首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production parameters of surface phytoplankton were measured along three transects: La Manche-Cape Town (I); Cape Town-54°S (II); 0°-49°W (along 54°S) (III). The Canary upwelling waters were most productive along transect I, where the surface chlorophyll a (Chl 0) and the surface primary production (PP 0) were as high as 4.3 mg/m3 and 173 mg C/m3 per day, respectively. Mosaic patterns in the distribution of these parameters were recorded in the northeastern regions of the South Subtropical Anticyclonic Gyre (Chl 0 = 0.03–0.35 mg/m3; PP 0 = 1.6–12.6 mg C/m3 per day). Along transect II, the average twofold southward increase in Chl 0 (from 0.2 to 0.4 mg/m3) and the concurrent decline of the phytoplankton assimilation activity ( AN 0) resulted in deviations from typical latitudinal changes inPP 0. At most sites, PP 0 values varied between 6 and 15 mg C/m3 per day. Negligible changes in Chl 0 (0.36–0.85 mg/m3), PP 0 (8–19 mg C/m3 per day), and AN 0 (0.7–1.6 mg C/mg chl a per hour) were registered for the oceanic waters along transect III. Along all the transects, PP 0 depended on Chl 0 to a greater extent than AN 0. The values of the latter parameter were largely determined by the water temperature and showed a slight correlation with the insolation. Along transect II, the integrated primary production (PP int) and the layer-integrated chlorophyll a in the upper 200 m (Chl 0–200) generally varied from 180 to 360 mg C/m2 per day and from 30 to 70 mg/m2, respectively. In the Polar Front region, an increase in Chl 0–200, PP int, Chl 0, and PP 0 up to respective values of 190 mg/m2, 520 mg C/m2 per day, 1.2 mg/m3, and 32 mg C/m3 per day was observed. A comparison of the water column (0–100 m) stability with the vertical distribution of the primary production and chlorophyll content along transect II implies that the thick (>100 m) upper mixed layer (UML) formed in response to the strong water cooling and wind forcing was largely responsible for the limited primary production in the Subantarctic and Antarctic regions. The large UML thickness resulted in an intense removal of plant cells from the photosynthetic layer and light starvation of a significant (up to 60%) part of the phytoplankton community.  相似文献   

2.
The species composition, phytoplankton abundance, and relative yield of the variable fluorescence (F v /F m ) were determined in the mesotrophic Nhatrang Bay in October–November of 2004. The species diversity (250 taxonomic units) and heterogeneity of the phytoplankton structure were high. With respect to the number of species and their abundance, diatoms prevailed. In selected parts of the bay, dinoflagellates dominated. The mean biomass in the water column under 1 m2 (B t ) varied from 2.3 to 64.4 mg C/m3 being 31.0 mg C/m3 on average. The values of B t were the lowest at the stations nearest to the river mouth. Seaward, B t increased. The values of B t increased with depth at some stations and decreased at others. In the surface sea layers, the biomass was lower than that in the underlying waters. The values of F v /F m ranged from 0.10 to 0.64 (at a mean value of 0.49). The lowest values of F v /F m were observed in the area close to the seaport. Over the greater part of the bay, the values of F v /F m were higher than 0.47. Such values are indicative of the relatively high potential photosynthetic activity of the phytoplankton. The abundance and species diversity were higher than those in the dry season (March–April).  相似文献   

3.
Chlorophyll-a concentration (C chl) variations in the cross section within and outside the Peter the Great Bay shelf during different stages of the winter–spring phytoplankton bloom in 2003–2005 has been considered based on a ship (obtained during the R/V Akademik M.A. Lavrent’ev voyage of February 26 to March 9, 2003) and MODIS-Aqua spectroradiometer and the SeaWiFS color-scanner satellite data. A comparison of the C chl variability obtained from the ship and satellite data indicates that these data are inconsistent. According to satellite data obtained at the MUMM atmospheric correction, the C chl variability is distorted less than the NIR-correction data. Studying the variations in the coefficients of light absorption by the detritus and yellow substance (a dg) and light backscattering by suspended particles (b bp), C chl, chlorophyll-a fluorescence (F chl) according to the satellite data allow us to state that the variations in the discrepancy between the satellite and ship C chl values are mainly caused by the variations in the content of the detritus and yellow substance in water. Based on the satellite data, it has been revealed that the a dg values increase with increasing wind mixing after the phytoplankton bloom (about 2–5 km areas where the a dg, C chl, F chl, and bbp values abruptly increased in 2005, apparently due to eddy formation). It has been indicated that the F chl characteristic, which is close to C chl, increases when the favorable conditions for the phytoplankton bloom deteriorate. Therefore, this characteristic cannot be used to identify C chl under the indicated conditions.  相似文献   

4.
The features of the seismic regime before the strongest earthquakes of Taiwan in the late 20th (Chi-Chi on September 21, 1999, Mw = 7.6) and the early 21st century (March 31, 2002, Mw = 7.4) are analyzed. Based on 1990–1999 and 1994–2002 data, respectively, retrospective analysis of three seismic regime parameters are studied: the total annual number of earthquakes NΣ in the range of ML = 2.5–5.5 and Mw = 3.0–7.0; the total annual quantity of released seismic energy ΣE, J; and angular coefficient b of earthquake recurrence graphs. Two explicit subperiods are revealed in the course of the seismic regime: quiescence in 1990–1996 before the Chi-Chi earthquake and in 1994–1997 before the March 2002 earthquake; in 1997–1999 and 1998–2002, respectively, seismic activation is observed. Due to the predominance of weak earthquakes during the Chi-Chi earthquake preparation, factor b appeared relatively higher (–1.16 on average); in contrast, before the March 2002 earthquake, due to the occurrence of foreshocks with Mw = 6.8–7.0, the factor b values appeared relatively lower (–0.55 and–0.74 for the quiescence and activation subperiods, respectively). Despite the fundamental difference in the seismotectonic situation between the domains where two mainshocks occurred and significantly difference energy ranges of the initial seismic events, the analysis results are similar for both earthquakes. In both cases, the mainshock occurred at the peak of released energy, which can be considered a coincidence. Solid verification of this positive tendency requires the accumulation of seismological statistics.  相似文献   

5.
To date no analytical solution of the pile ultimate lateral capacity for the general cφ soil has been obtained. In the present study, a new dimensionless embedded ratio was proposed and the analytical solutions of ultimate lateral capacity and rotation center of rigid pile in cφ soils were obtained. The results showed that both the dimensionless ultimate lateral capacity and dimensionless rotation center were the univariate functions of the embedded ratio. Also, the ultimate lateral capacity in the cφ soil was the combination of the ultimate lateral capacity (f c ) in the clay, and the ultimate lateral capacity (f φ ) in the sand. Therefore, the Broms chart for clay, solution for clay (φ=0) put forward by Poulos and Davis, solution for sand (c=0) obtained by Petrasovits and Awad, and Kondner’s ultimate bending moment were all proven to be the special cases of the general solution in the present study. A comparison of the field and laboratory tests in 93 cases showed that the average ratios of the theoretical values to the experimental value ranged from 0.85 to 1.15. Also, the theoretical values displayed a good agreement with the test values.  相似文献   

6.
A long-term mean turbulent mixing in the depth range of 200–1000 m produced by breaking of internal waves across the middle and low latitudes (40°S–40°N) of the Pacific between 160°W and 140°W is examined by applying fine-scale parameterization depending on strain variance to 8-year (2005–2012) Argo float data. Results show that elevated turbulent dissipation rate (ε) is related to significant topographic regions, along the equator, and on the northern side of 20°N spanning to 24°N throughout the depth range. Two patterns of latitudinal variations of ε and the corresponding diffusivity (Kρ) for different depth ranges are confirmed: One is for 200–450 m with significant larger ε and Kρ, and the maximum values are obtained between 4°N and 6°N, where eddy kinetic energy also reaches its maximum; The other is for 350–1000 m with smaller ε and Kρ, and the maximum values are obtained near the equator, and between 18°S and 12°S in the southern hemisphere, 20°N and 22°N in the northern hemisphere. Most elevated turbulent dissipation in the depth range of 350–1000 m relates to rough bottom roughness (correlation coefficient?=?0.63), excluding the equatorial area. In the temporal mean field, energy flux from surface wind stress to inertial motions is not significant enough to account for the relatively intensified turbulent mixing in the upper layer.  相似文献   

7.
The estimated characteristics of the atmospheric boundary layer, obtained by the simulation of wind wave fields using three versions of the WAM numerical model are compared with the well-known empirical dependences of drag coefficient C d on wind speed U 10 and wave age A, as well as with the dependence of dimensionless roughness height z n on inverse wave age u*/с р. Calculations carried out for several years in the areas of the Pacific and Indian oceans, based on the ERA-interim and CFSR wind reanalyses have shown good agreement between the model and empirical dependences C d (U 10) and C d (A). The range of estimated variability for z n (u*/с р ) has been found to be significantly less than empirical. It has been also found that estimated values of wind speed U 10W (t) are overestimated from 5 to 10% in all versions of WAM models compared with the input wind reanalysis U 10R (t) at the moments of appearance maximum values of wind U 10R (t). The reasons for the established features of the WAM model and their dependence on the model version are discussed.  相似文献   

8.
为节约成本和样品,一些学者同时分析海洋沉积物中的碳、氮及其同位素(TOC、TN、δ13C和δ15N)。分析沉积物中的δ13C,需要对样品进行酸化去除无机碳,但是这一酸化过程会使TN和δ15N的分析结果产生偏差,且偏差范围与沉积物中无机碳含量(CaCO3)有关。本研究选取了低CaCO3含量(1-16%)和高CaCO3含量(20-40%)的海洋沉积物样品,比较了酸化过程对TN和δ15N的影响。研究结果表明,酸化过程对海洋沉积物中TN和δ15N的分析结果产生了显著影响。对于低CaCO3含量的样品,酸化导致样品中TN流失了约0-40%,δ15N偏移了约0-2‰;而对于高CaCO3含量的样品,酸化导致样品中TN流失了约10-60%,δ15N偏移了约1-14‰。表明酸化对TN和δ15N的影响已经超过了仪器的误差范围0.002%(TN)和0.08‰(δ15N),将影响TN和δ15N的环境指示意义。因此,即使海洋沉积物样品中CaCO3含量很低,也必须用原样分析TN和δ15N以避免酸化过程的影响。  相似文献   

9.
引入拖曳系数参数化的海冰自由漂流模拟研究   总被引:2,自引:0,他引:2  
Many interesting characteristics of sea ice drift depend on the atmospheric drag coefficient(C_a) and oceanic drag coefficient(C_w).Parameterizations of drag coefficients rather than constant values provide us a way to look insight into the dependence of these characteristics on sea ice conditions.In the present study,the parameterized ice drag coefficients are included into a free-drift sea ice dynamic model,and the wind factor α and the deflection angle θ between sea ice drift and wind velocity as well as the ratio of C_a to C_w are studied to investigate their dependence on the impact factors such as local drag coefficients,floe and ridge geometry.The results reveal that in an idealized steady ocean,C_a/C_w increases obviously with the increasing ice concentration for small ice floes in the marginal ice zone,while it remains at a steady level(0.2-0.25) for large floes in the central ice zone.The wind factor α increases rapidly at first and approaches a steady level of 0.018 when A is greater than 20%.And the deflection angle θ drops rapidly from an initial value of approximate 80° and decreases slowly as A is greater than20%without a steady level like α.The values of these parameters agree well with the previously reported observations in Arctic.The ridging intensity is an important parameter to determine the dominant contribution of the ratio of skin friction drag coefficient(C_s' /C_s) and the ratio of ridge form drag coefficient(C_r'/C_r) to the value of C_a/C_w,α,and θ,because of the dominance of ridge form drag for large ridging intensity and skin friction for small ridging intensity among the total drag forces.Parameterization of sea ice drag coefficients has the potential to be embedded into ice dynamic models to better account for the variability of sea ice in the transient Arctic Ocean.  相似文献   

10.
The possibility of estimating the parameters of surface pulsed sources from data on acoustic waves recorded in the atmosphere is studied. Experimental values are given for peak pressure P + of recorded acoustic signals, wave-profile area S + in their positive phase, and length t + of this phase, and the approximations of these parameters are obtained within wide ranges of source energy 10–3 < E < 1010 kg TNT and scaled distances 1 < R/E 1/3 < 4 × 104 m/kg1/3. Conventional methods of estimating the acoustic energy E according to data obtained from acoustic measurements in the atmosphere are analyzed, and ways to improve their accuracy are proposed. The influence of the type of explosions on the parameters P +, S +, and t + of acoustic signals at long distances R/E 1/3 > 500 m/kg1/3 from explosions is shown.  相似文献   

11.
The atmospheric effect on the characteristics of infrasonic signals from explosions has been studied. New methods have been proposed to remotely estimate the energy of explosions using the data of infrasonic wave registration. One method is based on the law of conservation of acoustic pulse I, which is equal to the product of the wave profile area S/2 of the studied infrasonic signal and the distance to the source EI [kt] = 1.38 × 10–10 (I [kg/s])1.482. The second method is based on the relationship between the explosion energy and the dominant period T of the recorded signal, EТ [kt] =1.02 × (Т [s]2/σ)3/2, where σ is a dimensionless distance used for determining the degree of manifestation of nonlinear effects in the propagation of sound along ray trajectories. When compared to the conventional EW (Whitaker’s) relation, the advantage of the EI relation is that it can be used for pulsed sources located at an arbitrary height over the land surface and having an arbitrary form of the initial-pulse profile and for any type of infrasonic arrivals. A distinctive feature of the expression for EТ is that the atmospheric effect on the characteristics of recorded infrasonic signals is explicitly taken into account. These methods have been tested using infrasonic data recorded at a distance of 322 km from the sources (30 explosions caused by a fire that occurred at the Pugachevo armory in Udmurtia on June 2, 2011). For the same explosion, empirical relations have been found between energy values obtained by different methods: EI = 1.107 × E W , E Т = 2.201 × E I .  相似文献   

12.
Based on long-term (1985–1995) monitoring data, the paper considers the peculiarities of seasonal variability in the spatial and vertical distribution of particulate organic phosphorus (РPOM) in the surface layer and in the photosynthetic zone in the northwestern Black Sea. Regression equations, experimental data, and satellite observations for the chlorophyll a concentration allowed us to evaluate the seasonal longterm (1979–1995) variability in РPOM in the surface layer and photosynthesis zone. The ratios of the concentrations of particulate organic carbon, nitrogen, phosphorus, and chlorophyll a are calculated and statistical estimates of seasonal changes in the РPOM in the areas with different degrees of influence of river runoff and water of open seas are obtained. The consistency of intra-annual changes in the concentrations of РPOM, chlorophyll a, and phytoplankton biomass is shown, which indicates the role of phytoplankton in the formation of РPOM and in its intra- and interannual variability in the northwestern part of the sea. It is shown that long-term seasonal variations in РPOM and related changes in the concentration of chlorophyll a depend on the variability of bulk river runoff, the extent of its abundance in the northwestern shelf, and regional hydrometeorological conditions.  相似文献   

13.
New experimental data that make it possible to explain and predict the observed variability of turbulent-energy dissipation in the upper ocean are discussed. For this purpose, the dependence of the energy dissipation rate of breaking wind waves on their propagation velocity (see [1]) is used. The turbulent-energy dissipation values obtained earlier in [2, 3] by a direct method are compared to the results of radar measurements of individual breaking events presented in [1]. On the basis of this comparison, a strong dependence of the turbulent-energy dissipation value on the stage of wind-wave development, which is characterized by the ratio U a /c p (U a is the wind speed and c p is the phase speed of the peak of the wind-wave spectrum) is confirmed. This dependence was found earlier purely empirically. Moreover, it is shown that the theoretically obtained dependence (c p /U a )4, does not contradict the available empirical data. The results of this study opens possibilities for scientifically substantiated calculations of greenhouse-gas exchange (specifically, CO2 exchange between the ocean and the atmosphere).  相似文献   

14.
Results obtained from simulating the propagation of infrasonic waves from the Chelyabinsk meteoroid explosion observed on February 15, 2013, are given. The pseudodifferential parabolic equation (PDPE) method has been used for calculations. Data on infrasonic waves recorded at the IS31 station (Aktyubinsk, Kazakhstan), located 542.7 km from the likely location of the explosion, have been analyzed. Six infrasonic arrivals (isolated clearly defined pulse signals) were recorded. It is shown that the first “fast” arrival (F) corresponds to the propagation of infrasound in a surface acoustic waveguide. The rest of the arrivals (T1–T5) are thermospheric. The agreement between the results of calculations based on the PDPE method and experimental data is satisfactory. The energy E of the explosion has been estimated using two methods. One of these methods is based on the law of conservation of the acoustic pulse I, which is a product of the wave profile area S/2 of the signal under analysis and the distance to its source E I [kt] = 1.38 × 10–10 (I [kg/s])1.482. The other method is based on the relation between the energy of explosion and the dominant period T of recorded signal E T [kt] = 1.02 × (T [s]2/σ)3/2, where σ is the dimensionless distance determining the degree of nonlinear effects during the propagation of sound along ray trajectories. According to the data, the explosion energy E I,T ranges from 1.87 to 32 kt TNT.  相似文献   

15.
In October and November 2002, high and relatively high values of the chlorophyll a concentration at the sea surface (C chl) were observed in the English Channel (0.47 mg/m3), in the waters of the North Atlantic Current (0.25 mg/m3), in the tropical and subtropical anticyclonic gyres (0.07–0.42 mg/m3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11–0.23 mg/m3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of C chl (0.02–0.08 mg/m3 for the SATG and 0.07–0.14 mg/m3 for the NATR). At most of the SATG stations, the values of the surface primary production (C phs) varied from 2.5 to 5.5 mg C/m3 per day and were mainly defined by the fluctuations of C chl (r = +0.78) rather than by those of the assimilation number (r = +0.54). The low assimilation activity of phytoplankton in these waters (1.3–4.6 mg chl a per hour) pointed to a lack of nutrients. An analysis of the variability of their concentration and the composition of photosynthetic pigments showed that, in the waters north of 30° N, the growth of phytoplankton was mostly restricted by the deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), the phosphorus concentrations were the minimum. At the low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In the tropical waters and in the waters of the SATG, the primary production throughout the water column varied from 240 to 380 mg C/m2 30° per day. This level of productivity at stations with low values of C chl (<0.08 mg/m3) was provided by a well-developed deep chlorophyll maximum and a high transparency of the water. The light curves of photosynthesis based on in situ measurements point to the high efficiency of utilizing the penetrating solar radiation by phytoplankton on cloudy days.  相似文献   

16.
The spatiotemporal variability of equatorial Pacific upper ocean heat content (HC) and subsurface heat during two types of El Niño-Southern Oscillation (ENSO), namely eastern and central Pacific (EP and CP) types, is investigated using subsurface ocean heat budget analysis. Results show that HC tendencies during both types of ENSO are mainly controlled by oceanic heat advection beneath the mixed layer to the thermocline, and the role of net surface heat flux can be neglected. The most important three terms are the zonal and vertical advections of anomalous heat by climatological currents (QU 0 T′, QW 0 T′) and zonal advection of climatological heat by anomalous current (QUT 0). The large contribution of QU 0 T′ extends from west to east along the equatorial Pacific. The considerable contribution of QUT 0 is confined to the east of 160°W, and that of the QW 0 T′ is observed in the central Pacific between 180°E and 120°W. In particular, a major contribution of QW 0 T′ is also observed in the far eastern Pacific east of 100°W during EP ENSO. There is also a small contribution from meridional advection of climatological heat by anomalous current (QVT 0). In contrast, the meridional advection of anomalous heat by climatological currents (QV 0 T′) and vertical advection of climatological heat by anomalous current (QWT 0) are two damping factors in the HC tendency, with the former dominating. Differences in spatial distribution of the heat advection associated with the two types of ENSO are also presented. We define a warm water heat index (WWH) as integrated heat content above 26 kg m?3 potential density (26σ ? ) isopycnal depth within 130°E–80°W and 5°S–5°N. Further examination suggests that the recharge–discharge of WWH is involved in both types of El Niño, though with some differences. First, it takes about 42 (55) months for the evolution of a recharge–discharge cycle during an EP (CP) ENSO. Second, the EP El Niño event peaks during the discharge phase, 7–8 months after the recharge time. The CP El Niño peaks during the recharge phase, 4–5 months before the recharge time. The locations of HC anomalies in the El Niño mature phase relative to those at recharged time explain why the EP and CP El Niño peak in different stages of the recharge–discharge process.  相似文献   

17.
The chlorophyll a concentration (Cchl a) in the Sea of Azov is estimated by the two-band NIR-red algorithm [34] from MERIS images for 2002–2012. The sea-truth spectrophotometric measurements and MERIS remote estimates of Cchl a are compared. The monthly average Cchl a values are mapped from MERIS data for its lifetime for the first time. The features of the spatiotemporal distribution of Cchl a are ascertained. Differences between the seasonal dynamics of Cchl a in the Sea of Azov according to the literature data and the dynamics derived from MERIS data are found, namely: the summer–autumn phytoplankton growth period is longer than the spring period and is characterized by higher Cchl a values throughout the water area.  相似文献   

18.
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10~(-7))-O(10~(-6)) W/kg and O(10~(-3))-O(10~(-2)) m~2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10~(-8)) to O(10~(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10~(-6)) to O(10~(-5)) m~2/s.In the marginal ice zone,K is vertically stable with the order of10~(-4) m~2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.  相似文献   

19.
Seasonal and interannual variations in adjective heat fluxes in the ocean (dQoc) and the convergence of advective heat fluxes in the atmosphere (dQatm) in the Barents Sea region have been investigated over the period of 1993–2012 using the results of the MIT regional eddy-permitting model and ERA-Interim atmospheric reanalysis. Wavelet analysis and singular spectrum analysis are used to reveal concealed periodicities. Seasonal 2- to 4- and 5- to 8-year cycles are revealed in the dQoc and dQatm data. It is also found that seasonal variations in dQoc are primarily determined by the integrated volume fluxes through the western boundary of the Barents Sea, whereas the 20-year trend is determined by the temperature variation of the transported water. A cross-wavelet analysis of dQoc and dQatm in the Barents Sea region shows that the seasonal variations in dQoc and dQatm are nearly in-phase, while their interannual variations are out-of-phase. It is concluded that the basin of the Barents Sea plays an important role in maintaining the feedback mechanism (the Bjerknes compensation) of the ocean–atmosphere system in the Arctic region.  相似文献   

20.
斜向波浪作用下双层水平板式防波堤波浪荷载试验研究   总被引:1,自引:0,他引:1  
In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号