首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal changes in aboveground plant biomass, cover, and frequency were monitored in Sweet Hall Marsh, a tidal freshwater marsh located on the Pamunkey River, Virginia, during the 1974 growing season.Peltandra virginica accumulated the most biomass, 423.40 g per m2, followed byLeersia oryzoides at 67.75 g per m2. Annual net community production was estimated to be 775.74 g per m2 by using a multiple-harvest technique. Comparisons with other studies revealed that production was somewhat low for tidal freshwater marshes but mostly higher than production in Virginia brackish and saline wetlands. Measurements revealed an annual succession of plant species from spring to fall. The pattern observed was early dominance byPeltandra followed by a rise in importance ofPolygonum spp.,Impatients capensis andLeersia.  相似文献   

2.
In the salt marshes of Tomales Bay, California, where grazing by cattle increases the input of nitrogen to the marsh (either directly or indirectly as runoff from within the salt marsh watershed), high salt marsh vegetation is dominated byDistichlis spicata and is less diverse than marshes without excess nutrients. Using a field experiment, I investigated the role of soil fertility on the plant community of the high salt marsh. I hypothesized that when soil fertility is increased by nitrogen addition plant productivity will increase, as indicated by height, biomass, and cover, and competitive exclusion, byD. spicata, will lead to a reduction in species richness and evenness, especially where the initial density ofDistichlis is high (from transplanting). After two growing seasons, biweekly nitrogen addition to the high salt marsh led to increased plant biomass and cover. Diversity was not reduced, and space preemption byDistichlis-transplants did not confer a competitive advantage. Although the dominant species thrived (e.g.,Salicornia virginica, D. spicata, Triglochin concinna) they did not displace subdominant species and decrease diversity. The vegetation response in this high salt marsh system does not support the hypothesis that as biomass and cover (indicators of productivity) increase in response to increased nitrogen, competitive exclusion will occur and diversity will decrease.  相似文献   

3.
The ecological importance of Plantago maritima within a salt marsh on the Bay of Fundy is documented through measurements of cover, density, and biomass. During late August 1993, peak standing crops of Plantago were as high as 532 g m?2, and composed as much as 96% of the biomass of a stand of vegetation. Plantago is a dominant component of the marsh vegetation at an elevation just above the Spartina alterniflora-dominated low marsh, and is found as a dominant when growing in association with a number of plant species characteristic of the high marsh. We hypothesize that the existence of this community is dependent upon regular ice-shearing of Spartina patens, which would otherwise competitively exclude Plantago. This hypothesis is supported by the elevational limits of Plantago dominance and the geographical limitation of Plantago communities to portions of the northwestern Atlantic subjected to winter temperatures which average below 0°C.  相似文献   

4.
The potential for marsh plants to be vectors in the transport of mercury species was studied in the natural, mature, tidal China Camp salt marsh on San Pablo Bay. The fluxes of organic matter, mercury (THg), and monomethylmercury (MeHg) were studied in natural stands of Spartina foliosa and Salicornia virginica. Seasonal fluxes from the sediment into aboveground biomass of live plants and subsequent transfer into the dead plant community by mortality were measured. Loss of THg and MeHg from the dead plant community through fragmentation, leaching, and excretion were calculated and were similar to net uptake. Seasonal data were added up to calculate annual mass balances. In S. foliosa, annual net production was 1,757 g DW m?2, and the annual net uptakes in the aboveground biomass were 305 μg THg m?2 and 5.720 μg MeHg m?2. In S. virginica, annual net production was 2,117 g DW m?2, and the annual net uptakes in aboveground biomass were 99.120 μg THg m?2 and 1.990 μg MeHg m?2. Of both plant species studied, S. foliosa had a slightly lower production rate but greater mercury species uptake and loss rates than S. virginica, and, consequently, it is to be expected that S. foliosa matter may affect the local and possibly the regional food web relatively more than S. virginica. However, the actual effects of the input of mercury-species-containing plant-derived particulate matter into the food webs would depend on trophic level, food preference, seasonal cycle of the consumer, total sediment surface area vegetated, location of the vegetation in the marsh landscape, and estuary bay landscape. Since the levels of mercury species in dead plant material greatly exceed those in live plant material (on a dry weight basis), detritivores would ingest greater mercury species concentrations than herbivores, and consumers of S. foliosa would ingest more than consumers of S. virginica. The greatest THg and MeHg losses of both plant species due to mortality and to fragmentation–leaching–excretion occurred in late spring and early autumn, which corresponds to peak MeHg levels observed in sediments of coastal systems of previous studies, suggesting enhanced THg–MeHg export from the marsh to the nearshore sediment.  相似文献   

5.
Changes in biomass, growth form and shoot net primary production in an eelgrass, Zostera marina L., bed were monitored along transects at three tidal heights in Netarts Bay, Oregon, from May 1979 through June 1981. During the growing season, April through October, the mean plastochrone interval was 16.5 d along the low intertidal transect and 11.6 d along the high intertidal transect. The mean export interval was 13.3 d along the low intertidal transect and 11.6 d along the high intertidal transect. The life span of a leaf averaged 48 d along the low intertidal transect and 36 d along the high intertidal transect. Shoot density was positively correlated with mean leaf area index (LAI) until the LAI reached 3.8 to 5.5, above which LAI was negatively correlated with density. The maximum Zostera biomass ranged from 143 (high intertidal transect) to 463 (low intertidal transect) g dry wt m?2. Maximum values of shoot net production ranged from 4.7 (high intertidal transect) to 13.6 (low intertidal transect) g dry wt m?2d?1. Zostera shoot net production was related to light and to the physical damage to the shoots associated with a rapid accumulation of Enteromorpha biomass in the bay. In addition, patterns of biomass accumulation were related to the duration of water coverage, as determined by both tidal height and local impoundments of water. At all transects, biomass sloughed was equal to at least 50% of the shoot net primary production in that area during that time period; sloughed leaves accounted for 25 to 97% of these losses. An estimate of the total annual net primary production of aboveground Zostera in the bed was 17,500 kg, dry wt (SE=3,080 kg dry wt), which was equivalent to a mean annual rate of 383 g C m?2 (SE=67 g C m?2)  相似文献   

6.
Vegetation growth on spoil placed on aSpartina patens andS. alterniflora marsh in Barnegat Bay, New Jersey, was examined for two years following spoil deposition. In areas where spoil was leveled to match the elevation of the marsh, the percent cover by the end of the first growing season ranged from 60 to 90%. By the second year, cover was 100% in all study plots. Even during the first year, there was no difference in species diversity or vegetation species in the experimental and control areas. The percentage of shrubs did not increase on the perturbed (spoil) areas compared to the control plots. During the first year, but not the second, live and dead biomass was greater in the perturbed areas compared to the control plots. In an area where the spoil was thicker succession was exceedingly slow and there was only about 5% grass cover by the end of the first growing season. BecauseSpartina colonizes primarily by rhizome growth, the comparatively slow recovery was attributed to the inability of the grass to penetrate the thick spoil layer.  相似文献   

7.
We examined the effect of nutrients and grazers on Thalassia testudinum in Jobos Bay, Puerto Rico by fertilizing sediment and manipulating grazer abundances. Bottom-up effects were variable: Added nutrients did not increase seagrass aboveground biomass, but decreased belowground biomass—perhaps as a result of less biomass being allocated to belowground structures in response to greater nutrient supply in porewater. Experimental fencing of 1.5 × 1.5 m plots provided shelter that attracted large aggregations of fish, including seagrass herbivores. Seagrass biomass and shoot density decreased with increasing abundance of herbivorous fish, indicating a significant top-down effect. There were interactions between nutrient supply, provision of shelter, and grazing pressure. Fertilization enhanced seagrass %N; however, %N also increased in unfertilized plots that were fenced, most likely due to uptake of N excreted from the large numbers of fish associated with the fences. Only plots where shelter was provided and fertilizer was applied to sediments exhibited evidence of heavy grazing, reducing both seagrass cover and aboveground biomass. In the unfertilized fenced plots, signs of grazing were fewer despite large abundances of fish and enhanced nutritional quality of seagrass leaves. This suggests the possibility that high nutrient availability in sediments lowered concentrations of chemical defense compounds in the seagrass and that cues other than %N may have been involved in stimulating grazing. This study highlights the complexity of bottom-up and top-down interactions in seagrass systems and the important role of refuge availability in shaping the relative strengths of these controls.  相似文献   

8.
Nitrogen and phosphorus content ofSpartina alterniflora Loisel and soil nitrogen were measured along a transect perpendicular to a stream in a Louisiana salt marsh in order to provide information on differences between the so-called streamside and inland regions. Total plant nitrogen and phosphorus levels in June and September tended to be greater at streamside than inland sites. Total soil nitrogen on a dry soil weight basis increased with distance inland from a natural stream toward an interdistributary basin in the marsh. Soil extractable ammonium-nitrogen levels measured in June were very low in vegetated streamside and inland areas, but they were much higher in inland areas devoid of plants. Nitrogen and phosphorus utilization byS. alterniflora was also investigated at an inland location in the salt marsh. Labelled ammonium-nitrogen and phosphate-phosphorus were added in May at a rate of 200 kg/ha to the soil of replicated plots. Added nitrogen significantly increased total above-ground plant biomass and plant height by 28 and 25%, respectively, 4 months after application. The ratio of belowground macro-organic matter to total aboveground biomass was decreased from 5.7 to 4.7 by the additional nitrogen. Added phosphorus did not significantly affect plant height and biomass. The use of15N-depleted nitrogen tracers showed that about half of the nitrogen in the aboveground portion ofS. alterniflora from 1 to 4 months after the nitrogen addition was derived from the added ammonium-nitrogen. After 4 months, 28 and 29% of the added labelled nitrogen was recovered in the aboverground and belowground biomass ofS. alterniflora, respectively. Recovery of added nitrogen was overestimated with a non-tracer method based on the difference in total nitrogen uptake between nitrogen-amended plots and untreated plots. Soil organic nitrogen comprised the majority of the nitrogen in the salt marsh. Nitrogen in the standing crop biomass ofS. alterniflora represented only about 2% of the total nitrogen in the plantsoil system of an inland marsh to a 20 cm soil depth.  相似文献   

9.
Responses ofSpartina alterniflora marsh to combinations of feral horse grazing, clipping, simulated trampling, and a late winter burn were studied on Cumberland Island National Seashore, Georgia. Replicated 200-m2 plots were established and sampled bimonthly from July 1983 to November 1984. Clipping and trampling each reduced peak aboveground biomass by 20% in 1983 and 50% (clipping) and 55% (trampling) in 1984. A March burn reduced peak aboveground biomass by 35% in 1984. Trampling and burning earch reduced net aboveground primary production (NAPP) by 35%, but clipping did not reduce NAPP. Standing stocks of live rhizomes were correlated with aboveground biomass and were reduced with experimental treatments. Abundance of the periwinkle snail (Littorina irrorata) was also reduced. Horse grazing had a substantial impact on standing stocks and NAPP ofSpartina, but grazing was not uniform throughout the marsh. Moderately grazed plots had NAPP reduced by 25% compared to ungrazed plots. Heavily grazed plots had extremely low NAPP, and abovegroundSpartina never exceeded 40 g m?2 dry mass compared to 360 g m?2 within exclosures.  相似文献   

10.
Field experiments were completed to determine patterns of evapotranspirative water loss from salt and tidal freshwater marshes in Virginia. Water losses from “Mariotte systems” attached to open-water lysimeters and lysimeters vegetated by dominant marsh macrophytes were used to calculate hourly rates of open-water evaporation (Eo) and evapotranspiration (ET), respectively, during low tide. In the tidal freshwater marsh, ET was significantly greater than Eo (p=0.002, n=6); in the salt marsh, there were no differences between mean rates of ET and Eo (p=0.200, n=3). The ratio ET:Eo was highly correlated with leaf area index (LAI) (r2=0.82). In the tidal freshwater marsh, the amount of water loss due to plant transpiration was partitioned from total evapotranspiration by covering the water surface of the lysimeters with styrofoam beads. Measured transpiration rates in the tidal freshwater marsh were strongly correlated with leaf area index according to the following linear regression equation: T=0.355(LAI)?0.084 (r2=0.797, n=10). Because LAI was shown to be a good predictor of the relative increase in ET over Eo, it is likely that in vegetated tidal freshwater marshes with high leaf densities most atmospheric water loss comes from plants, not from the surface of the marsh. In salt marshes, low plant densities do not contribute substantially to atmospheric water loss, suggesting that paths of water transport and patterns of solute concentration in the subsurface environment are different compard to the tidal freshwater marsh.  相似文献   

11.
This paper examines how perennial Aster tripolium and annual Salicornia procumbens salt marshes alter the biomass, density, taxon diversity, and community structure of benthic macrofauna, and also examines the role of elevation, sediment grain size, plant cover, and marsh age. Core samples were collected on a fixed grid on an intertidal flat in the Westerschelde estuary (51.4° N, 4.1° E) over 5 years (2004–2008) of salt marsh development. In unvegetated areas, macrobenthic biomass, density, and taxon diversity were highest when elevation was highest, benthic diatoms were most abundant, and sediment median grain size was smallest. In contrast, in salt marsh areas, macrobenthic biomass and taxon diversity increased with median grain size, while the effects of elevation and diatom abundance on macrobenthic biomass, density, and diversity were not significant. In fine sediments, macrofaunal community structure in the salt marsh was particularly affected; common polychaetes such as Nereis diversicolor, Heteromastus filiformis, and Pygospio elegans had low abundance and oligochaetes had high abundance. Marsh age had a negative influence on the density of macrofauna, and A. tripolium stands had lower macrofaunal densities than the younger S. procumbens stands. There were no significant effects of marsh age, plant cover, and vegetation type on macrobenthic biomass, taxon diversity, and community structure. The results highlight that ecosystem engineering effects of salt marsh plants on macrofauna are conditional. Organic enrichment of the sediment and mechanical hindering of macrofaunal activity by plant roots are proposed as plausible mechanisms for the influence of the salt marsh plants on macrofauna.  相似文献   

12.
Docks constructed over salt marsh can reduce vegetation production and associated ecosystem services. In Massachusetts, there is a 1:1 height-to-width ratio (H:W) dock design guideline to reduce such impacts, but this guideline’s efficacy is largely untested. To evaluate dock height effects on underlying marsh vegetation and light availability, we deployed 1.2-m-wide experimental docks set at three different heights (low (0.5:1 H:W), intermediate (1:1 H:W), and high (1.5:1 H:W)) in the high and low marsh zones in an estuary in Massachusetts, USA. We measured temperature, light, vegetation community composition, and stem characteristics under the docks and in unshaded control plots over three consecutive growing seasons. Temperature and light were lower under all docks compared with controls; both increased with dock height. Maximum stem height and nitrogen content decreased with available light. In the Spartina patens-dominated high marsh, stem density and biomass were significantly lower than controls under low and intermediate but not high docks. Spartina alterniflora, the dominant low marsh vegetation, expanded into the high marsh zone under docks. S. alterniflora aboveground biomass significantly differed among all treatments in the low marsh, while stem density was significantly reduced for low and intermediate docks relative to controls. Permit conditions and guidelines based on dock height can reduce dock impacts, but under the current guideline of 1:1 H:W, docks will still cause significant adverse impacts to vegetation. Such impacts may interfere with self-maintenance processes (by decreasing sediment capture) and make these marshes less resilient to other stressors (e.g., climate change).  相似文献   

13.
The role of zooplankton in a salt marsh ecosystem was studied in Flax Pond, Old Field, N. Y., a 30-hectare tidal pond adjacent to Long Island Sound. Various marine crustaceans accounted for over 95% of the zooplankton caloric biomass in all but three months, in which ctenophores (Mnemiopsis leidyi) accounted for about 20%. Mass balance analysis of crustacean biomass showed a seasonal trend with increased “consumption” by the marsh from July to November. Analysis of groups (or species) for all months showed total numbers were reduced by passing through, or interacting with, the marsh. The most abundant group for each sample date also was significantly reduced from outflowing waters for all months, as were the group copepodids and miscellaneous calanoids from July to November. The energy requirements for the crustacean zooplankton community could have been supplied amply by the estimated standing crop of phytoplankton in the marsh. Phytoplankton net primary production was low, but it was ample to satisfy crustacean energy needs in all months. Crustaceans and phytoplankton alone were not enough to support estimated ctenophore nutrition requirements in summer. Therefore, detritus may also have been an important ctenophore food source.  相似文献   

14.
Salt marsh zonation patterns generate different abiotic and biotic conditions that can accentuate species inherent differences in primary production and biomass. In South West Atlantic marshes, there are two Spartina species: Spartina alterniflora in the low intertidal and Spartina densiflora in the high intertidal. These two species are generally found in all marshes but with different dominance: In some marshes, the S. densiflora zone occupies higher extents, and in others, the S. alterniflora zone is the one that prevails. We found through field sampling that, in six studied marshes, there is greater S. densiflora live and total (i.e., dead+live) aboveground biomass (g m?2) in the marshes dominated by S. densiflora than in the ones dominated by S. alterniflora. Spartina alterniflora had similar aboveground biomass in the six marshes, regardless of the dominance of each species. When comparing the two Spartina species within each marsh, S. densiflora had greater live and total biomass in the marshes it dominates. In the marshes dominated by S. alterniflora, both species had similar live and total biomass. In all marshes, there was greater dead S. densiflora biomass. A multivariate analysis using selected abiotic factors (i.e., salinity, latitude, and tidal amplitude) showed that S. alterniflora aboveground biomass patterns are mainly correlated with salinity, while S. densiflora live biomass is mainly correlated with salinity and latitude, dead biomass with salinity and tidal amplitude, and total biomass with salinity alone. We conclude that in S. densiflora dominated marshes, the main processes of that species zone (i.e., nutrient accumulation) will be accentuated because of its higher biomass. We also conclude that climatic conditions, in combination with specific Spartina biotic and ambient abiotic parameters, can affect marsh ecological functions.  相似文献   

15.
Patterns in seasonal abundance (no. per m2 surface area), growth and biomass (g per m2 surface area) of an annual fish, the Atlantic silverside, Menidia menidia (L.) were investigated in a marsh and more seaward bay region of Essex Bay, Massachusetts from August 1976 to May 1978 using a quantitative beach seining technique. Silverside abundance varied greatly by season and year class during the study period. Abundance was high in 1976 but winter mortality (99%) left an adult density of only .01 per m2 surface area in the marsh during spring 1977. Resultant 1977 year class density in the marsh was 1.88 per m2 by late fall 1977 but winter mortality again produced an adult density of .01 per m2 in spring 1978. Abundance was generally higher in the marsh than in the bay region especially during spring and late fall when catches in the bay were negligible. Based on catch rate comparisons, the summer and fall juvenile abundance of the 1976 year class was much higher than the juvenile abundance of the 1977 year class. Coincidentally, mean lengths and condition of the abundant 1976 year class in the late fall were significantly lower than those of the 1977 year class, suggesting density dependent population regulation. In both years, juveniles grew rapidly and reached full adult size by November when an offshore movement to deeper waters outside Essex Bay occurred. Biomass peaked in the marsh region in late fall 1977 at 7.8 g per m2 wet weight. Winter mortality was size selective, favoring larger individuals. The annual life history design of M. menidia including an offshore winter movement and high winter mortality suggests that silversides represent an important pathway of energy flow from marsh to offshore trophic systems.  相似文献   

16.
Net annual productivity of tall and medium form cordgrass,Spartina alterniflora, was estimated by a new clip sampling method in a sloping foreshore salt marsh at Wallops Island, Virginia. This method measured live standing crops only, to avoid problems of measuring dead biomass inherent in other methods. Losses from live standing crops by shoot mortality and by leaf shedding were estimated from these measurements and added separately to production of live tillers and of live culms. This allowed quantification of various components of production.Spartina tillering in different zones of the marsh produced 62 to 211 g dry weight per m2 per yr. Tiller mortality removed 37 to 106 g per m2 per yr from live standing crops. Culms produced 348 to 1,132 g per m2 before flowering and die-back. Culm mortality removed 28 to 246 g per m2 before flowering. Leaf shedding removed an additional 83 g per m2 in tall formSpartina. Altogether, net annual productivity These estimates are much higher than previous estimates of productivity and standing crops inSpartina marshes nearby.  相似文献   

17.
The rapid proliferation of Phragmites australis in North America has challenged resource managers to curb its expansion and reduce the loss of functional tidal marsh. We investigated whether native plant competition could reduce the ability of Phragmites to invade a tidal marsh, and if plant diversity (species richness, evenness, and composition) altered the competitive outcome. Immature Phragmites shoots and four native halophytes were transplanted to small but dense field plots (~1,200 shoots m−2) comprising three community structure types (Phragmites alone, Phragmites + 1 native species, and Phragmites + 4 native species). Interspecific competition significantly reduced Phragmites aboveground biomass, shoot length production, density, and survival by approximately 60%. Additionally, plots planted with greater native diversity contained Phragmites with the lowest growth and survival, potentially indicating diversity-enhanced resource competition. Competition consistently reduced the growth of Phragmites even under favorable conditions: lack of strong tidal flooding stresses as well as elevated nutrient pools.  相似文献   

18.
The density of the Carolina marsh clam,Polymesoda caroliniana (Bosc), was determined in three adjacent tidal marsh communities which differed only in plant species composition. Clam density was inversely related to the density (biomass) of plant roots and rhizomes in sediments and directly related to density of plant stems (numbers). Clam abundance was not related to the basal area of plant stems. Each plant community contained clams of various ages from juvenile to adult indicating continued recruitment and survival. These data suggest thatP. caroliniana is most abundant inJuncus roemerianus marshes because there are fewer roots and rhizomes (mean of 2.5 kg m?2) to hamper burrwing as compared toSpartina alterniflora andcynosuroides (5.1 and 6.3 kg m?2, respectively) dominated marshes. Salinity, floding frequency, distance from flooding water, and sediment type were essentially constant among the three plant communities. Root/rhizome density should be collected along with other environmental parameters during studies of benthic organisms on marshes because it potentially limits the occurrence or abundance of some species.  相似文献   

19.
Salt marsh fucoid algae are a conspicuous component of north temperate marshes, yet comparatively little research has been conducted to examine their ecological effects. We examined the influence of salt marsh fucoids on physical conditions and the biotic community in a manipulative experiment conducted in a southern Maine back-barrier salt marsh. The biomass of salt marsh fucoids was higher than that of aboveground Spartina alterniflora in the zone where we conducted the experiment. Average daytime temperatures at the sediment surface were significantly reduced by the presence of salt marsh fucoids. Density and biomass of standing-dead S. alterniflora was significantly higher when salt marsh fucoids were removed. In contrast, the abundance of various species of epifauna and infauna were significantly enhanced by the presence of salt marsh fucoids. A regional survey indicated that results from the study site may be conservative because the biomass of salt marsh fucoids was lowest among other back-barrier marshes. Salt marsh fucoids are little studied ecosystem engineers whose presence affects the microclimate and biotic community, especially the animals that constitute the basal components of the salt marsh trophic relay.  相似文献   

20.
Coastal marshes are known as organic matter producers. The goal of this work is to study tiller demography, standing biomass, and net aerial primary productivity (NAPP) in a Spartina densiflora coastal wetland, using a method applied to permanent sample plots located at two sites differing in topographic location, a regularly flooded zone [relative low marsh (LM)] and an irregularly flooded one [relative high marsh (HM)]. Measurements were made every 2 months during the 2005–2007 period. The annual NAPP was estimated to be 2,599?±?705 gDW m?2?year?1 for the HM and 2,181?±?605 gDW m?2?year?1 and 602?±?154 gDW m?2?year?1 for the first and second period of the LM populations, respectively, showing a seasonal pattern reaching maximum values in summer. The reduced NAPP values of the LM sites in the second year was associated with an extremely high precipitation period related to the 2007–2008 El Niño event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号