首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the dynamics of magnetic fields in spiral galaxies by performing 3D magnetohydrodynamics simulations of galactic discs subject to a spiral potential using cold gas, warm gas and a two-phase mixture of both. Recent hydrodynamic simulations have demonstrated the formation of interarm spurs as well as spiral arm molecular clouds, provided the interstellar medium model includes a cold H  i phase. We find that the main effect of adding a magnetic field to these calculations is to inhibit the formation of structure in the disc. However, provided a cold phase is included, spurs and spiral arm clumps are still present if β≳ 0.1 in the cold gas. A caveat to the two-phase calculations though is that by assuming a uniform initial distribution, β≳ 10 in the warm gas, emphasizing that models with more consistent initial conditions and thermodynamics are required. Our simulations with only warm gas do not show such structure, irrespective of the magnetic field strength.
Furthermore, we find that the introduction of a cold H  i phase naturally produces the observed degree of disorder in the magnetic field, which is again absent from simulations using only warm gas. Whilst the global magnetic field follows the large-scale gas flow, the magnetic field also contains a substantial random component that is produced by the velocity dispersion induced in the cold gas during the passage through a spiral shock. Without any cold gas, the magnetic field in the warm phase remains relatively well ordered apart from becoming compressed in the spiral shocks. Our results provide a natural explanation for the observed high proportions of disordered magnetic field in spiral galaxies and we thus predict that the relative strengths of the random and ordered components of the magnetic field observed in spiral galaxies will depend on the dynamics of spiral shocks.  相似文献   

2.
3.
4.
It is assumed that the two-fold disc-wide symmetry of spirals is caused by density waves, but also the potential of a bar component may have a significant influence on structural properties. The strength of the bar component appears to be anti-correlated with the degree of symmetry of star-forming regions in the spiral arms (Rozas et al., 1998). We present new results of R and Hα surface photometry of a sample of bright barred spirals. A photometric decompositon of the galaxy components is carried out in order to make a more accurate measurement of the strength of the bar and its interrelation to gas and stars in the disc. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The intriguing question of the origin of the arm-like magnetic structures seen between the optical spiral arms of certain spiral galaxies is addressed. Using a two-dimensional approximation to the non-linear disc dynamo equation, it is shown that gas streaming along the arms may produce such a field configuration. Another possibility is a spiral modulation of the turbulent diffusivity, associated with an enhancement of turbulence in the interstellar medium within the arms. The effects of a similar modulation of the alpha-effect are also examined. Finally, the consequences of a non-linear feedback of the large-scale field on the turbulent diffusivity ('η-quenching') are briefly discussed.  相似文献   

6.
A simple non-linear, non-axisymmetric mean field dynamo model is applied to a differentially rotating spherical shell. Two approximations are used for the angular velocity, to represent what is now believed to be the solar rotation law. In each case, stable solutions are found which possess a small non-axisymmetric field component. Although the model has a number of obvious shortcomings, it may be relevant to the problem of the solar active longitudes.  相似文献   

7.
More and more observations are showing a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. Its existence indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric  α2– Ω  dynamo model is derived to explore the characteristics of the axisymmetric  ( m = 0)  and the first non-axisymmetric  ( m = 1)  modes and to provide a theoretical basis with which to explain the 'active longitude', 'flip-flop' and other non-axisymmetric phenomena. The model consists of an updated solar internal differential rotation, a turbulent diffusivity varying with depth, and an α-effect working at the tachocline in a rotating spherical system. The difference between the  α2–Ω  and the  α–Ω  models and the conditions that favour the non-axisymmetric modes under solar-like parameters are also presented.  相似文献   

8.
9.
10.
11.
We study the equilibrium of pressure truncated, filamentary molecular clouds that are threaded by rather general helical magnetic fields. We first apply the virial theorem to filamentary molecular clouds, including the effects of non-thermal motions and the turbulent pressure of the surrounding ISM. When compared with the data, we find that many filamentary clouds have a mass per unit length that is significantly reduced by the effects of external pressure, and that toroidal fields play a significant role in squeezing such clouds.
We also develop exact numerical MHD models of filamentary molecular clouds with more general helical field configurations than have previously been considered. We examine the effects of the equation of state by comparing 'isothermal' filaments, with constant total (thermal plus turbulent) velocity dispersion, with equilibria constructed using a logatropic equation of state.
Our theoretical models involve three parameters: two to describe the mass loading of the toroidal and poloidal fields, and a third that describes the radial concentration of the filament. We thoroughly explore our parameter space to determine which choices of parameters result in models that agree with the available observational constraints. We find that both equations of state result in equilibria that agree with the observational results. Moreover, we find that models with helical fields have more realistic density profiles than either unmagnetized models or those with purely poloidal fields; we find that most isothermal models have density distributions that fall off as r −1.8 to r −2, while logatropes have density profiles that range from r −1 to r −1.8. We find that purely poloidal fields produce filaments with steep radial density gradients that are not allowed by the observations.  相似文献   

12.
13.
We give a pedagogical introduction to two aspects of magnetic fields in the early Universe. We first focus on how to formulate electrodynamics in curved space time, defining appropriate magnetic and electric fields and writing Maxwell equations in terms of these fields. We then specialize to the case of magnetohydrodynamics in the expanding Universe. We emphasize the usefulness of tetrads in this context. We then review the generation of magnetic fields during the inflationary era, deriving in detail the predicted magnetic and electric spectra for some models. We discuss potential problems arising from back reaction effects and from the large variation of the coupling constants required for such field generation (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Published in Astrofizika, Vol. 38, No. 4, pp. 692–693, October–December, 1995.  相似文献   

15.
16.
We consider the effect of toroidal magnetic fields on hydrodynamically stable Taylor–Couette differential rotation flows. For current-free magnetic fields a non-axisymmetric   m = 1  magnetorotational instability arises when the magnetic Reynolds number exceeds   O (100)  . We then consider how this 'azimuthal magnetorotational instability' (AMRI) is modified if the magnetic field is not current-free, but also has an associated electric current throughout the fluid. This gives rise to current-driven Tayler instabilities (TIs) that exist even without any differential rotation at all. The interaction of the AMRI and the TI is then considered when both electric currents and differential rotation are present simultaneously. The magnetic Prandtl number Pm turns out to be crucial in this case. Large Pm have a destabilizing influence, and lead to a smooth transition between the AMRI and the TI. In contrast, small Pm have a stabilizing influence, with a broad stable zone separating the AMRI and the TI. In this region the differential rotation is acting to stabilize the TIs, with possible astrophysical applications (Ap stars). The growth rates of both the AMRI and the TI are largely independent of Pm , with the TI acting on the time-scale of a single rotation period, and the AMRI slightly slower, but still on the basic rotational time-scale. The azimuthal drift time-scale is ∼20 rotations, and may thus be a (flip-flop) time-scale of stellar activity between the rotation period and the diffusion time.  相似文献   

17.
We examine the effect of magnetic fields on star cluster formation by performing simulations following the self-gravitating collapse of a turbulent molecular cloud to form stars in ideal magnetohydrodynamics. The collapse of the cloud is computed for global mass-to-flux ratios of  ∞, 20, 10, 5  and 3, i.e. using both weak and strong magnetic fields. Whilst even at very low strengths the magnetic field is able to significantly influence the star formation process, for magnetic fields with plasma  β < 1  the results are substantially different to the hydrodynamic case. In these cases we find large-scale magnetically supported voids imprinted in the cloud structure; anisotropic turbulent motions and column density striations aligned with the magnetic field lines, both of which have recently been observed in the Taurus molecular cloud. We also find strongly suppressed accretion in the magnetized runs, leading to up to a 75 per cent reduction in the amount of mass converted into stars over the course of the calculations and a more quiescent mode of star formation. There is also some indication that the relative formation efficiency of brown dwarfs is lower in the strongly magnetized runs due to a reduction in the importance of protostellar ejections.  相似文献   

18.
Stability of toroidal magnetic field in a stellar radiation zone is considered for the cases of uniform and differential rotation. In the rigidly rotating radiative core shortly below the tachocline, the critical magnetic field for instability is about 600 G. The unstable disturbances for slightly supercritical fields have short radial scales ∼1 Mm. Radial mixing produced by the instability is estimated to conclude that the internal field of the sun can exceed the critical value of 600 G only marginally. Otherwise, the mixing is too strong and not compatible with the observed lithium abundance. Analysis of joint instability of differential rotation and toroidal field leads to the conclusion that axisymmetric models of the laminar solar tachocline are stable to nonaxisymmetric disturbances. The question of whether sun-like stars can posses tachoclines is addressed with positive answer for stars with rotation periods shorter than about two months. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The possibility of magnetic flux expulsion from the Galaxy in superbubble (SB) explosions, important for the α –Ω dynamo, is considered. Special emphasis is put on investigation of the downsliding of the matter from the top of the shell formed by the SB explosion, which is able to influence the kinematics of the shell. It is shown that either Galactic gravity or the development of the Rayleigh–Taylor instabilities in the shell limit the SB expansion, thus making magnetic flux expulsion impossible. The effect of cosmic rays in the shell on the sliding is considered, and it is shown that it is negligible compared with Galactic gravity. Thus the question of the possible mechanism of flux expulsion in the α –Ω dynamo remains open.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号