首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
利用常规观测资料、自动气象站资料、NCEP再分析资料和高分辨率WRF模式,对2016年5月5日发生在浙江地区的一次强飑线过程进行模拟研究。结果表明,切变线是影响此次强飑线过程的主要天气系统,飑线发生在充沛的水汽,较弱的对流有效位能和中等强度垂直风切变大气环境下。WRF模式对此次飑线的演变过程和降水分布有较好的模拟能力。通过进一步分析模拟资料发现,雷暴高压和地面冷池是此次飑线风暴的重要边界层特征,边界层辐合线有利于飑线的发展和维持。飑线后侧对流层中层以下的强下沉气流,是造成此次雷暴大风的关键因素。  相似文献   

2.
董昊  徐海明  罗亚丽 《大气科学》2012,36(1):145-169
采用WRF模式模拟一次影响中国广东省的飑线过程, 分别选取Morrison、 Thompson07、 Thompson09和WDM6云微物理方案实施了四组试验, 每组试验包括不同云凝结核(CCN)浓度的三次模拟, 称为 “低浓度”、 “中浓度” 和 “高浓度”, 将模拟区域划分为深对流、 浅对流和层云区域, 对比分析四组试验中CCN浓度变化对模拟的总降水量、 不同区域降水率和不同区域面积的影响, 进一步分析了云微物理过程、 动力环流强度等受CCN浓度变化的影响。发现: (1) 由于不同云微物理过程与CCN浓度有着直接或间接的联系、 不同云微物理过程之间存在复杂的关联、 云微物理过程与动力环流之间发生非线性耦合, 采用不同的云微物理方案导致模拟的CCN—降雨影响既有相似、 也有差异; (2)模拟的CCN—降水影响在采用Thompson09和Thompson07方案时更显著, 采用WDM6方案时最小; (3)四组模拟试验均出现CCN浓度增加延迟降水产生、 初期降水减弱的情况, 在模拟后期降水量也随着CCN浓度增加而减小, 而飑线成熟阶段CCN—降水影响更加复杂。  相似文献   

3.
利用常规观测资料、多普勒天气雷达观测资料、风廓线雷达资料及NCEP/NCAR再分析资料,对2013年4月30日发生在广州白云机场终端区的飑线过程进行了诊断分析和数值模拟.结果表明:此次过程是由高空槽东移带动地面弱冷空气南下造成的;高分辨率WRF(Weather Research and Forecasting)模式较好地模拟出了这次飑线的形态和发展变化过程;飑线内部有较明显的倾斜气流,发展阶段内部以上升气流为主,成熟阶段强的上升运动主要位于600 hPa以上,中低层则由于拖曳作用有显著的下沉气流;此次飑线过程有明显的地面冷池和雷暴高压配合,飑线的强度变化与地面冷池的变化存在明显相关,发展阶段雷暴高压出现在整个飑线的下方及后部,在成熟阶段其下方的正变压与后部的负变压呈对称结构.  相似文献   

4.
王智  邹兰军 《气象科学》2022,42(3):420-426
2019年4月9日,长三角地区发生了一次罕见的长历时强飑线天气过程。在分析其天气形势背景和发展演变基础上,利用新一代华东区域数值模式对此次过程进行了预报分析,初步分析了其演变过程中的中尺度结构特征。结果表明,此次飑线发生在高空槽前、低层强烈辐合抬升天气背景下,强的垂直风切变、冷空气向南侵入与低层暖湿气流叠加建立了强的对流不稳定层结,是飑线发生发展和长时间维持的重要原因。数值模式成功模拟了飑线前部低层暖湿空气上升和后部中层干冷空气下沉这两支入流,以及飑线过境时边界层高度和大气可降水量迅速下降,地面中尺度冷池向东南方向的传播过程,冷池与对流风暴的移动速度基本一致,导致对流前部低层一直有风场的切变辐合抬升,有助于对流维持并发展。  相似文献   

5.
水汽含量对飑线组织结构和强度影响的数值试验   总被引:4,自引:4,他引:4  
利用2009年6月3~4日一次产生大风、冰雹强对流天气的飑线个例进行数值试验,研究整层水汽含量及其垂直分布对中尺度对流系统的发生发展过程、组织类型和强度等的影响。本文的试验表明环境场中不同的水汽含量和垂直分布,会影响下沉气流和冷池的强度,从而影响对流的组织形态、维持时间和强度。整层水汽试验表明,增加(减少)水汽,对流增强(减弱),冷池和雷暴高压增强(减弱)导致大风增强(减弱)。增加水汽越多发展阶段冷池强度越强,最大风速越强,但成熟阶段后期冷池减弱的越快,层状云区的后部入流减弱,不利于雷暴大风的出现和维持。不同层次水汽试验表明,在保持整层水汽含量不变的情况下,线状对流和雷暴大风易发生在中层干、下层湿的环境中,这种层结条件对雷暴高压的增强有重要作用,但不利于整个对流系统的长时间维持。  相似文献   

6.
利用常规高空、地面、雷达观测资料和FNL1°×1°再分析资料,应用天气学方法和数值模拟方法对2016年4月3日景德镇地区一次早春飑线天气过程进行了分析。结果表明:高空冷涡低槽引导的冷空气与西南暖湿气流强烈对峙是此次飑线过程的环流背景。高低空急流耦合作用加强了大气的垂直上升运动和锋面的次级环流,造成赣北地区上空大气具备较强的动力不稳定。回波强度超过55 dBz的低质心强对流云体是导致景德镇地区出现5 min降水量达14.3 mm强降水的重要原因。飑线的快速移动和近地面超20 m/s的大风速核可预示下游测站有大风出现。飑线前部辐合明显,上升运动剧烈,有利于强回波的发展。冷池的强度变化、持续时间与此次飑线的维持有关。  相似文献   

7.
陈明轩  王迎春 《气象学报》2012,70(3):371-386
利用三维数值云模式和雷达资料四维变分同化技术,通过对6部新一代多普勒天气雷达观测资料进行快速更新循环同化和云尺度数值模拟,初步分析了2009年7月23日发生在华北地区的一次飑线过程的低层动力和热动力影响机制。结果表明,这次飑线过程处在低层中等强度切变的环境条件下,低层环境垂直风切变和冷池相互作用是本次飑线过程维持发展和传播的关键机制。在飑线发展的初期,低层垂直风切变较强,但冷池偏弱,冷池传播速度(C)和垂直于飑线的低层切变分量(ΔU)的比值C/ΔU<1,飑线回波前倾。而此时环境热力条件(对流有效位能较高和自由对流高度较低)对飑线的发展加强起到了积极作用,克服了这种低层切变和冷池不平衡所形成的不利条件。在飑线的加强和成熟阶段,由于对流降水使冷空气不断下沉,从而导致冷池快速加强,使低层切变和冷池强度逐渐达到近似平衡状态(C/ΔU≈1),低层大气处于最强的垂直抬升状态,飑线发展最为强盛,飑线回波直立。随着时间的推移,降水累积效应导致冷池强度明显大于低层切变强度(C/ΔU>1),不利的形势导致飑线逐渐趋于消散,飑线回波明显变宽、后倾,回波顶高显著下降。对模拟结果的定性分析和定量计算均表明,影响这次飑线过程发展维持的低层垂直风切变和冷池相互作用机制与Rotunno和Weisman等用来解释飑线发展演变的RKW理论一致。另外,模拟结果显示,低层0—3km风切变对飑线的发展维持最为重要,但是0—6km的中层风切变也有正面作用,特别是在飑线发展旺盛阶段,应该考虑其影响。  相似文献   

8.
利用局地分析和预报系统(Local Analysis and Prediction System, LAPS),结合多源资料,分析了2018年3月4日暖区强飑线成熟阶段的热动力结构和大风形成机制。结果表明:暖区内层结不稳定范围向东扩展和强的垂直风切变,驱动飑线组织化加强并向前移动和发展。成熟阶段飑线热动力结构呈现出两支强入流和冷池的典型特征,即前侧入流在低层(0~3.0 km)辐合上升,部分气流在高层翻转流向系统前侧,无后向流出;后侧中层(4.0~5.5 km)入流进入云体后部,在水凝物强烈相变降温作用下,密度增大转而下沉;下沉气流区降雨蒸发冷却增强了雷暴冷池。相比于飑线南段单一的对流线,北段弓形特点突出,后侧入流下降,加之存在尾随层状云,有更大的潜在冷却作用,促进气流加速下沉增强地面雷暴高压,最终导致更强的极端大风。  相似文献   

9.
采用CM1模式以200 m的高精度水平网格距对一次东北冷涡下的飑线过程进行模拟,采用1 km的水平网格距进行对比试验探究网格距的影响,并通过探空资料的替换与修改研究不稳定能量和垂直风切变对飑线发展的影响。研究表明,水平网格距增大主要使系统演变减缓,强度也有一定的减弱;初始场的不稳定能量减小会使飑线减弱明显,直至无法生成;垂直风切变对飑线的形成影响较小,主要改变了飑线的结构,没有垂直风切变时形成的飑线更为松散。最后的敏感性试验研究了7种云微物理参数方案对飑线内水粒子分布的影响,发现不同的云微物理参数方案会使水粒子的含量和分布出现变化,进一步影响固、液态的降水,飑线模拟采用的NA方案高层冰和雪含量最高,但由于雨和降落到地表的雹、霰含量低,使得累计降水量最小。  相似文献   

10.
同化雷达反射率资料对一次飑线过程的模拟研究   总被引:1,自引:4,他引:1  
郑淋淋  邱学兴  钱磊 《气象》2019,45(1):73-87
在用集合卡曼滤波方法(EnKF)同化雷达径向风、雷达反演风和CGPS水汽资料的基础上,对2014年7月30日发生在安徽中东部的一次飑线过程采用雷达反射率资料对初始水汽场进行调整。该方法相对EnKF的模拟结果,在飑线强度、位置、持续时间、产生降水和地面风场方面均有改进。改进湿度场后飑线前部的地面辐合区模拟效果较好,这可能是飑线强度和位置模拟效果改进的原因之一。没有调整湿度场时飑线维持时间较短,且强度较弱,这是由于飑线后部的中层干冷空气夹卷较弱,且冷池很快远离飑线,不利飑线维持。调整湿度场后,飑线后部干冷空气夹卷较强,且在对流区下沉形成冷池,冷池位于飑线后部,有利飑线维持。夹卷加强的可能原因是:采用雷达反射率资料调整湿度场增加了中低层(600~900 hPa)湿度,大气不稳定性增加,对流发展造成低值系统增强,其南部的偏西风增强,导致飑线后部的干冷空气夹卷增强。该试验揭示了湿度调整、大气不稳定度改变造成的动力场调整对对流发展和组织的重要作用。  相似文献   

11.
利用NCAR、NCEP和FSL/NOAA等共同研制的WRF中尺度数值模式,对2009年6月3日河南地区发生的一次飑线过程进行数值模拟,并利用模式输出的高分辨率资料对该次过程进行诊断分析。结果表明:WRF模式成功地再现了高低空环流形势演变及强对流的分布发展特征,高空冷涡后部冷空气南下,近地层较暖,形成了上冷下暖的位势不稳定层结及地面辐合线是这次强对流和飑线天气过程的触发机制。强对流发生时,该地区出现的低空增温增湿、低空急流的爆发及低层急流核向东南快传、高空急流轴稳定在强对流天气发生地上空,对流有效位能积累和释放随时间的演变过程及垂直螺旋度大值中心等对此次强对流天气过程有较好的指示意义。  相似文献   

12.
本研究利用美国国家海洋和大气管理局(NOAA)的Global Forecasting System(GFS)再分析资料、气象信息综合分析处理系统(MICAPS)观测资料、自动站与逐小时融合降水资料和中国新一代多普勒天气雷达网的基数据(Level-Ⅱ),对2014年5月31日一次发生在合肥附近的暖区飑线过程进行了分析。天气分析显示,飑线发生在暖区,整个中高层以下呈现高湿状态,以及较弱的对流不稳定和弱风切变(0~3 km风切小于10 m·s-1)环境。雷达分析揭示,飑线呈弓状,具有明显的对流区、层云区和过渡带,线尾涡旋位于弓形回波北端。从后往前的气流自层云区后侧6 km以下进入系统,最大风速区在z=4 km处,强风速中心并未及地造成地面风灾。由于本次个案在暖区高湿环境下形成,地面冷池较弱,维持时间短;短时降水较强,最强超过40 mm·h-1。  相似文献   

13.
利用常规气象观测资料、区域自动气象站加密观测资料和GFS 0.25°×0.25°逐6 h的分析场数据以及多普勒雷达、风廓线等资料,通过背景形势场分析、物理量诊断分析和中尺度分析,对2018年3月4日发生在华东地区的强飑线天气过程进行了诊断分析。结果表明,这次过程具有发生时间(季节)早、移速快、范围广、致灾强等特点,是一次比较少见的早春(冬末)十分强烈的飑线天气过程,是在高空急流辐散区、低空西南急流轴前端、低涡南侧的暖区中发展起来的。飑线过程的地面要素变化十分剧烈,地面有强冷池,与飑线前暖空气之间构成了强的水平温度梯度,致使飑线强度更强;飑线经过时气压涌升所形成的雷暴高压、强气压梯度以及飑线的快速移动均有利于地面极端大风的出现。飑线发展过程中观测到弓形回波、超级单体等强天气系统。中高层动量下传和光滑湖面、喇叭口、狭管效应等特殊地形对于大风的增强效应比较显著,这些因素也加剧了地面极端大风的形成。   相似文献   

14.
利用WRF模式6种适合高分辨率且包含多种固态水成物粒子的云微物理参数化方案,分别对2012年5月16日江苏北部一次飑线过程进行数值试验,结果表明:LIN方案模拟的飑线回波反射率、强降水TS评分、结构和强度等均要优于其余5种微物理参数化方案。分析不同参数化试验结果中不同水成物粒子占比随时间的变化特征,并针对LIN方案采取敏感性试验和水成物转化微物理过程分析指出,在此次飑线过程中的各水成物粒子中,霰/雹粒子占比最大,是降水过程中最重要的粒子;地面降水直接来源是雨水,雨水主要来源于中层霰/雹粒子的融化,小部分来源于云水的自动转化;中层霰/雹粒子最主要来源是通过雨霰转化过程中的雨水撞冻冰雹微物理过程,其次是霰撞冻云水的微物理过程,而冰相物质雪晶和云冰的碰并、撞冻和自动转化过程微乎其微。  相似文献   

15.
多普勒雷达资料同化对江苏一次飑线过程的数值模拟   总被引:2,自引:6,他引:2  
应用新一代中尺度预报模式WRF模式及其3DVar同化系统, 针对江苏地区2009年6月14日飑线过程进行了多普勒雷达资料的同化试验研究, 在对雷达资料进行严格质量控制的基础上, 设计一系列尺度化因子优化调整及同化频率的敏感性试验。试验结果表明:同化后初始场得到不同程度改善, 适当的尺度化因子设定, 能够有效改进对模式初始场中700 hPa风场和850 hPa温度场以及组合反射率因子等要素的分析, 进而改善短时降水预报和风暴的垂直结构配置;并且同化频率越高, 对初始场的组合反射率因子分布与观测更为接近, 短时降水预报越准确。  相似文献   

16.
Kinematics, cloud microphysics and spatial structures of tropical cloud clusters are investigated using hourly outputs from a two-dimensional cloud-resolving model simulation. The model is forced by the large-scale vertical velocity, zonal wind and horizontal advections obtained from Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). A period of 1600–2300 LST 21 December 1992 is selected for this study when the zonal-mean westerly winds in the lower troposphere intensify while the zonal-mean easterly winds above weaken. Under the vertical-shear environment, there are a westward-propagating cloud cluster, a newly-formed cloud cluster, and four eastward-moving cloud clusters. Two weak eastward-moving cloud clusters merge into strong westward-moving cloud clusters. Merged clouds display notable growth in the eastern edge, indicating that merging processes enhance convection. The development of the new cloud at the western edge of the existing cloud cluster before merging may account for the westward propagation of cloud cluster group, while the advection of the maximum total hydrometeor mixing ratio by the westerly winds after merging may cause the eastward propagation of individual cloud clusters.  相似文献   

17.
席乐  闵锦忠  王仕奇 《气象科学》2018,38(6):739-748
利用WRF中尺度模式对2014年3月30—31日发生在华南的一次强飑线过程进行数值模拟。本次飑线过程受高空槽和低涡切变线影响,水汽条件充足,低层垂直风切变较强。模拟结果表明:发展阶段,后方入流缺口开始出现,飑线逐渐呈弓形结构;成熟阶段,飑线后方入流逐渐下沉到地面并延伸至对流区前沿,冷池完全移入残留冷区并加强,配合九连山下坡过程,飑线得以加强。后方入流对本次飑线过程的发展和维持十分重要。后方入流受环境风及中层负压力扰动作用开始形成,随后受对流区后侧中低层涡旋对的影响迅速发展增强而进入发展阶段,反气旋式涡旋的北侧风场促进了后方入流的形成和发展;成熟阶段,气旋式涡旋的南侧风场使后方入流迅速增强。气旋式涡旋区域主要受涡管拉伸作用增长,反气旋式涡旋区主要受涡度倾斜增长作用。涡旋对垂直涡度主要是由低层水平涡度向上倾斜引起,而水平涡度则是由斜压作用产生。  相似文献   

18.
一次飑线大风的多种资料分析和临近预报   总被引:4,自引:7,他引:4  
利用临沂新一代天气雷达(CINRAD/SC)观测资料,结合MICAPS资料、加密自动气象站观测资料、MM5模式数值预报产品,对2006年4月28日发生在临沂的一次以灾害性大风为主、有弱降水相伴随、局部还有冰雹发生的飑线天气过程进行了分析.文中利用多种资料重点探讨了弓形回波带来的灾害性大风的形成机制.模式产品分析表明:灾害性大风发生区处在高空急流左侧,此处是正涡度平流和辐散区,强的垂直风切变导致了重力波的产生,300~500 hPa高度上产生的中尺度重力波(MGW)是本次大风过程的启动机制.造成地面大风的强下沉气流是来自于对流层中上层的干冷空气.雷达观测表明:本次过程中,大风区雷达径向速度出现模糊,强回波区对应径向风速辐合,具有较小的VIL值、有界弱回波区和中层径向辐合等特征.雷达径向速度图上高层负径向速度中心值的迅速减小和低层负径向速度中心值迅速增大是高空下沉气流迅速下沉的结果,是产生地面灾害性大风的直观表现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号