首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bitterroot metamorphic core complex is an exhumed, mid-crustal, plutonic–metamorphic complex that formed during crustal thickening and subsequent extension in the hinterland of the North American Cordilleran Orogen, in the northern Idaho batholith region. Extension was accommodated mainly on the Bitterroot mylonite zone, a 500–1500-m-thick shear zone that deforms granitic intrusive rocks as young as 53–52 Ma, as well as older high-grade metamorphic rocks and plutons. Exhumation of the core complex, in Eocene time, is marked in the shear zone by the transition from amphibolite-facies mylonitization, to greenschist-facies mylonitization, chloritic brecciation, to brittle faulting that progressed from shallower crustal levels in the west to deeper crustal levels in the east from ca. 53 –30 Ma based on U–Pb, Ar–Ar, and fission-track data. Apatite and zircon fission-track data record the lower-temperature part of the exhumation history and help define when the shear zone became inactive, as well as the transition from rapid, core complex-style extension to slower basin-and-range-style extension. They indicate that the western part of the complex was exhumed to within 1–2 km of the surface by 48–45 Ma, while the eastern part of the complex was still at amphibolite-facies conditions and that the eastern part of the complex was not exhumed below 60 °C until after 30 Ma. Younger apatite fission-track ages (≤26 Ma) on the eastern range front of the Bitterroot Mountains suggest that the present topographic expression of the mylonite front was due to Miocene high-angle faulting and widening of the Bitterroot Valley.  相似文献   

2.
Caledonian orogenesis in NE Greenland resulted from the collision of Laurentia and Baltica during the Ordovician–Silurian. Anatectic pelites within the metasedimentary Smallefjord Sequence record a clockwise P – T  path, the result of early crustal thickening at c . 445–440 Ma and subsequent exhumation of the high-grade metamorphic core by a combination of ductile extension and tectonic denudation. The early prograde segment of the path followed a shallow, near-isothermal trajectory and attained a metamorphic peak of c . 9.0–10.0 kbar at >790 and <850 °C. Prograde metamorphism initiated anatexis of pelites in the kyanite stability field and continued with sillimanite stable. Inclusion trails in the garnet cores are textural remnants of early deformation, which occurred either before or during prograde metamorphism. The peak metamorphic conditions are anomalously high in the context of thermal models and P – T  paths for continental collision zones. The additional heat input required to promote migmatization may have been provided by advection as lower crustal high-pressure rocks and the uppermost mantle were uplifted following lithospheric thinning at an early stage in the orogeny. The prograde path was interrupted by the development of retrograde extensional shear fabrics defined by biotite+sillimanite and associated with garnet breakdown. Field observations indicate that ductile extension was accompanied by melt extraction, transport and emplacement of intracrustal granites dated at c . 430 Ma. Regional ductile extension and exhumation probably resulted from the development of gravitational instabilities within the overthickened crust during continental collision.  相似文献   

3.
By comparison with the general features of metamorphic soles (e.g. vertical and lateral extension, metamorphic grade and diagnostic mineral parageneses, deformation and dominant rock types), it is inferred that the amphibolites, metagabbros and hornblendites of the Wadi Um Ghalaga–Wadi Haimur area in the southern part of the Eastern Desert of Egypt represent the metamorphic sole of the Wadi Haimur ophiolite belt. The overlying ultramafic rocks represent overthrusted mantle peridotite. Mineral compositions and thermobarometric studies indicate that the rocks of the metamorphic sole record metamorphic conditions typical of such an environment. The highest P – T conditions ( c . 700 °C and 6.5–8.5 kbar) are preserved in clinopyroxene amphibolites and garnet amphibolites from the top of the metamorphic sole, which is exposed in the southern part of the study area. The massive amphibolites and metagabbros further north (Wadi Haimur) represent the basal parts of the sole and show the lowest P – T  conditions (450–620 °C and 4.7–7.8 kbar). The sole is the product of dynamothermal metamorphism associated with the tectonic displacement of ultramafic rocks. Heat was derived mainly from the hot overlying mantle peridotites, and an inverted P – T  gradient was caused by dynamic shearing during ophiolite emplacement. Sm/Nd dating of whole-rock–metamorphic mineral pairs yields similar ages of c . 630 Ma for clinopyroxene and hornblende, which is interpreted as a lower age limit for ophiolite formation and an upper age limit for metamorphism. A younger Sm/Nd age for a garnet-bearing rock ( c . 590 Ma) is interpreted as reflecting a meaningful cooling age close to the metamorphic peak. Hornblende K/Ar ages in the range 570–550 Ma may reflect thermal events during late orogenic granite magmatism.  相似文献   

4.
The Mallee Bore area in the northern Harts Range of central Australia underwent high-temperature, medium- to high-pressure granulite facies metamorphism. Individual geothermometers and geobarometers and average P–T  calculations using the program Thermocalc suggest that peak metamorphic conditions were 705–810 °C and 8–12 kbar. Partial melting of both metasedimentary and meta-igneous rocks, forming garnet-bearing restites, occurred under peak metamorphic conditions. Comparison with partial melting experiments suggests that vapour-absent melting in metabasic and metapelitic rocks with compositions close to those of rocks in the Mallee Bore area occurs at 800–875 °C and >9–10 kbar. The lower temperatures obtained from geothermometry imply that mineral compositions were reset during cooling. Following the metamorphic peak, the rocks underwent local mylonitization at 680–730 °C and 5.8–7.7 kbar. After mylonitization ceased, garnet retrogressed locally to biotite, which was probably caused by fluids exsolving from crystallizing melts. These three events are interpreted as different stages of a single, continuous, clockwise P–T  path. The metamorphism at Mallee Bore probably occurred during the 1745–1730 Ma Late Strangways Orogeny, and the area escaped significant crustal reworking during the Anmatjira and Alice Springs events that locally reached amphibolite facies conditions elsewhere in the Harts Ranges.  相似文献   

5.
The Higo metamorphic unit in west-central Kyushu island, southwest Japan is an imbricated crustal section in which a sequence of units with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The basal part of the metamorphic sequence representing an original depth of 23–24  km consists mainly of garnet–cordierite–biotite gneiss, garnet–orthopyroxene gneiss, orthopyroxene-bearing amphibolite and orthopyroxene-bearing S-type tonalite. These metamorphic rocks underwent high amphibolite-facies up to granulite facies metamorphism with peak P – T  conditions of 720  MPa, 870  °C. In addition sapphirine-bearing granulites and related high-temperature metamorphic rocks also occur as tectonic blocks in a metamorphosed peridotite intrusion. The sapphirine-bearing granulites and their related high-temperature metamorphic rocks can be subdivided into five types of mineral assemblages reflecting their bulk chemical compositions as follows: (1) sapphirine–corundum–spinel–cordierite (2) corundum–spinel–cordierite (3) garnet–corundum–spinel–cordierite (4) garnet–spinel–gedrite–corundum, and (5) orthopyroxene–spinel–gedrite. These metamorphic rocks are characterized by unusually high Al2O3 and low SiO2 contents, which could represent a restitic nature remaining after partial melting of pelitic granulite under the ultra high-temperature contact metamorphism at the peak metamorphic event of the Higo metamorphic unit. The metamorphic conditions are estimated to be about 800  MPa and above 950  °C which took place at about 250  Ma as a result of the thermal effect of the regional gabbroic rock intrusions.  相似文献   

6.
Sm–Nd ages of garnet from the northern Coast Mountains of south-eastern Alaska, USA, constrain the timing of thermal events in polyphase metamorphic rocks of the western metamorphic belt and provide new data on the spatial extent of Cretaceous regional metamorphism. Bulk garnet–whole-rock Sm–Nd ages for a sillimanite-zone amphibolite (Taku Inlet) and a biotite-zone metapelite (Tracy Arm) are 77±17 Ma and 59±12 Ma, respectively. Garnet core–whole-rock (80±9 Ma), core–matrix (84±9 Ma), rim–whole-rock (59±4 Ma) and rim–matrix (62±4 Ma) ages were obtained from a sample collected 200  m west of a Palaeocene Coast plutonic–metamorphic complex sill-like pluton that separates medium-grade metamorphic rocks from high-grade metamorphic rocks and voluminous Tertiary plutons in the core of the orogen. The garnet core ages of c. 80 Ma indicate that the regional metamorphic grade reached garnet zone prior to the intrusion of the plutons and high-grade metamorphism of rocks to the east. Similar ages for the younger plutons, the youngest garnets and the rim of a multistage garnet ( c. 59 Ma) indicate a later episode of contact metamorphic garnet growth. Documentation of pre-71 Ma garnet-zone metamorphism along the western edge of the Coast plutonic–metamorphic complex confirms that Albian to Late Cretaceous metamorphism associated with crustal thickening affected this part of the orogen. The similarity of garnet Sm–Nd ages to independent age estimates for metamorphic events confirms that this technique provides useful estimates for the timing of Late Cretaceous to Tertiary thermal events. The c. 20  Myr difference between garnet core and rim ages suggests that the Sm–Nd isotope systematics of a single garnet grain can be used for distinguishing between multiple metamorphic events.  相似文献   

7.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

8.
The Petermann Orogeny is a late Neoproterozoic to Cambrian ( c . 560–520  Ma) intracratonic event that affected the Musgrave Block and south-western Amadeus Basin in central Australia. In the Mann Ranges, within the central Musgrave Block, Mesoproterozoic granulite facies gneisses, granites and mafic dykes have been substantially reworked by deep crustal non-coaxial strain of late Neoproterozoic to early Cambrian age. Dolerite dykes have recrystallized to garnet granulite facies assemblages, associated with the development of a mylonitic fabric at P =12–13  kbar and T  =700–750 °C. Migmatization is restricted to discrete shear zones, which represent conduits for hydrous fluids during metamorphism. Peak metamorphism was followed by decompression to c . 7  kbar, reflecting exhumation of the terrane along the south-dipping Woodroffe Thrust. In scattered outcrops north of the Mann Ranges, peak metamorphism occurred at P =9–10  kbar and T  = c . 700 °C. The Woodroffe Thrust separates these deep crustal mylonites from granites that were metamorphosed during the Petermann Orogeny at P = c . 6–7  kbar and T  = c . 650 °C. The similarity in peak temperatures at different crustal levels implies an unusual thermal regime during this event. The existence of a relatively elevated geotherm corresponding with Th- and K-enriched granites that were in the mid-crust during the Petermann Orogeny suggests that radiogenic heat production may have substantially contributed to the thermal regime during metamorphism. This potentially has implications for the mechanisms by which intra-plate strain was localized during this event.  相似文献   

9.
The Leo Pargil dome, northwest India, is a 30 km‐wide, northeast‐trending structure that is cored by gneiss and mantled by amphibolite facies metamorphic rocks that are intruded by a leucogranite injection complex. Oppositely dipping, normal‐sense shear zones that accommodated orogen‐parallel extension within a convergent orogen bound the dome. The broadly distributed Leo Pargil shear zone defines the southwest flank of the dome and separates the dome from the metasedimentary and sedimentary rocks in the hanging wall to the west and south. Thermobarometry and in‐situ U–Th–Pb monazite geochronology were conducted on metamorphic rocks from within the dome and in the hanging wall. These data were combined with U–Th–Pb monazite geochronology of leucogranites from the injection complex to evaluate the relationship between metamorphism, crustal melting, and the onset of exhumation. Rocks within the dome and in the hanging wall contain garnet, kyanite, and staurolite porphyroblasts that record prograde Barrovian metamorphism during crustal thickening that reached ~530–630 °C and ~7–8 kbar, ending by c. 30 Ma. Cordierite and sillimanite overgrowths on Barrovian assemblages within the dome record dominantly top‐down‐to‐the‐west shearing during near‐isothermal decompression of the footwall rocks to ~4 kbar by 23 Ma during an exhumation rate of 1.3 mm year?1. Monazite growth accompanied Barrovian metamorphism and decompression. The leucogranite injection complex within the dome initiated at 23 Ma and continued to 18 Ma. These data show that orogen‐parallel extension in this part of the Himalaya occurred earlier than previously documented (>16 Ma). Contemporaneous onset of near‐isothermal decompression, top‐down‐to‐the‐west shearing, and injection of the decompression‐driven leucogranite complex suggests that early crustal melting may have created a weakened crust that was proceeded by localization of strain and shear zone development. Exhumation along the shear zone accommodated decompression by 23 Ma in a kinematic setting that favoured orogen‐parallel extension.  相似文献   

10.
STRUCTURAL AND THERMAL EVOLUTION OF THE SOUTH ASIAN CONTINENTAL MARGIN ALONG THE KARAKORAM AND HINDU KUSH RANGES,NORTH PAKISTAN  相似文献   

11.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

12.
The Western Sonobari Complex in northwestern Mexico consists of metamorphosed rocks mostly derived from Palaeozoic (?) sedimentary and Mesozoic igneous protoliths. Rocks of this complex display amphibolite facies orogenic metamorphism, pervasive foliation, migmatization, and four folding phases. These features are ascribed to a contractional tectonic event with NNW–SSE shortening direction, which caused thrusting, thickening of the crust, and sinking of the lithological units. U–Pb geochronology of migmatitic leucosome bands indicates that peak metamorphic conditions were reached between ~93 and 89 Ma. Post-tectonic Late Cretaceous peraluminous aplite-pegmatite dikes transect the metamorphic foliation. Traditional thermobarometry in the metamorphic rocks yields average pressures and temperatures of 9.0–7.1 kbar and 745–663°C, typical of intermediate P/T Barrovian metamorphism. On the basis of its age and contractional character, the thickening event originating the metamorphism may be related to collision of the Alisitos island arc against crustal blocks of Mexico. Thermobarometric data of post-tectonic intrusives including Late Cretaceous granodiorite and Eocene gabbro indicate emplacement within an overthickened crust, while P-T conditions of post-tectonic dikes point towards an almost isothermal decompression path along the amphibolite facies field. Rock units of similar age and metamorphic character are discontinuously exposed from the Islas Marias offshore the Nayarit coast to the Peninsular Ranges batholith of Baja California, and even extend north into the Sierra Nevada batholith and the Sevier hinterland. This extensive belt of Barrovian metamorphic rocks thus provides a record of middle Cretaceous shortening and crustal thickening related to arc-continent collision followed by subduction resuming.  相似文献   

13.
拉脊山-化隆变质核杂岩构造及其隆升机制探讨   总被引:1,自引:0,他引:1  
中祁连拉脊山、化隆地区的变质核杂岩是由韧性变形的太古宙、元古宙化隆群变质岩系组成核; 由脆-韧性变形和经受了低压变质的中、上寒武统和岩体组成中间层; 由脆性变形和未变质的下白垩统组成盖层.变质核杂岩的组成与结构显示了对称伸展和隆升的特征.23~ 32Ma是快速隆升的时期.主剥离断层剪切位移量约25~ 27km, 并根据矿物对计算, 变质核杂岩的伸展变质温度约625~ 630℃, 变质深度约20km, 变质压力约为0.63GPa, 属偏低压型区域热流变质作用.从青藏高原热壳、热幔、厚壳的演化历史及构造隆升活动来看, 认为拉脊山、化隆变质核杂岩是地幔热隆引起地壳伸展的典型实例, 是研究青藏高原岩石圈结构和高原隆升的重要窗口.   相似文献   

14.
Bimodal metavolcanic rocks, granitic gneisses and metasediments are associated in the Frankenberg massif, Germany. These rocks are faulted against underlying very low-grade Palaeozoic sequences and adjacent metamorphic complexes of the Variscan basement. The granitic gneisses record an Rb–Sr whole-rock isochron age of 461±20  Ma that is taken as at least a minimum protolith age. The bimodal meta-igneous suites are interpreted to have formed during rifting of the Gondwana continental margin in the Cambro-Ordovician. The various metamorphic units have all experienced a common P–T  history. The peak-pressure stage is constrained to around 490–520  °C and 10–14  kbar (10–12  kbar being most realistic). The metamorphism proceeded along a clockwise P–T path towards conditions of around 580–610  °C and 7–8.5  kbar at the thermal peak followed by a final low-pressure overprint which spanned amphibolite facies to prehnite–actinolite facies temperatures. Owing to a secondary Rb–Sr whole-rock isochron age of 381±24  Ma, interpreted to date the retrograde stage, the whole metamorphic cycle in the Frankenberg massif is ascribed to the late Silurian–early Devonian high-pressure event widely recorded in the European Variscides. The antiformal complexes bordering the Frankenberg massif underwent a well-documented early Carboniferous metamorphism, suggesting that the Frankenberg massif constitutes a klippe which was overthrust towards the end of this second metamorphic cycle.  相似文献   

15.
The Gangdese magmatic arc, southeastern Tibet, was built by mantle‐derived magma accretion and juvenile crustal growth during the Mesozoic to Early Cenozoic northward subduction of the Neo‐Tethyan oceanic slab beneath the Eurasian continent. The petrological and geochronological data reveal that the lower crust of the southeastern Gangdese arc experienced Oligocene reworking by metamorphism, anatexis and magmatism after the India and Asia collision. The post‐collisional metamorphic and migmatitic rocks formed at 34–26 Ma and 28–26 Ma respectively. Meta‐granitoids have protolith ages of 65–38 Ma. Inherited detrital zircon from metasedimentary rocks has highly variable ages ranging from 2708 to 37 Ma. These rocks underwent post‐collisional amphibolite facies metamorphism and coeval anatexis under P–T conditions of ~710–760 °C and ~12 kbar with geothermal gradients of 18–20 °C km ? 1, indicating a distinct crustal thickening process. Crustal shortening, thickening and possible subduction erosion due to the continental collision and ongoing convergence resulted in high‐P metamorphic and anatectic reworking of the magmatic and sedimentary rocks of the deep Gangdese arc. This study provides a typical example of the reworking of juvenile and ancient continental crust during active collisional orogeny.  相似文献   

16.
Abstract Geological relationships and geochronological data suggest that in Miocene time the metamorphic core of the central Himalayan orogen was a wedge-shaped body bounded below by the N-dipping Main Central thrust system and above the N-dipping South Tibetan detachment system. We infer that synchronous movement on these fault systems expelled the metamorphic core southward toward the Indian foreland, thereby moderating the extreme topographic gradient at the southern margin of the Tibetan Plateau. Reaction textures, thermobarometric data and thermodynamic modelling of pelitic schists and gneisses from the Nyalam transect in southern Tibet (28°N, 86°E) imply that gravitational collapse of the orogen produced a complex thermal structure in the metamorphic core. Amphibolite facies metamorphism and anatexis at temperatures of 950 K and depths of at least 30 km accompanied the early stages of displacement on the Main Central thrust system. Our findings suggest that the late metamorphic history of these rocks was characterized by high- T decompression associated with roughly 15 km of unroofing by movement on the South Tibetan detachment system. In the middle of the metamorphic core, roughly 7–8 km below the basal detachment of the South Tibetan system, the decompression was essentially isothermal. Near the base of the metamorphic core, roughly 4–6 km above the Main Central thrust, the decompression was accompanied by about 150 K of cooling. We attribute the disparity between the P–T paths of these two structural levels to cooling of the lower part of the metamorphic core as a consequence of continued (and probably accelerated) underthrusting of cooler rocks in the footwall of the Main Central thrust at the same time as movement on the South Tibetan detachment system.  相似文献   

17.
The South Karakorum margin, east of the Himalayan syntaxis, consist of an E–W elongated zone of young (10–3 Ma) high‐grade metamorphic rocks (M2) and related migmatitic domes. This late tectono‐metamorphic event post‐dates the Palaeogene (55–37 Ma) phase of thickening of the belt featured by NW–SE structures and associated M1 amphibolite facies metamorphism (0.7 GPa, 700 °C). This M2 metamorphism is characterised by low‐pressure, high‐temperature conditions coeval with migmatite formation in response to a thermal increase of c. 150 °C compared to M1, culminating at a temperature of c. 770 °C and a pressure of 0.5–0.6 GPa. Rapid exhumation of migmatitic domes, at a rate of 5 mm yr?1, was accommodated by vertical extrusion, in the core of E–W crustal‐scale folds. These crustal‐scale folds formed in response to N–S syn‐collisional shortening and were enhanced by thermal weakening of the migmatised continental crust. M2 metamorphism is spatially and temporarily associated with granitoids showing a mantle affinity, firmly suggesting that this could be the advective heat source for the granite and syenite generation and the subsequent migmatisation of the mid‐crustal level. Such relationships between a mantle‐related magmatism and a high‐temperature metamorphism in a convergent shortening context are suggestive of the breakoff of the subducted Indian slab since 20 Ma.  相似文献   

18.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   

19.
A suite of high-Mg–Al granulites from Sunkarametta, Eastern Ghats Belt, India, shows contrasting prograde assemblages of extremely aluminous orthopyroxene+cordierite+sapphirine and similarly aluminous orthopyroxene+Ti-rich spinel in closely associated domains. Textural and compositional characteristics indicate that both were derived from prograde dehydration–melting of biotite–plagioclase–quartz-bearing protoliths. The former assemblage was stabilized at relatively more magnesian bulk composition. Geothermobarometric data and petrogenetic grid considerations place 'peak' metamorphic conditions at c. 950 °C and 9 kbar. Subsequent to peak metamorphism, the rocks cooled to c . 700–750 °C, with slight lowering of pressure, and the retrograde reactions also involved melt–solid interaction. The inferred P – T  trajectory is one of heating–cooling at lower crustal (25–30 km) depths.  相似文献   

20.
The high- P , medium- T  Pouébo terrane of the Pam Peninsula, northern New Caledonia includes barroisite- and glaucophane-bearing eclogite and variably rehydrated equivalents. The metamorphic evolution of the Pouébo terrane is inferred from calculated P–T  and P–T  – X H2O pseudosections for bulk compositions appropriate to these rocks in the model system CaO–Na2O–FeO–MgO–Al2O3–SiO2–H2O. The eclogites experienced a clockwise P–T  path that reached P ≈19  kbar and T  ≈600  °C. The eclogitic mineral assemblages are preserved because reaction consequent upon decompression consumed the rocks' fluid. Extensive reaction occurred only in rocks with fluid influx during decompression of the Pouébo terrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号