首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seagrasses are typically light limited in many turbid estuarine systems. Light attenuation is due to water and three optically active constituents (OACs): nonalgal particulates, phytoplankton, and colored dissolved organic matter (CDOM). Using radiative transfer modeling, the inherent optical properties (IOPs) of these three OACs were linked to the light attenuation coefficient, K PAR, which was measured in North River, North Carolina, by profiles of photosynthetically active radiation (PAR). Seagrasses in the southern portion of Albemarle-Pamlico Estuarine System (APES), the second largest estuary in the USA, were found to be light limited at depths ranging from 0.87 to 2 m. This corresponds to a range of K PAR from 0.54 to 2.76 m?1 measured during a 24-month monitoring program. Turbidity ranged from 2.20 to 35.55 NTU, chlorophyll a from 1.56 to 15.35 mg m?3, and CDOM absorption at 440 nm from 0.319 to 3.554 m?1. The IOP and water quality data were used to calibrate an existing bio-optical model, which predicted a maximum depth for seagrasses of 1.7 m using annual mean water quality values and a minimum light requirement of 22% surface PAR. The utility of this modeling approach for the management of seagrasses in the APES lies in the identification of which water quality component is most important in driving light attenuation and limiting seagrass depth distribution. The calibrated bio-optical model now enables researchers and managers alike to set water quality targets to achieve desired water column light requirement goals that can be used to set criteria for seagrass habitat protection in North Carolina.  相似文献   

2.
We applied an index of estuarine biotic integrity (EBI) to 36 sites in 16 estuaries on Cape Cod and in Buzzards Bay, Massachusetts, U.S. Two estuaries were sampled in 6 years, from 1988–1999 (Waquoit and Buttermilk Bays), and a total of 14 others in Buzzards Bay were sampled in 1993, 1996, and 1998. Habitats at each site were classified as either low or medium quality by density and biomass of submerged rooted vegetation (eelgrass). The EBI and its metrics (fish abundance, biomass, total species, species dominance, life history, and proportion by life zone) were successful in classifying habitat quality. Greatest success and least bias of the EBI and its metrics in classifying habitat quality occurred when eelgrass habitats were least degraded. The EBI tracked habitat degradation over time in Waquoit and Buttermilk Bays. Average EBI values in medium-quality habitats of Buzzards Bay estuaries during 1996 and 1998 were less than expected based on earlier EBI values from Waquoit and Buttermilk Bays, suggesting that many of these sites are in transition from medium to low quality. Our results indicate that the EBI is sensitive to habitat quality change, and further suggest that low-quality habitats may approach a stable fish community structure that is well reflected by the EBI. The relationship of the EBI to an independent measure of water quality demonstrated inherent time lags between the degradation and improvement of water quality, fish habitat, and response of the fish community.  相似文献   

3.
Based on the long-term monitoring data of rainfall, groundwater levels, groundwater abstraction, spring flow rates and groundwater quality, an assessment has been undertaken of the sustainable yield of a karst aquifer system in Shandong Province, northern China, to maintain perennial outflow of the karst springs while meeting water demands. One of the fundamental indicators for sustainable yield of groundwater is identified as maximum allowable water-level drawdown. A regional three-dimensional finite-difference numerical model has been developed to optimize the schemes associated with well fields and their locations and sustainable yields, in the Jinan spring catchment and its adjacent karst groundwater catchments, with the aim of maintaining the water level higher than the allowable lowest water level of 27.5?m above sea level. Furthermore, measures necessary to move towards sustainable use of the karst groundwater are outlined, drawing on contingency plans of water-source replacement and artificial recharge, dual water supply (based in water quality), use of the spring waters themselves, and groundwater quality protection.  相似文献   

4.
West Coast estuaries are geologically young and composed of a variety of geomorphological types. These estuaries range from large fjords to shallow lagoons; from large to low freshwater flows. Natural hazards include E1 Niños, strong Pacific storms, and active tectonic activity. West Coast estuaries support a wide range of living resources: five salmon species, harvestable shellfish, waterfowl and marine birds, marine mammals, and a variety of algae and plants. Although populations of many of these living resources have declined (salmonids), others have increased (marine mammals). West Coast estuaries are also centers of commerce and increasingly large shipping traffic. The West Coast human population is rising faster than most other areas of the U.S. and Canada, and is distributed heavily in southern California, the San Francisco Bay area, around Puget Sound, and the Fraser River estuary. While water pollution is a problem in many of the urbanized estuaries, most estuaries do not suffer from poor water quality. Primary estuarine problems include habitat alterations, degradation, and loss; diverted freshwater flows; marine sediment contamination; and exotic species introductions. The growing West Coast economy and population are in part related to the quality of life, which is dependent on the use and enjoyment of abundant coastal natural resources.  相似文献   

5.
Geographic signatures are physical, chemical, biotic, and human-induced characteristics or processes that help define similar or unique features of estuaries along latitudinal or geographic gradients. Geomorphologically, estuaries of the northeastern U.S., from the Hudson River estuary and northward along the Gulf of Maine shoreline, are highly diverse because of a complex bedrock geology and glacial history. Back-barrier estuaries and lagoons occur within the northeast region, but the domiant type is the drowned-river valley, often with rocky shores. Tidal range and mean depth of northeast estuaries are generally greater when compared to estuaries of the more southern U.S. Atlantic coast and Gulf of Mexico. Because of small estuarine drainage basins, low riverine flows, a bedrock substrate, and dense forest cover, sediment loads in northeast estuaries are generally quite low and water clarity is high. Tidal marshes, seagrass meadows, intertidal mudflats, and rocky shores represent major habitat types that fringe northeast estuaries, supporting commercially-important fauna, forage nekton and benthos, and coastal bird communities, while also serving as links between deeper estuarine waters and habitats through detritus-based pathways. Regarding land use and water quality trends, portions of the northeast have a history of over a century of intense urbanization as reflected in increased total nitrogen and total phosphorus loadings to estuaries, with wastewater treatment facilities and atmospheric deposition being major sources. Agricultural inputs are relatively minor throughout the northeast, with relative importance increasing for coastal plain estuaries. Identifying geographic signatures provides an objective means for comparing the structure, function, and processes of estuaries along latitudinal gradients.  相似文献   

6.
Intensive crocodile monitoring programs conducted during the late 1970s and early 1980s in southern Florida resulted in an optimistic outlook for recovery of the protected species population. However, some areas with suitable crocodile habitat were not investigated, such as Biscayne Bay and the mainland shorelines of Barnes and Card Sounds. The objective of our study was to determine status and habitat use of crocodiles in the aforementioned areas. Spotlight and nesting surveys were conducted from September 1996 to December 2005. The results revealed annual increases in the number of crocodiles. Crocodiles preferred protected habitats such as canals and ponds. Fewer crocodiles were observed in higher salinity water. The distribution and abundance of crocodilians in estuaries is directly dependent on timing, amount, and location of freshwater delivery, providing an opportunity to integrate habitat enhancement with ongoing ecosystem restoration and management activities.  相似文献   

7.
Estuaries are highly variable environments where fish are subjected to a diverse suite of habitat features (e.g., water quality gradients, physical structure) that filter local assemblages from a broader, regional species pool. Tidal, climatological, and oceanographic phenomena drive water quality gradients and, ultimately, expose individuals to other habitat features (e.g., stationary physical or biological elements, such as bathymetry or vegetation). Relationships between fish abundances, water quality gradients, and other habitat features in the Sacramento-San Joaquin Delta were examined as a case example to learn how habitat features serve as filters to structure local assemblages in large river-dominated estuaries. Fish communities were sampled in four tidal lakes along the estuarine gradient during summer-fall 2010 and 2011 and relationships with habitat features explored using ordination and generalized linear mixed models (GLMMs). Based on ordination results, landscape-level gradients in salinity, turbidity, and elevation were associated with distinct fish assemblages among tidal lakes. Native fishes were associated with increased salinity and turbidity, and decreased elevation. Within tidal lakes, GLMM results demonstrated that submersed aquatic vegetation density was the dominant driver of individual fish species densities. Both native and non-native species were associated with submersed aquatic vegetation, although native and non-native fish populations only minimally overlapped. These results help to provide a framework for predicting fish species assemblages in novel or changing habitats as they indicate that species assemblages are driven by a combination of location within the estuarine gradient and site-specific habitat features.  相似文献   

8.
Planktonic larvae combine directed swimming and functional sensory systems to locate benthic habitats. Some adult marine fishes use chemical cues for orientation to specific habitats, but olfactory function for estuarine fish larvae has received little research attention. This laboratory study quantified behavioral responses of red drum (Sciaenops ocellatus) larvae to estuarine chemical cues to examine the role of water chemistry as an orientation cue for locating or remaining in settlement habitat. Spontaneous activity (kinesis) was measured for pre-settlement-size larvae exposed to artificial sea water (as a negative control) and one of six treatments (sterilized sea water, sea water from a channel at ebb tide, sea water from a channel at flood tide, sea water from seagrass habitat, tannic acid dissolved in sterilized sea water, or lignin dissolved in sterilized sea water). Larvae that reached a size of competency to settle (approximately 10 mm standard length) swam faster when exposed to lignin dissolved in sterilized sea water than in other treatments; smaller larvae showed no response. Olfactory preference (taxis) was tested using a paired-choice experiment. Settlement-size larvae preferred water from seagrass beds to artificial sea water. The observed chemokinesis and chemotaxis in response to lignin dissolved in sterilized sea water and sea water from a seagrass bed demonstrate that red drum larvae can distinguish and respond to different water masses and suggest that chemical stimuli from seagrass settlement habitat may aid in orientation and movement to or retention in suitable settlement sites.  相似文献   

9.
Reef fishes, such as gray snapper, support important recreational and commercial fisheries and use a variety of habitats throughout ontogeny. Gray snapper juveniles may be found in estuarine nursery areas, such as seagrass beds, or mangrove shorelines, while adults are most often found in deep channels and farther offshore, associated with hard-bottom habitats. Juvenile and subadult gray snapper were collected from 1996 through 2009 during long-term fishery-independent monitoring of several estuarine systems along the Gulf and Atlantic coasts of Florida. Indices of abundance and habitat suitability were constructed for gray snapper to determine size-specific relationships between abundance, habitat, and environmental conditions. Juvenile and subadult gray snapper were collected year-round only in the southernmost estuaries but were most common from July through December in all estuaries sampled. In addition to timing of estuarine occupancy, abundance varied with latitude; gray snapper were more frequently collected in warmer, southern estuaries. In general, gray snapper were most abundant in euhaline areas with a high percentage of submerged aquatic vegetation (SAV) and, in most cases, where overhanging shoreline vegetation was also present. Annual abundance varied over the sampling period, with some juvenile peaks in abundance translating to subadult peaks in subsequent years. Although strong correspondence between juvenile and subadult populations was not observed in all systems, long-term, broad-scale habitat selection patterns as described in this study are critical to more effectively assess populations of estuarine-dependent species.  相似文献   

10.
11.
辽河三角洲处于陆地和海洋的结合部,蕴含丰富的资源,具有十分重要的战略地位。项目通过三年的时间,查明了辽河三角洲地区主要含水层结构:第四系含水层系统(Q)、明化镇组含水层系统(Nm)、馆陶组含水层系统(Ng)。通过设立动态监测网,建立、完善地下水动态监测体系,实现地下水位和水质的实时监测;地下水水位动态:第四系松散岩类孔隙水较为稳定,水位动态变化不大;上新近系明化镇组和馆陶组地下水,受人类活动影响较大,由于多年连续大量开采,地下水位逐年下降,已形成了2个区域性地下水降落漏斗。地下水水质动态:第四系上更新统(Q3)浅层水Cl-、SO42-、Na+及矿化度持续升高,高矿化度水分布面积扩大,水化学类型复杂化,氯化物型和钠型水分布面积增大,向周边扩散;明化镇组和馆陶组地下水,水质优良,变化不大。针对地下水超采,注重水资源合理配置,适当减少新近系地下水资源的开采,充分利用地表水资源的对策。  相似文献   

12.
Tropical coastal seascapes are biodiverse and highly productive systems composed of an interacting mix of habitats. They provide crucial ecosystem services that support people’s livelihoods, yet key components of these seascapes remain unstudied. We know little about the deep (>2 m) subtidal areas of tropical estuaries, because, due to gear restrictions, there have been no detailed studies of the habitats they contain and the fish that use them. Consequently, potentially important functions and linkages with surrounding habitats remain unknown. Using unbaited videos, an approach capable of sampling the full breadth of benthic habitats and whole fish assemblages, we investigated patterns of fish occupancy of the deep subtidal habitats (2–20 m) in one of Australia’s largest tropical estuaries. We identified 19 taxa not previously recorded from estuaries of tropical eastern Australia, along with 36 previously identified estuary taxa. Three recognisable fish assemblages were associated with distinct benthic habitat types: open bottom fine sediment, seagrass and structurally complex rocky areas. In deep water, habitats often overlooked in shallow water become important, and there are sharp differences in habitat function. Deep subtidal habitats are potentially an important zone for direct interaction between estuary and marine fauna, with a range of consequences for intertidal habitat use and nursery ground functioning. The interface between marine areas and the shallow-water estuary may be richer and more complex than previously recognised.  相似文献   

13.
Submerged aquatic vegetation (SAV) is an ecologically and economically valuable component of coastal estuaries that acts as an early indicator of both degrading and improving water quality. This study aimed to determine if shoreline hardening, which is associated with increased population pressure and climate change, acts to degrade SAV habitat quality at the local scale. In situ comparisons of SAV beds adjacent to both natural and hardened shorelines in 24 subestuaries throughout the Chesapeake and Mid-Atlantic Coastal Bays indicated that shoreline hardening does impact adjacent SAV beds. Species diversity, evenness, and percent cover were significantly reduced in the presence of riprap revetment. A post hoc analysis also confirmed that SAV is locally affected by watershed land use associated with increased population pressure, though to a lesser degree than impacts observed from shoreline armoring. When observed over time, SAV recovery at the local level took approximately 3 to 4 years following storm impacts, and SAV adjacent to natural shorelines showed more resilience to storms than SAV adjacent to armored shorelines. The negative impacts of shoreline hardening and watershed development on SAV shown here will inform coastal zone management decisions as increasing coastal populations and sea level rise drive these practices.  相似文献   

14.
We examined the short-term (<1 month post-storm) impact of storms [Tropical Storm (TS) Helene in 2000, Hurricane (H) Isabel in 2003, H Alex, Tropical Depression (TD) Bonnie and TS Charley in 2004] varying in their trajectory, wind and rainfall characteristics, on water column structure, nutrients, and phytoplankton biomass in North Carolina’s Neuse R. Estuary (NRE). Data are presented from two sampling programs, ModMon (biweekly) and FerryMon (measurements made every 3 min daily). Helene’s winds mixed the previously stratified water column, delivering sediment-bound nutrients to the euphotic zone, and localized freshwater input from Helene was also evident. Mean chlorophyll a concentrations in the mesohaline portion of the NRE, where N was strongly limiting before the storm (molar DIN:DIP < 1), more than doubled after the storm. Unlike with Helene, the water column was well mixed before passage of Isabel, and nutrient concentrations were high. As a result, minimal impact on phytoplankton biomass was detected despite Isabel’s high winds and significant freshwater input. In fact, conditions became less favorable for phytoplankton growth after the storm. Alex was fast moving and relatively small, but its winds were sufficient to mix the water column. Although data from ModMon suggest that chlorophyll a was only slightly higher after passage of Alex, FerryMon detected an ephemeral bloom that was missed by ModMon. Overall, these results suggest that relatively small tropical storms and hurricanes can lead to significant increases in phytoplankton biomass. However, the phytoplankton response depends on both the characteristics of a particular storm and the physical–chemical conditions of the water column before storm passage. Finally, the ephemeral bloom that developed as a result of Alex, the strong response of phytoplankton in the mesohaline portion of the estuary to nutrient inputs, and their patchiness on several other occasions suggests that storms may create “hot spots” for trophic transfer and biogeochemical dynamics in estuaries. Adaptive sampling is necessary to capture these features and to fully understand the impact of perturbations such as storms on estuarine ecosystem functioning.  相似文献   

15.
This paper presents a general, process-based model for suspended particulate matter (SPM) in defined coastal areas (the ecosystem scale). The model is based on ordinary differential equations and the calculation time (dt) is 1 month to reflect seasonal variations. The model has been tested using data from 17 Baltic coastal areas of different character and shown to predict mean monthly SPM-concentrations in water and Secchi depth (a measure of water clarity) very well (generally within the uncertainty bands given by the empirical data). The model is based on processes regulating inflow, outflow and internal fluxes. The separation between the surface-water layer and the deep-water layer is not done in the traditional manner from water temperature data but from sedimentological criteria (from the wave base which regulates where wind/wave-induced resuspension occurs). The model calculates the primary production of SPM (within the coastal areas), resuspension, sedimentation, mixing, mineralization and retention of SPM. The SPM-model is simple to apply in practice since all driving variables may be readily accessed from maps or regular monitoring programs. The model has also been extensively tested by means of sensitivity and uncertainty tests and the most important factor regulating model predictions of SPM-concentrations in coastal water is generally the value used for the SPM-concentration in the sea outside the given coastal area. The obligatory driving variables include four morphometric parameters (coastal area, section area, mean and maximum depth), latitude (to predict surface water and deep water temperatures, stratification and mixing), salinity, chlorophyll and the Secchi depth or SPM-concentration in the sea outside the given coastal area. Many of the structures in the model are general and could potentially be used for coastal areas other than those included in this study, e.g., for open coasts, estuaries or areas influenced by tidal variations.  相似文献   

16.
While qualitative information from meteorological satellites has long been recognized as critical for monitoring weather events such as tropical cyclone activity, quantitative data are required to improve the numerical prediction of these events. In this paper, the sea surface winds from QuikSCAT, cloud motion vectors and water vapor winds from KALPANA-1 are assimilated using three-dimensional variational assimilation technique within Weather Research Forecasting (WRF) modeling system. Further, the sensitivity experiments are also carried out using the available cumulus convective parameterizations in WRF modeling system. The model performance is evaluated using available observations, and both qualitative and quantitative analyses are carried out while analyzing the surface and upper-air characteristics over Mumbai (previously Bombay) and Goa during the occurrence of the tropical cyclone PHYAN at the west coast of Indian subcontinent. The model-predicted surface and upper-air characteristics show improvements in most of the situations with the use of the satellite-derived winds from QuikSCAT and KALPANA-1. Some of the model results are also found to be better in sensitivity experiments using cumulus convection schemes as compared to the CONTROL simulation.  相似文献   

17.
深海溶解甲烷浓度数据连续获取的方法技术,对于海洋环境和天然气水合物开发过程中甲烷扩散作用及通量的动态监测,具有重要的科学意义和实际应用价值。本文较详细地介绍了依据"海水脱气、气体样品定量输入、电化学高精度检测"技术思路,采用"增压排液整机系统控制的海水循环、减压稳流、气液分离、烃类组分高精度检测技术改进"方法,研发"深海甲烷电化学原位长期监测技术"的关键环节和技术方法。结合原位传感器在胶州湾港口为期94天底水长期监测实验获取的数据成果,对原位传感器的技术性能、数据质量、地质效果进行了研究评价。结果表明:(1)原位传感器量程甲烷指标达到0.01~10 000 nmol/L,灵敏度达到0.01 nmol/L,对烃类组分检测具有较好的稳定性和选择性;(2)监测水域溶解甲烷数值范围19.01~106.87 nmol/L,正常甲烷背景32.41 nmol/L,局部异常甲烷背景80.60 nmol/L,资料显示异常与污水排放过程对海水环境污染有关;(3)实测甲烷数据成果地球化学特征与胶州湾海域海水环境以往调查研究成果符合,证明了实测数据的客观性和科学性;(4)海试监测试验成果证明,原位传感器测试性能可靠、结构设计合理、设计思路科学,基本具备了海洋科学调查中对海水甲烷浓度数据获取的能力,在未来海洋天然气水合物开发过程中对甲烷扩散作用的动态监测及深海甲烷浓度通量的长期监测中,具有实际应用价值和科学意义。  相似文献   

18.
English sole (Pleuronectes vetulus) is one of a few commercially important marine fishes on the Pacific coast of North America that use estuarine areas as nurseries for juvenile stages. Trawl surveys of four United States Pacific Northwest estuaries were conducted to determine spatial patterns of juvenile English sole residence in estuaries during 1998–2000. Additional data from 1983–1988 were also analyzed. Two size classes of juvenile English sole were identified during surveys, with densities of small (Total length [TL] <50 mm) sole ranging from 0 to 11,300 fish ha?1 across all sites, and densities of large (TL 50–150 mm) sole ranging from 0 to 33,000 fish ha?1 across all sites. Principal components analysis of static habitat data collected at each trawl survey site was used to define habitat types within each estuary, and discriminant function analysis was used to test the resulting classification scheme. Both small and large cohort English sole used lower side channel locations at significantly higher densities than other estuarine areas. Small English sole also showed significant relationships with both bottom temperature and depth. These patterns in habitat use were consistent across all estuaries and indicate that English sole used shallow depth areas surrounded by extensive tidal flats, where temperatures were optimal for growth. The analysis also suggested a carrying capacity may exist for large English sole in nursery estuaries.  相似文献   

19.
More than 99% of water use in Denmark is based on groundwater. Denmark has had a comprehensive national groundwater-monitoring programme since 1988 based on 74 well catchment areas and six small agricultural catchments with more than 1,500 screens at different depths for regular, mostly annual, water quality sampling. In addition, water samples from 10,000 abstraction wells are analysed every 3–5 years. The water is analysed for main components, inorganic trace elements, organic micro pollutants, and pesticides and their metabolites. A unique feature is the 20-year time-series data of inorganic pollutants. Groundwater modelling supports traditional monitoring to improve the conceptual geological understanding and to assess the quantitative status and the interaction between groundwater and surface water. The programme has been continuously adjusted to incorporate new knowledge from research programmes and meet new policy demands, currently the European Union Water Framework Directive, particularly with respect to an increased focus on quantitative aspects and on the groundwater/surface water interaction. The strengths and weaknesses of the Danish programme are assessed and compared with other national groundwater-monitoring programmes. Issues discussed include: strategic considerations for monitoring design, the link between research and monitoring, and adoption of responses to climate changes.  相似文献   

20.
Spatial patterns of estuarine biota suggest that some nearshore ecosystems are functionally linked to interacting processes of the ocean, watershed, and coastal geomorphology. The classification of estuaries can therefore provide important information for distribution studies of nearshore biodiversity. However, many existing classifications are too coarse-scaled to resolve subtle environmental differences that may significantly alter biological structure. We developed an objective three-tier spatially nested classification, then conducted a case study in the Alexander Archipelago of Southeast Alaska, USA, and tested the statistical association of observed biota to changes in estuarine classes. At level 1, the coarsest scale (100–1000’s km2), we used patterns of sea surface temperature and salinity to identify marine domains. At level 2, within each marine domain, fjordal land masses were subdivided into coastal watersheds (10–100’s km2), and 17 estuary classes were identified based on similar marine exposure, river discharge, glacier volume, and snow accumulation. At level 3, the finest scale (1–10’s km2), homogeneous nearshore (depths <10 m) segments were characterized by one of 35 benthic habitat types of the ShoreZone mapping system. The aerial ShoreZone surveys and imagery also provided spatially comprehensive inventories of 19 benthic taxa. These were combined with six anadromous species for a relative measure of estuarine biodiversity. Results suggest that (1) estuaries with similar environmental attributes have similar biological communities, and (2) relative biodiversity increases predictably with increasing habitat complexity, marine exposure, and decreasing freshwater. These results have important implications for the management of ecologically sensitive estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号