,波及北疆的相当地域。如这一推论能够证实,那么与之有成因联系的钒钛磁铁矿和铜镍硫化物矿化点/矿床的分布就不应只局限于已知造山带,应该分布更广。这里造山带的“成矿专属性”很有可能只是构造暴露而已。这一思路有助于我们研究新疆北部晚古生代岩浆成矿作用以及与岩浆作用有关的成矿作用,并对寻找同类矿床有战略指导意义。  相似文献   

19.
Geophysical and geochemical data have been analyzed jointly in order to gain better understanding of subduction-related active volcanism in Kamchatka. The velocity structure of lithosphere beneath volcanic arcs has been imaged on three scales. Regional tomography to distances of thousands of kilometers has allowed constraints on slab geometry, which changes markedly in dip angle and thickness beneath the Kuriles-Kamchatka arc, possibly, because of a change in the interplay of the subduction driving forces. Intermediate-scale regional tomography (hundreds of kilometers) has been applied to the cases of Toba caldera in Sumatra, Mount Merapi in Java, and volcanoes in the Central Andes and provided evidence of magma conduits marked by low-velocity zones that link the suprasubduction volcanic arcs with clusters of earthquake hypocenters on the slab top. Local tomography resolves the shallow structure immediately under volcanoes and the geometry of respective melting zones. An example time-lapse (4D) seismic model of the crust beneath the Klyuchevskoy group of volcanoes has imaged a decade-long history of anomalous velocity zones and their relation with the activity cycles of Bezymyanny and Klyuchevskoy volcanoes. As modeling shows, andesitic Bezymyanny and basaltic Klyuchevskoy volcanoes have different feeding patterns during their eruption cycles: the former feeds directly from the mantle while the material coming to the latter passes through a complicated system of intermediate chambers.The local tomography model has been applied as reference to interpret the available major- and trace-element data from the Klyuchevskoy and Bezymyanny volcanoes. The lava compositions of the two volcanoes have becoming ever more proximal since 1945 in many major and trace elements while some parameters remain different. Paroxysmal eruptions of Bezymyanny for several recent decades correlate with the time when Klyuchevskoy erupted lavas with high percentages of high-Mg basalts. The difference in the evolution trends of the Kamchatka volcanic rocks may be due either to fractional crystallization or to the presence of concentrator minerals in the source, titanomagnetite, orthopyroxene, rutile, garnet, and plagioclase being especially active as to uptake of some elements. The natural compositions of rocks have been compared in this context with published experimental data.According to the seismic velocity structure and lava compositions analyzed jointly, there are five levels of crystallization beneath the studied volcanoes, while the number and spatial patterns of magma sources are different for two types of andesitic volcanoes.  相似文献   

20.
燕山构造带北缘喀喇沁地区发育了晚古生代—中生代多期岩浆活动, 记录了多期构造变形事件, 是认识该构造带大地构造演化的理想地区.本文通过对该地区岩浆岩的系统定年及各期构造变形事件的研究, 结合区域地质资料, 综合分析了晚古生代—中生代的大地构造演化历史.分析结果表明, 燕山构造带在早石炭世晚期—早二叠世处于古亚洲洋俯冲背景下的活动陆缘环境, 出现了弧岩浆活动.中二叠世古亚洲洋沿索伦克缝合线关闭, 使得燕山构造带成为周缘前陆挤压变形带, 并对应着岩浆活动的平静期.之后燕山构造带分别出现了晚二叠世—三叠纪、中侏罗世、晚侏罗世与早白垩世4期伸展背景下的岩浆活动.在这些岩浆活动之间的平静期, 先后发生了早侏罗世、晚侏罗世初、早白垩世初3期挤压事件.这些现象还表明, 岩浆活动与构造演化具有明显的耦合关系, 板内环境下岩浆活动发生在伸展背景中, 而岩浆活动平静期多对应区域挤压活动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号