首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N -band (10.5 μm) and/or Q -band (20.0 μm) images taken with MANIAC on the ESO/MPI 2.2-m telescope are presented for 31 methanol maser sites and 19 ultracompact (UC) H  ii regions. Most of the maser sites and UC H  ii regions are coincident with mid-infrared (MIR) sources to within the positional uncertainties of ∼ 3 arcsec, consistent with the maser emission being powered by the MIR source. The IRAS source positions, however, do not always coincide with the MIR sources.
Based on an average infrared spectral energy distribution, we deduce that the MIR objects are luminous enough that they should also produce a strong ionizing radiation. Some sources are consistent with stars of later spectral type, but not all can be. A number of maser sites show no detectable radio continuum emission associated with MIR emission, despite a powering source luminous enough potentially to produce an UC H  ii region. Since no signs of an UC H  ii region are detected here, these maser sites might be produced during a very early stage of stellar evolution.
We present objects that show evidence of outflow activity stemming from a maser site, exhibiting CO and/or CS line profiles indicative of outflows coincident with the MIR source. These cases are promising examples of maser sites signposting the earliest stages of high-mass star formation.  相似文献   

2.
The southern maser site OH 300.969+1.147 has been studied using the Long Baseline Array of the Australia Telescope National Facility. The 1665- and 1667-MHz hydroxyl ground-state transitions were observed simultaneously. A series of maps with 0.1-arcsec spatial resolution, at velocity spacing  0.09 km s−1  , and in both senses of circular polarization reveals 59 small diameter maser spots. The spots are scattered over 2 arcsec, coincident with a strong ultracompact H  ii region, at a distance of 4.3 kpc. 17 Zeeman pairs of oppositely polarized spots were found, all yielding magnetic field estimates towards us (negative), ranging from −1.1 to −4.7 mG, with a median value of −3.5 mG. Excited state masers of OH at 6035 and 6030 MHz at this site also display Zeeman pairs revealing a magnetic field of −5.0 mG. Weak methanol maser emission is intermingled with the OH masers, but there is no detectable closely related water maser. The consistent magnetic field direction found within this site is a striking feature of several other maser sites associated with strong H  ii regions studied in comparable detail. We interpret the site as a mature region nearing the end of the brief evolutionary stage that can support maser emission.  相似文献   

3.
4.
The maser site OH 323.459−0.079 has been studied using the Long Baseline Array of the Australia Telescope National Facility. Simultaneous observations of the 1665- and 1667-MHz hydroxyl ground-state transitions yielded a series of maps at a velocity spacing of 0.18 km s−1, in both senses of circular polarization, with tenth-arcsec spatial resolution. Many small-diameter maser spots were detected within a 2-arcsec region. Pairs of spots with the same position, but with right- and left-hand circular polarization offset in frequency, reveal Zeeman splitting. Six pairs were found, and in four cases, the pairs at 1667 and 1665 MHz mutually corroborate the derived values of magnetic field and (central) kinematic velocity. Over the whole site, magnetic field estimates range from +1.47 to +4.13 mG with a median value of +2.5 mG. The excited state of OH at 6035 MHz also displays Zeeman pairs revealing a similar magnetic field, and we show that the most prominent of these pairs coincides with the most prominent pair at 1665 and 1667 MHz.
We also compared the morphology and kinematics at 1665 and 1667 MHz with those of maser emission from the excited state of OH at 6035 MHz and from methanol at 6668 MHz. All three varieties of masers appear intermingled, and associated with an ultracompact H  ii region. In many respects we find that OH 323.459−0.079 is similar to W3(OH), one of the few other maser sites yet studied in comparable detail.  相似文献   

5.
Time series are presented for the Class II methanol maser source G12.89+0.49, which has been monitored for nine years at the Hartebeesthoek Radio Astronomy Observatory. The 12.2 and 6.7 GHz methanol masers were seen to exhibit rapid, correlated variations on time-scales of less than a month. Daily monitoring has revealed that the variations have a periodic component with a period of 29.5 d. The period seems to be stable over the 110 cycles spanned by the time series. There are variations from cycle to cycle, with the peak of the flare occurring anywhere within an 11 d window, but the minima occur at the same phase of the cycle. Time delays of up to 5.7 d are seen between spectral features at 6.7 GHz and a delay of 1.1 d is seen between the dominant 12.2 GHz spectral feature and its 6.7 GHz counterpart.  相似文献   

6.
7.
8.
The Parkes radio telescope has been used to study circular polarization in the spectra of masers at the 6035- and 6030-MHz transitions of excited OH. The targets were 91 previously catalogued sites of 6035-MHz maser emission. A few were not detected, primarily because of variability. However, the 6035-MHz intensity variations seldom exceed a factor of 2 over several years, with a handful of dramatic exceptions.
Towards many targets, the present observations have provided the first high-sensitivity search for the 6030-MHz transition and yielded 33 detections. All of the 6030-MHz maser features have 6035-MHz counterparts closely matching in velocity. For matching features, the 6030-MHz emission is most commonly weaker than the 6035-MHz emission by an order of magnitude but, in a few cases, is several times stronger. The detection statistics are well accounted for by very recent developments in maser modelling. However, the occasional occurrence of 6030-MHz maser emission stronger than at 6035-MHz poses a new challenge for the theory.
Spectra with good frequency resolution at 6030 and 6035 MHz yield many valuable measurements of magnetic fields. At each transition, the field can be inferred from a small frequency separation between the right-hand and left-hand circularly polarized features, attributed to the Zeeman effect in a magnetic field of a few mG. In the many instances where a 'Zeeman pair' on the 6035-MHz spectrum has features matched by the 6030-MHz spectrum, this provides convincing corroboration of the magnetic field, in both direction and magnitude.
Several prominent absorption features occur at 6035 MHz, and usually have matching absorption at 6030 MHz of similar, or slightly smaller, depth.  相似文献   

9.
10.
The class II methanol maser source G9.62+0.20E undergoes periodic flares at both 6.7 and 12.2 GHz. The flare starting in 2001 October was observed at seven epochs over three months using the Very Long Baseline Array (VLBA) at 12.2 GHz. High angular resolution images (beam size  ∼1.7 × 0.6 mas  ) were obtained, enabling us to observe changes in 16 individual maser components. It was found that while existing maser spots increased in flux density, no new spots developed and no changes in morphology were observed. This rules out any mechanism which disturbs the masing region itself, implying that the flares are caused by a change in either the seed or pump photon levels. A time delay of one to two weeks was observed between groups of maser features. These delays can be explained by light travel time between maser groups. The regularity of the flares can possibly be explained by a binary system.  相似文献   

11.
We have made observations of the four hyperfine transitions of the 2Π3/2,     ground state of OH at 1612, 1665, 1667 and 1720 MHz and the related 1.6-GHz continuum emission towards NGC 6334 using the Australia Telescope Compact Array. The observations covered all the major radio continuum concentrations aligned along the axis of NGC 6334 (V, A to F). We have detected seven OH masers plus a possible faint eighth maser; two of these masers are located towards NGC 6334-A. Absorption at 1665 and 1667 MHz was detected towards almost all the continuum distribution. All transitions show non-LTE behaviour. The 1667-/1665-MHz intensity ratios range from 1.0 to 1.2, significantly less than their LTE value of 1.8. The results of the OH 'Sum Rule' suggest that this discrepancy cannot be explained solely by high optical depths. The 1612- and 1720-MHz line profiles show conjugate behaviour whereby one line is in absorption and the other in emission. In addition, the profiles commonly showed a flip from absorption to emission and vice versa, which is interpreted as a density gradient. The OH line-to-continuum distribution, optical depth and velocity trends are consistent with a bar-like shape for the molecular gas which wraps around the continuum emission.  相似文献   

12.
Masers at the ground-state OH satellite transitions near 1612 and 1720 MHz are occasionally found in star-forming regions, accompanying the dominant maser of OH at 1665 MHz. The satellite lines can then be valuable diagnostics of physical conditions in star-forming regions if we can first ascertain that all maser species truly arise from the same site. For this purpose, newly measured satellite line positions with subarcsecond accuracy are reported here, and compared with masers of main-line OH at 1665 MHz, with methanol masers at 6668 MHz, and with ultracompact H  ii regions. We confirm that most of the satellite-line OH masers that we have measured are associated with star-forming regions, but a few are not: several 1612-MHz masers are associated with late-type stars, and one 1720-MHz maser is associated with a supernova remnant. The 1720-MHz masers in star-forming regions are accounted for by a pumping scheme requiring high densities, and are distinctly different from those in supernova remnants where the favoured pumping scheme operates at much lower densities.  相似文献   

13.
14.
From a search of more than 80 southern class II methanol maser sites, we report measurements of 22 masers at 107.0 GHz and four at 156.6 GHz, mostly new discoveries. Class II sites, recognized by their strong emission at the 6.6-GHz methanol transition, are indirect indicators of new-born massive stars, and several hundred have been documented; only a handful of these had previously been found to exhibit maser emission at the 107.0- or 156.6-GHz transition. The present survey increases the number of known 107.0-GHz masers to 25, providing a sufficiently large sample to assess their general properties. For the stronger ones, our position measurements confirm that, to an accuracy of 5 arcsec, they coincide with the dominant maser emission at 6.6 GHz. Intensity variations exceeding 50 per cent have occurred in some 107.0-GHz maser features that we observed in both 1996 October and 1998 June.
We find that masers are rare at the 156.6-GHz transition. Two new detections increase the total now known to four. Each 156.6-GHz maser is substantially weaker than its corresponding 107.0-GHz maser. Despite the scarcity of masers, our 156.6-GHz spectra at most observed sites show emission, but apparently of a quasi-thermal variety; it is usually accompanied by somewhat weaker thermal emission at 107.0 GHz, and the intensity ratio of the transitions allows us to begin exploration of the physical characteristics of the small molecular clouds (diameter less than 60 mpc) at these sites. The thermal emission thus provides estimates of the environmental conditions that are needed to support strong masing from spots that are apparently embedded within these clouds.  相似文献   

15.
A survey towards a selection of 35 methanol maser and/or ultracompact (UC) H  ii regions, reported in Papers I and II and by Norris et al., has been conducted in the near-infrared (NIR). Out of 25 methanol maser sites surveyed, 12 are associated with a NIR counterpart. Out of 18 UC H  ii regions (8 of which overlap with maser emission), 12 are associated with a NIR counterpart. Counterparts can be confidently identified not only by the positional agreements, but also by their unusually red colours. Spectral types for the embedded stars can be unambiguously determined for six sources, all of which imply massive, ionizing stars. One of these infrared sources has methanol maser emission, but no UC H  ii region. It is possible that the maser emission associated with this source arises from a pre-UC H  ii phase of massive stellar evolution or it could be that nearly all the ultraviolet photons are absorbed by dust within the UC H  ii region. We have modelled the spectral energy distributions (SEDs) for some sources and find that a single blackbody can be used to estimate the stellar luminosity, but cannot represent the whole infrared SED. A two-component blackbody model and a radiative transfer model were also used to derive essential parameters of the infrared sources. The radiative transfer model also indicates which infrared sources are relatively young and which are older. Both models show that silicate absorption at 9.7 μm must be a dominant feature of these SEDs.  相似文献   

16.
High spatial resolution radio continuum and 6.67-GHz methanol spectral line data are presented for methanol masers previously detected by Walsh et al. (1997). Methanol maser and/or radio continuum emission is found in 364 cases towards IRAS -selected regions. For those sources with methanol maser emission, relative positions have been obtained to an accuracy of typically 0.05 arcsec, with absolute positions accurate to around 1 arcsec. Maps of selected sources are provided. The intensity of the maser emission does not seem to depend on the presence of a continuum source. The coincidence of water and methanol maser positions in some regions suggests there is overlap in the requirements for methanol and water maser emission to be observable. However, there is a striking difference between the general proximity of methanol and water masers to both cometary and irregularly shaped ultracompact (UC) H  ii regions, indicating that, in other cases, there must be differing environments conducive to stimulating their emission. We show that the methanol maser is most likely present before an observable UC H  ii region is formed around a massive star and is quickly destroyed as the UC H  ii region evolves. There are 36 out of 97 maser sites that are linearly extended. The hypothesis that the maser emission is found in a circumstellar disc is not inconsistent with these 36 maser sites, but is unlikely. It cannot, however, account for all other maser sites. An alternative model which uses shocks to create the masing spots can more readily reproduce the maser spot distributions.  相似文献   

17.
Class II methanol masers are believed to be associated with high-mass star formation. Recent observations by Walsh et al. and Phillips et al. reported a very low detection rate of radio continuum emission toward a large sample of 6.7-GHz methanol masers. These results raise questions about the evolutionary phase and/or the mass range of the exciting stars of the masers. Here we report the results of a VLA search for 8.4-GHz continuum emission from the area around five Class II methanol masers, four of which were not detected by Walsh et al. at 8.6 GHz. Radio continuum emission was detected in all five fields although only two of the nine maser spot groups in the five fields were found to be superimposed on radio continuum sources that appear to be ultra-compact H  ii (UCH  ii ) regions. This suggests that continuum counterparts for some masers might be found in further surveys for which the sensitivity level is lower than  1 mJy beam−1  . Considering our results as well as observations from other studies of methanol masers we conclude that masers without radio continuum counterparts are most likely associated with high-mass stars in a very early evolutionary stage, either prior to the formation of a UCH  ii region or when the H  ii region is still optically thick at centimetre wavelengths. With one exception all maser spot groups in the five fields were found to be associated with mid-infrared objects detected in the Midcourse Space Experiment survey.  相似文献   

18.
We report observations of the 4765-MHz maser transition of OH (2Π1/2, J=1/2, F=1→0) towards 57 star-forming regions, taken with the 32-m Toruń telescope. Nine maser sources were detected, of which two had not been reported previously. The newly discovered sources in W75N and Cep A and four previously known sources were monitored over periods ranging from a few weeks to six months. Significant variations of the maser intensity occurred on time-scales of one week to two months. The relationships between the flux density and the linewidth for the new sources, established during the rise and fall phases of bursts that lasted 6–8 weeks, are consistent with a model of saturated masers.  相似文献   

19.
20.
Near-infrared photometry was performed on 56 southern 6.7-GHz methanol maser sources. A simple spherically symmetric model of the radiative transfer through a dust shell was developed and used to study the conditions in the dust cloud in which the masers are produced. The parameters investigated were the size of the cloud, the spectral type of the embedded star, the optical depth of the dust cloud and the dust density distribution. It was found that the infrared colours of the models have a complex dependence on the parameters and that no unique combination of parameter values explains the spectral energy distribution of any particular source. The model effectively reproduces the far-infrared ( IRAS ) colours but cannot simultaneously explain the near-infrared colours for any of the observed sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号