首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The evolution of a front that forms inshore of the main Chesapeake Bay plume, near Cape Henry, Virginia, United States, was observed during a period of downwelling-favorable winds in May 1999. A novel aspect of this study was the use of an underway, horizontally-oriented acoustic Doppler current profiler (ADCP) to map the front and to study its evolving shape. Measurements made during flood tide show the front forming about 2 km from shore and then advancing shoreward (at about 20 cm s−1) over dense, inshore water. Measurements made while anchored 1 km from shore show the surface salinity increasing during ebb tide, then abruptly decreasing during flood tide as the front moves inshore. To account for this cycle of events, a conceptual model is proposed in which dense water upwells to the surface during ebb tide near Cape Henry, helping to set the stage for frontal formation on the flood. The cyclic recurrence of this Cape Henry front so close to the mouth of the bay may provide a mechanism for recirculating estuarine material that would otherwise be transported southward in the coastal buoyancy current.  相似文献   

2.
Observations of the Mobile Bay, Alabama, plume during a flood event in April 1991 reveal significant differences in the current field on either side of a front associated with the buoyant plume. During a strong southeasterly wind, turbid, low salinity water from Mobile Bay was pushed through an opening in the west side of the ebb-tidal delta and moved parallel to the coast. A stable front developed between the low salinity water of the buoyant plume (11‰) and the high salinity coastal water (>23‰) that was being forced landward by the prevailing winds. Despite the shallow water depth of 6 m, measurements of currents, temperature, and salinity show large shears and density gradients in both the vertical and the horizontal directions. At a station outside of the buoyant plume, currents at 0.5 m and 1.5 m below the surface were in the same direction as the wind. Inside the plume, however, currents at 0.5 m below the surface were parallel to the coast, 45°, off the direction of the wind and the magnitude was 45% larger than the magnitude of the surface currents outside the plume. Beneath the level of the plume, the currents were identical to the wind-driven currents in the ambient water south of the front. Our observations suggest that the wind-driven surface currents of the ambient water converged with the buoyant plume at the front and were subducted beneath the plume. The motion of the ambient coastal surface water was in the direction of the local wind stress, however, the motion of the plume had no northerly component of motion. The plume also did not show any flow toward the front, suggesting a balance between the northerly component of wind stress and the southerly component of buoyant spreading. In addition, the motion of the plume did not appear to affect the motion of the underlying ambient water, suggesting a lack of mixing between the two waters.  相似文献   

3.
A hydrothermal plume forms in Lake Banyoles, NE Spain, as a result of convection above a springwater-fed suspension cloud ponded on the lake floor. The plume propagates upwards reaching a level of neutral buoyancy from where a turbidity current spreads out laterally. Two-dimensional temperature and particle concentration measurements show the fate of the hydrothermal plume and its associated turbidity current and reveal its seasonal development. Silt particles transported by the plume have been used as tracers to determine the maximum and equilibrium heights of the plume. When the lake is stratified, the vertical transport of sediment is confined to the lake hypolimnion, as the thermocline limits the vertical propagation of the plume. In contrast, when the lake water column is mixed, the plume reaches the surface of the lake. The field measurements have been compared with models for thermal convection from finite isolated sources. Measurements of the flow velocity at the source of the hydrothermal plume (i.e. the rim current velocity) indicate that cold hypolimnetic water is entrained by the plume. Sedimentation rates measured from sediment traps at the zone where the turbidity current develops vary between 10 and 25 g m−2 day−1, and result from continuous silt particle sedimentation from the turbidity current. Sedimentation rates in traps are higher for stations situated close to the source than those further away (<5 g m−2 day−1). Moreover, the results demonstrate that double diffusive sedimentation from the turbidity current was dominant over grain-by-grain settling, causing a mixed distribution of sediments in the region where the turbidity current spreads. The deposition of silt particles could explain the occurrence of silt layers interbedded with biocalcarenites in the littoral zones of the lake and the stratigraphy identified by seismic profiles and cores taken from the lake floor.  相似文献   

4.
基于微纳气泡示踪的拖曳法ADCP流速测试   总被引:1,自引:0,他引:1  
声学多普勒剖面流速仪(ADCP)设备在水文领域保有量大、应用广,但如何对其进行量值溯源,确保现场测量数据准确可靠是用户非常关注的问题.分析ADCP的测试现状,阐述ADCP的6个测试参数,分析出流速测试是核心;利用微纳气泡作为示踪粒子,尝试解决静止水体无反射粒子的问题,为ADCP流速测试提供支撑;以TRDI的WHR600...  相似文献   

5.
Behavior of Uranium in the Yellow River Plume (Yellow River Estuary)   总被引:2,自引:0,他引:2  
The Yellow River (Huanghe) is the second largest river in China and is known for its high turbidity. It also has remarkably high levels of dissolved uranium (U) concentrations (up to 38 nmol 1-1). To examine the mixing behavior of dissolved U between river water and seawater, surface water samples were collected along a salinity gradient from the Yellow River plume during September 2004 and were measured for dissolved U concentration,234U:238U activity ratio, phosphate (PO4 3–), and suspended particulate matter. Laboratory experiments were also conducted to simulate the mixing process in the Yellow River plume using unfiltered Yellow River water and filtered seawater. The results showed a nonconservative behavior for dissolved U at salinities < 20 with an addition of U to the plume waters estimated at about 1.4 X 105 mol yr–1. A similarity between variations in dissolved U and PO4 3– with salinity was also found. There are two major mechanisms, desorption from suspended sediments and diffusion from interstitial waters of bottom sediments, that may cause the elevated concentrations of dissolved U and PO4 3– in mid-salinity waters. Mixing experiments indicate that desorption seems more responsible for the elevated dissolved U concentrations, whereas diffusion influences more the enrichment of PO4 3–.  相似文献   

6.
 Drilling of 15 boreholes at a disused liquid waste disposal site near Perth, Western Australia, has indicated that a contamination plume extends about 1000 m in a southerly direction from the site in the direction of groundwater flow. The plume is up to 600 m wide and 5–40 m thick. Chemical and microbiological analyses have indicated that contaminated groundwater contains high concentrations of ammonia, iron, and bacteria at levels that commonly exceed national drinking water guidelines. It is likely that a proposed water supply production well in the path of the contamination plume will have to be abandoned, and additional wells may have to be abandoned if the plume continues to extend in the direction of groundwater flow. There is currently insufficient information to indicate whether the plume is continuing to expand, but studies on similar plumes in the Perth metropolitan area have indicated that contaminated groundwater can move at rates up to 100 m yr–1. Several other liquid waste disposal sites are now located in residential areas of Perth where wells are used for garden irrigation. Further work is required to ensure that there is no potential impact of groundwater contamination on public health in these areas. Received: 31 July 1995 · Accepted: 18 September 1995  相似文献   

7.
This paper describes the design, testing, and application of a portable and retractable shipboard acoustic Doppler current profiler (ADCP) boom-mount. The boom is specifically adapted for small fiberglass boats working with a minimal crew. The design permits the rapid collection of ADCP data on discontinuous transects which would be difficult or impossible using a large displacement hull vessel or with a towed vehicle. This capability is particularly useful in shallow wind-driven estuaries and in tidal channels where flow time scales are often on the order of several hours. Tests of the boom show that high quality ADCP data (as measured by percent good) can be obtained at boat speeds up to 4.0 m s−1 and that data quality depends on transducer depth. The utility of the retractable design is demonstrated with an 8 m boat on two nearly synoptic ADCP surveys of a shallow estuary. With minor modifications to accommodate different vessel geometries, the design could be readily adapted for use on similar vessels.  相似文献   

8.
Effects of hopper dredging and sediment dispersion,chesapeake bay   总被引:5,自引:0,他引:5  
Hopper dredging operations release suspended sediment into the environment by agitation of the bed and by discharge of overflow slurries. Monitoring of turbidity and suspended sediment concentrations in central Chesapeake Bay revealed two plumes: (1) an upper plume produced by overflow discharge and (2) a near-bottom plume produced by draghead agitation and rapid settling from the upper plume. The upper plume dispersed over 5.7 km2 extending 5,200 meters form the discharge point. Redeposited sediment accumulated on channel flanks covering an area of 6.4 km2 and reached a thickness of 19 cm. Altogether dredging redistributed into the environment an estimated 100,000 tons of sediment or 12 percent of the total material removed.Near-field concentrations of suspended sediment, less than 300 m from the dredge, reach 840 to 7,200 mg/L or 50 to 400 times the normal background level. Far-field concentrations (>300 m) are enriched 5 to 8 times background concentrations and persist 34 to 50 percent of the time during a dredging cycle (1.5 to 2.0 h). The overflow discharge plume evolves through three dispersion phases: (1) convective descent, (2) dynamic collapse, and (3) long-term passive diffusion (Clark and others 1971). The bulk of the material descends rapidly to the bottom during the convective descent phase, whereas the cloud that remains in suspension is dispersed partly by internal waves. Although suspended sediment concentrations in the water column exceed certain water quality standards, benthic communities survived the perturbation with little effect.  相似文献   

9.
 In September 1994, a Russian-American team conducted hydrogeological, geochemical, geophysical, and radiometric measurements in the territory of the Mayak Production Association, Russia. The primary purpose of these operations was to examine the frontal area of a radioelement- and nitrate-laden groundwater plume moving from the disposal site, Lake Karachai, toward the Mishelyak River. Activities encompassed (1) isolation of hydrologic intervals in two wells and production of water from these intervals, to compare isolated versus open-well sampling methods and to determine hydraulic transmissivities of the aquifer(s); (2) surface and soil-water sampling, accompanying radiometric measurements and subsequent chemical analyses; and (3) electrical resistivity profiling in areas of expected contrasting resistivity. Preliminary results indicate that (1) 60Co, 137Cs, and 90Sr are present in small concentrations (∼0.1% of permissible levels) in water of the Mishelyak River; (2) analyses of water samples collected by a downhole sampler and of water produced from packed-off intervals agree within limits of laboratory accuracy, attesting to the efficacy of the sampling methods presently used by the Russian workers; (3) considerable differences in contaminant concentrations exist between nearby wells, supporting the concept that the plume from Lake Karachai toward the Mishelyak River is controlled by steeply dipping fractures and shear zones; and (4) strong contrasts occur between the electrical resistivities of soil and bedrock. Further collaborative work is strongly recommended and should include more detailed isolation of intervals in wells by multi-packer installations, to better determine the geochemical and hydrological characteristics of the Karachai-Mishelyak system; deployment of a broader soil water and soil sampling array; a more detailed examination of the distribution and concentration of radionuclides by high-resolution field gamma spectrometry; and a detailing of the area's electrical resistivity setting, using a mobile electromagnetic measurement system. Received: 22 January 1996 · Accepted: 1 April 1996  相似文献   

10.
The role of methane clathrate hydrates in the global methane budget is poorly understood because little is known about how much methane from decomposing hydrates actually reaches the atmosphere. In an attempt to quantify the role of water column methanotrophy (microbial methane oxidation) as a control on methane release, we measured water column methane profiles (concentration and δ13C) and oxidation rates at eight stations in an area of active methane venting in the Eel River Basin, off the coast of northern California. The oxidation rate measurements were made with tracer additions of 3H-CH4.Small numbers of instantaneous rate measurements are difficult to interpret in a dynamic, advecting coastal environment, but combined with the concentration and stable isotope measurements, they do offer insights into the importance of methanotrophy as a control on methane release. Fractional oxidation rates ranged from 0.2 to 0.4% of ambient methane per day in the deep water (depths >370 m), where methane concentration was high (20–300 nM), to near-undetectable rates in the upper portion of the water column (depths <370 m), where methane concentration was low (3–10 nM). Methane turnover time averaged 1.5 yr in the deep water but was on the order of decades in the upper portion of the water column. The depth-integrated water column methane oxidation rates for the deep water averaged 5.2 mmol CH4 m−2 yr−1, whereas the upper portion of the water column averaged only 0.14 mmol CH4 m−2 yr−1; the depth-integrated oxidation rate for deep water in the 25-km2 area encompassing the venting field averaged 2 × 106 g CH4 yr−1. Stable isotope values (δ13C-CH4) for individual samples ranged from −34 to −52‰ (vs. PDB, Peedee belemnite standard) in the region. These values are isotopically enriched relative to hydrates in the region (δ13C-CH4 about −57 to −69‰), further supporting our observations of extensive methane oxidation in this environment.  相似文献   

11.
Doklady Earth Sciences - We studied the currents mode of the Azov Sea on the basis of instrumental measurements of R/V&nbsp;Deneb in 2018 and 2019. Using ADCP current meters, water exchange...  相似文献   

12.
A series of laboratory experiments has been conducted in order to elucidate the sediment-induced mixing processes accompanying riverine outflows; specifically, the discharge of a warm, fresh, particle-laden fluid over a relatively dense, cool brine. In a parameter regime analogous to recently acquired field measurements, hypopycnal (surface) plumes were subject to a convective instability driven by some combination of heat diffusing out of the warm, fresh, sediment-laden plume and particle settling within it. Convection was robust in the presence or absence of intense turbulence, at sediment concentrations as low as 1 kg m−3, and took the form of millimetre-scale, sediment-laden fingers descending from the base of the surface plume. A consequence of the convective instability of the original hypopycnal plume is the generation of a hyperpycnal (bottom-riding) flow. The experiments presented here indicate that natural river outflows may thus generate hyperpycnal plumes when sediment concentrations are 40 times less than those required to render the outflow heavy relative to the oceanic ambient. The resulting hyperpycnal plumes may play an important role in transporting substantial quantities of sediment to the continental slope and beyond.  相似文献   

13.
《Applied Geochemistry》1993,8(6):569-586
Crude oil floating on the water table in a sand and gravel aquifer provides a constant source of hydrocarbons to the groundwater at a site near Bemidji, Minnesota. The degradation of hydrocarbons affects the concentrations of oxidized and reduced aqueous species in the anoxic part of the contaminant plume that developed downgradient from the oil body. The concentrations of Fe2+, Mn2+ and CH4, Eh measurements, and the δ13C ratios of the total inorganic C indicate that the plume became more reducing ver a 5-a period. However, the size of the contaminant plume remained stable during this time. Field data coupled with laboratory microcosm experiments indicate that benzene and the alkylbenzenes are degraded in an anoxic environment. In anaerobic microcosm experiments conducted under field conditions, almost complete degradation (98%) was observed for benzene in 125 d and for toluene in 45 d. Concentrations of aqueous Fe2+ and Mn2+ increased in these experiments, indicating that the primary reactions were hydrocarbon degradation coupled with Fe and Mn reduction.Mass transfer calculations on a 40-m flowpath in the anoxic zone, downgradient from the oil body, indicated that the primary reactions in the anoxic zone are oxidation of organic compounds, precipitation of siderite and a ferroan calcite, dissolution of iron oxide and outgassing of CH4 and CO2. The major difference in the two models presented is the ratio of CO2 and CH4 that outgasses. Both models indicate quantitatively that large amounts of Fe are dissolved and reprecipitated as ferrous iron in the anoxic zone of the contaminant plume.  相似文献   

14.
本文介绍了声学多普勒流速仪在浙江省水文系统中的应用情况.声学多普勒测验技术解决了钱塘江河口感潮地区流量测验的难题,在平原河网应用的稳定性也得到验证,时于无稳定水位~流量关系的测站也提供了解决方案,但也存在一些应用上的限制.  相似文献   

15.
V. N. Puchkov 《Geotectonics》2016,50(4):425-438
The relationship between plate- and plume-tectonics is considered in view of the growth and breakdown of supercontinents, active rifting, the formation of passive volcanic-type continental margins, and the origin of time-progressive volcanic chains on oceanic and continental plates. The mantle wind phenomenon is described, as well as its effect on plume morphology and anisotropy of the ambient mantle. The interaction of plumes and mid-ocean ridges is discussed. The principles and problems of plume activity analysis in subduction- and collision-related foldbelts are considered and illustrated with examples.  相似文献   

16.
In October of 2004, a 3-d observational program to measure flow and sediment resuspension within a coastal intertidal salt marsh was conducted in the North Inlet/Winyah Bay National Estuarine Research Reserve located near Georgetown, South Carolina. Current and acoustic backscatter profiles were obtained from a moored acoustic Doppler current profiler (ADCP) deployed in a shallow tidal channel during the spring phase of the tidal cycle under high discharge conditions. The channel serves as a conduit between Winyah Bay, a large brackish estuary, and North Inlet, a saline intertidal coastal salt marsh with little freshwater input. Salinity measurements indicate that the water column is vertically well mixed during flood, but becomes vertically stratified during early ebb. The stratification results from brackish (15 psu) Winyah Bay water entering North Inlet via the tidal channel, suggesting an exchange mechanism that permits North Inlet to receive a fraction of the poor water quality and high discharge flow from upland rivers. Although maximum flood currents exceed maximum ebb currents by 0.2 m s−1, suspended sediment concentrations are highest during the latter ebb phase and persist for a longer fraction of the ebb cycle. Even though the channel is flood-dominated, the higher concentrations occurring over a longer fraction of the ebb phase indicate net particulate transport from Winyah Bay to North Inlet during spring tide accompanied by high discharge. Our evidence suggests that the higher concentrations during ebb result from increased bed friction caused by flow asymmetries and variations in water depth in which the highest stresses occur near the end of ebb near low water despite stronger maximum currents during flood.  相似文献   

17.
High resolution thermal cameras were used in observations of gas-and-ash plumes during eruption of the Koryak volcano in March 2009. Our results provide the thermal structure of gas-and-ash flows. The structure of the eruption column consists of several individual plumes. The vertical velocity of plume rise was estimated at 5.5–7 m/s. The eruption column or plume can be conventionally divided into three parts: a highly convective region, a buoyant region, and a region of horizontal motion. The temperature of the plume is higher than that of the surrounding atmosphere by 3–5°C for the horizontal motion region and by about 20°C for the buoyant region. The velocity at the buoyant region is 5–7 m/s. For the boundary between highly convective and buoyant regions, where the plume diameter is known, the vapor mass flow and the heat capacity of the thermal jet flow can be determined from the heat balance equation. The mass flow of the overheated vapor, which has a temperature of 450°C and comprises a gas-and-ash eruption plume, was estimated to be Q = 35 kg/s. The total mass of water vapor over the period of eruption (100 days) is estimated at 3 · 105 t. The total thermal energy of the eruption amounted to 109 MJ.  相似文献   

18.
In this review, we use data from field measurements of biogeochemical processes and cycles in the Mississippi River plume and in other shelf regions of the northern Gulf of Mexico to determine plume contributions to coastal hypoxia. We briefly review pertinent findings from these process studies, review recent mechanistic models that synthesize these processes to address hypoxia-related issues, and reinterpret current understanding in the context of these mechanistic models. Some of our conclusions are that both nitrogen and phosphorus are sometimes limiting to phytoplankton growth; respiration is the main fate of fixed carbon in the plume, implying that recycling is the main fate of nitrogen; decreasing the river nitrate loading results in less than a 1:1 decrease in organic matter sinking from the plume; and sedimenting organic matter from the Mississippi River plume can only fuel about 23% of observed coastal hypoxia, suggesting significant contributions from the Atchafalaya River and, possibly, coastal wetlands. We also identify gaps in our knowledge about controls on hypoxia, and indicate that some reinterpretation of our basic assumptions about this system is required. There are clear needs for improved information on the sources, rates, and locations of organic matter sedimentation; for further investigation of internal biogeochemical processes and cycling; for improved understanding of the rates of oxygen diffusion across the pycnocline; for identification and quantification of other sources of organic matter fueling hypoxia or other mechanisms by which Mississippi River derived organic matter fuels hypoxia; and for the development of a fully coupled physical-biogeochemical model.  相似文献   

19.
The relationships between electrical conductivity, temperature, salinity, and density are studied for brackish Lake Issyk-Kul. These studies are based on a newly determined major ion composition, which for the open lake shows a mean absolute salinity of 6.06 g kg−1. The conductivity-temperature relationship of the lake water was determined experimentally showing that the lake water is about 1.25 times less conductive than seawater diluted to the same absolute salinity as that of the lake water. Based on these results, an algorithm is presented to calculate salinity from in-situ conductivity measurements. Applied to the field data, this shows small but important vertical salinity variations in the lake with a salinity maximum at 200 m and a freshening of the surface water with increasing proximity to the shores. The algorithm we adopt to calculate density agrees well with earlier measurements and shows that at 20°C and 1 atm Lake Issyk-Kul water is about 530 g m−3 denser than seawater at the same salinity. The temperature of maximum density at 1 atm is about 0.15°C lower than that for seawater diluted to the same salinity. Despite its small variations, salinity plays an important role, together with temperature changes, in the static stability and in the production of deep-water in this lake. Changes in salinity may have had important consequences on the mixing regime and the fate of inflowing river water over geological time. Uncharged silicic acid is negligible for the stability of the water column except near an ∼15 m thick nepheloid layer observed at the bottom of the deep basin.  相似文献   

20.
The groundwater flow and solute transport models were established by Visual Modflow, which was used to forecast the transport process of Cr6+ in groundwater and simulate the effects of three control measures of contaminants transport after percolation solution leakage happened in the impermeable layer of the landfill. The results showed that the contamination plume of Cr6+ would reach the pool’s boundary in 10 years, and the distance of contamination transport was 1,450 m. However, the contamination plume will not be obviously expanded between 10 and 20 years. While the ground was covered by hardened concrete, the contamination plume would not reach the pool’s boundary in 20 years. When the leakage-proof barrier was set in the bottom of an unconfined aquifer, the concentration of Cr6+ was higher than that of the leakage-proof barrier unset, but the result was opposite when setting the leakage-proof barrier in the bottom of confined aquifer. The range of the contamination plume was effectively controlled by setting drainage ditches in which water discharge was 2,298.05 m3 d?1, which produced monitoring wells which are not contaminated in 20 years. In sum, combining ground hardening with drainage ditches could produce the best effect in controlling contaminants diffusion, and meanwhile, the drainage ditches daily discharge was reduced to 1,710.19 m3 d?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号