首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed geochemistry supported by geologic mapping has been used to investigate Sulphur Springs, an acid-sulfate hot spring system that issues from the western flank of the resurgent dome inside Valles Caldera. The most intense activity occurs at the intersection of faults offsetting caldera-fill deposits and post-caldera rhyolites. Three geothermal wells in the area have encountered pressures <1 MPa and temperatures of 200°C at depths of 600 to 1000 m. Hot spring and fumarole fluids may discharge at boiling temperatures with pH 1.0 and SO4 8000 mg/l. These conditions cause argillic alterations throughout a large area.Non-condensible gases consist of roughly 99% CO2 with minor amounts of H2S, H2, and CH4. Empirical gas geothermometry suggests a deep reservoir temperature of 215 to 280°C. Comparison of 13C and 18O between CaCO3 from well cuttings and CO2 from fumarole steam indicates a fractionation temperature between 200 and 300°C by decarbonation of hydrothermally altered Paleozoic limestone and vein calcite in the reservoir rocks. Tritium concentrations obtained from steam condensed in a mudpot and deep reservoir fluids (Baca #13, 278°C) are 2.1 and 1.0 T.U. respectively, suggesting the steam originates from a reservoir whose water is mostly >50 yrs old. Deuterium contents of fumarole steam, deep reservoir fluid, and local meteoric water are practically identical even though 18O contents range through 4‰, thus, precipitation on the resurgent dome of the caldera could recharge the hydrothermal system by slow percolation. From analysis of D and 18O values between fumarol steam and deep reservoir fluid, steam reaches the surface either (1) by vaporizing relatively shallow groundwater at 200°C or (2) by means of a two-stage boiling process through an intermediate level reservoir at roughly 200°C.Although many characteristics of known vapor-dominated geothermal systems are found at Sulphur Springs, fundamental differences exist in temperature and pressure of our postulated vapor-zone. We propose that the reservoir beneath Sulphur Springs is too small or too poorly confined to sustain a “true” vapor-dominated system and that the Sulphur Springs system may be a “dying” vapor-dominated system that has practically boiled itself dry.  相似文献   

2.
The Platanares geothermal area, Departamento de Copán, Honduras, is located within a graben that is complexly faulted. The graben is bounded on the north by a highland composed of Paleozoic (?) metamorphic rocks in contact with Cretaceous - Tertiary redbeds of unknown thickness. These are unconformably overlain by Tertiary andesitic lavas, rhyolitic ignimbrites, and associated sedimentary rocks. The volcanic rocks are mostly older than 14 Ma, and thus are too old to represent the surface expression of an active crustal magma body. Thermal fluids that discharge in the area are heated during deep circulation of meteoric water along faults in a region of somewhat elevated heat flow. Geothermometry based upon the chemical composition of thermal fluids from hot springs and from geothermal gradient coreholes suggests that the reservoir equilibrated at temperatures as high as 225 to 240°C, within the Cretaceous redbed sequence. Three continuously cored geothermal gradient holes have been drilled; fluids of about 165°C have been produced from two drilled along a NW-trending fault zone, from depths of 250 to 680 m. A conductive thermal gradient of 139°C/km, at a depth of 400 m, was determined from the third well, drilled 0.6 km west of that fault zone. These data indicate that the Platanares geothermal area holds considerable promise for electrical generation by moderate- to hightemperature geothermal fluids.  相似文献   

3.
The Sierra La Primavera, a late Pleistocene rhyolitic caldera complex in Jalisco, México, contains fumaroles and large-discharge 65°C hot springs that are associated with faults related to caldera collapse and to later magma insurgence. The nearly-neutral, sodium bicarbonate, hot springs occur at low elevations at the margins of the complex, whereas the water-rich fumaroles are high and central.The Comisión Federal de Electricidad de México (CFE) has recently drilled two deep holes at the center of the Sierra (PR-1 and Pr-2) and one deep hole at the western margin. Temperatures as high as 285°C were encountered at 1160 m in PR-1, which produced fluids with 820 to 865 mg/kg chloride after flashing to one atmosphere. Nearby, PR-2 encountered temperatures to 307°C at 2000 m and yielded fluids with chloride contents fluctuating between 1100 and 1560 mg/kg after flashing. Neither of the high-temperature wells produced steam in commercial quantities. The well at the western margin of the Sierra produced fluids similar to those from the hot springs. The temperature reached a maximum of 100°C near the surface and decreased to 80°C at 2000 m.Various geothermometers (quartz conductive, Na/K, Na-K-Ca, δ18O(SO4-H2O) and D/H (steam-water) all yield temperatures of 170 ± 20°C when applied to the hot spring waters, suggesting that these spring waters flow from a large shallow reservoir at this temperature. Because the hot springs are much less saline than the fluids recovered in PR-1 and PR-2, the mixed fluid in the shallow reservoir can contain no more than 10–20% deep fluid. This requires that most of the heat is transferred by steam. There is probably a thin vapor-dominated zone in the central part of the Sierra, through which steam and gases are transferred to the overlying shallow reservoir. Fluids from this reservoir cool from 170°C to 65°C by conduction during the 5–7 km of lateral flow to the hot springs.  相似文献   

4.
The Blackfoot Reservoir region in southeastern Idaho is recognized as a potential geothermal area because of the presence of several young rhyolite domes (50,000 years old), Quaternary basalt flows, and warm springs. North- to northwest-trending high-angle normal faults of Tertiary to Holocene age appear to be the dominant structural control of spring activity. Surface spring-water temperatures average 14°C except for a group of springs west of the Reservoir Mountains which average 33°C. Chemical geothermometers applied to fifty water samples give temperatures less than 75°C except for eight springs along the Corral Creek drainage. The springs along Corral Creek have Na-K-Ca temperatures that average 354°C, a direct result of high potassium concentrations in the water. A correction for carbon dioxide applied to the Na-K-Ca geothermometer lowers the estimated temperatures of the anomalous springs to near the measured surface temperatures, and Na-K-Ca-Mg temperatures for the anomalous springs are near 100°C. Mixing model calculations suggest that hot water with a temperature of approximately 120°C may be mixing with cooler, more dilute water in the springs from the Corral Creek drainage, a temperature supported by Na-K-Ca-Mg temperatures and mineral saturation temperatures.Stability relations of low-temperature phases in the system indicate that the large concentrations of potassium in the eight anomalous springs are derived from reactions with the potassium-bearing minerals muscovite and K-feldspar. Carbon dioxide and hydrogen sulfide gases may be derived through the oxidation of organic matter accompanied by the reduction of sulfate. Concentrations of major and minor elements, and gases found in springs of the Blackfoot Reservoir region are due to water-rock reactions at temperatures less than 100°C.Based on spring geochemistry, a geothermal reservoir of 100°C up to 120°C may exist at shallow (less than 2 km) depths in the Blackfoot Reservoir region.  相似文献   

5.
Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Na a locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na–HCO3–SO4 facies. The cold groundwaters are Ca–Mg–HCO3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca–Mg–HCO3 type cold groundwaters to the Na–HCO3–SO4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.  相似文献   

6.
The loci and abundance of U and Th were examined in tuffaceous rocks encompassing hydrothermal systems at the Long Valley caldera, California and the Valles caldera, New Mexico. Aspects of these systems may be analogous to conditions expected in a potential site for a high-level waste repository in welded tuff. Examination of radioelements in core from scientific drill holes at these sites was accomplished by gamma-ray spectrometry and fission-track radiography. In the lateral-flowing hydrothermal system at the Long Valley caldera, where temperatures range from 140 to 200 °C, U is concentrated to 20 ppm in Fe-rich zones of varved tuff and to 50 ppm with Fe-rich mineral phases in tuff fragments of a calcite-cemented breccia. U-series disequilibrium in some of these samples suggests mobilization/deposition of parent U and/or its daughters. In the vapor zone of the Valles caldera's hydrothermal system (temperature ˜ 100 °C), the concordance of high U, low Th/U and decreasing whole-rock O-isotope ratios suggests that U was concentrated in response to hydrothermal circulation when the system was formerly liquid-dominated. In the underlying present-day liquid-dominated zone (temperature to 210 °C), U, up to several tens of parts per million, occurs with pyrite and Fe-oxide minerals, and in concentrations to several percents with a Ti-Nb-Y-rare earth mineral. In the Valles system's outflow zone, U is also concentrated in Fe-rich zones as well as in carbonaceous-rich zones in the Paleozoic sedimentary rocks that underlie the Quaternary tuff. Th, associated with accessory minerals, predominates in breccia zones and in a mineralized fault zone near the base of the Paleozoic sedimentary sequence. Relatively high concentrations of U occur in springs representative of water recharging the Valles caldera's hydrothermal system. In contrast, considerably lower U concentrations occur in hot waters (> 220 °C) and in the system's outflow plume, suggesting that U is concentrating in the hotter part of the system. The Long Valley and Valles observations indicate that U and Ra are locally mobile under hydrothermal conditions, and that reducing conditions associated with Fe-rich minerals and carbonaceous material are important factors in the adsorption of U, and thus can retard its transport in water at elevated temperature.  相似文献   

7.
Seventeen K/Ar dates were obtained on illitic clays within Valles caldera (1.13 Ma) to investigate the impact of hydrothermal alteration on Quaternary to Precambrian intracaldera and pre-caldera rocks in a large, long-lived hydrothermal system ( 1.0 Ma to present). Clay samples came from scientific core hole VC-2B (295°C at 1762 m) which was spudded in the Sulphur Springs thermal area and drilled into the boundary between the central resurgent dome and the western ring-fracture zone. Six illitic clays within Quaternary caldera-fill debris flow, tuffaceous sediment, and ash-flow tuff (48 to 587 m depth) yield ages from 0.35 to 1.09 Ma. Illite from Miocene pre-caldera sandstone (765 m) gives an age of 6.74 Ma. Two dates on illite from sandstones in Permian red beds (1008 and 1187 m) are 4.33 and 4.07 Ma, respectively. Surprisingly, three dates on illites from altered andesite pebbles within the red beds (1010–1014 m) are 0.95 to 1.06 Ma. Four illite dates on variably altered Precambrian quartz monzonite (1615–1762 m) range from 2.90 to 276 Ma.Post-Valles age illite is not correlated with alteration style (argillic to propylitic). Rather, post-Valles ages are uniformly obtained from illites in highly fractured, intensely altered, caldera-fill rocks and the Permian volcanic clasts. Generally, finer clay fractions from identical samples yield younger ages. Plots of 40Ar/36Ar versus 40K/36Ar and 40Ar* versus 40K for the illites in caldera-fill rocks lie close to a 1-Ma isochron. Most illite dates older than Valles caldera are difficult to interpret because they correspond to the ages of pre-Valles volcanic and hydrothermal episodes in the Jemez volcanic field ( 13 Ma). In addition, older dates may be caused by co-mingling of different illites during sample preparation, or by inherited argon or lost argon in illites from rocks with potentially complex hydrothermal histories. However, the range of ages obtained from illites in Permian sands and pebbles and from Precambrian crystalline rocks indicates that Valles hydrothermal activity is overwhelming illite produced by earlier geologic events.  相似文献   

8.
The densely populated metropolitan area of Quito is located on the slopes of the active Guagua Pichincha volcano at only 10 km from the crater. Recently, the Italian Ministry of Foreign Affairs sponsored a project for the mitigation of volcanic hazard in this area. The geochemical study carried out as part of this project was aimed at constructing a geochemical model of the zone for use in volcanic surveillance.According to this geochemical model, a hydrothermal aquifer (T = 200–240°C), fed both by meteoric waters and by fluids released by a magma body, lies at shallow levels beneath Guagua Pichincha crater. The crater fumaroles are essentially fed by steam boiled off from the hydrothermal aquifer. The high flow rate fumaroles located in the dome area show significant SO2 contents, which suggest a relatively high contribution of magmatic fluids in the zone of the aquifer feeding them. The absence of SO2 in the fumarolic discharges near the southern crater wall indicates instead that the magmatic fluids dissolve entirely into the aquifer here. The hot springs located at the western end of the crater represent the lateral discharge of the hydrothermal aquifer.On the basis of this model, it is likely that an increment in the flux of both the magmatic fluids and the heat from a magma body produces an increase, albeit small, of the pressure-temperature conditions of the hydrothermal system and consequent changes in flow rate and fluid chemistry of the fumarolic vents. In particular, total sulphur and possibly hydrochloric acid may increase in all the vents and sulphur dioxide may appear in other fumarolic discharges. The varying thermodynamic conditions in the hydrothermal aquifer can be evaluated on the basis of the equilibria among carbon species and hydrogen. Only minor delayed changes are expected in the physical-chemical characteristics of the springs located at the western end of the crater.  相似文献   

9.
Results of a chemical study of the fluids from drill holes and hot springs of Puga and Chumatang areas in the northwestern part of the Himalaya are presented and discussed in this paper. The thermal waters of Puga and Chumatang are of Na-HCO3-Cl and Na-HCO3 types, respectively. A comparison between these waters, their chemical classification and activity studies suggest a flow path within a quartzitic-schistose basement, containing quartz, K-feldspar and illite, and in clayey terrains containing montmorillonite and illite.The chemistry of thermal waters also indicate their association with magmatic activity. The chemical geothermometers indicate the possible existence of a geothermal reservoir at Puga with temperature ≈250°C. The Chumatang area has a comparatively cooler reservoir with a temperature of 150–180°C.  相似文献   

10.
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210–300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas δ13C–CO2 values (−3 to −5‰) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ≤1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982–1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987–1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone).  相似文献   

11.
A number of hot springs occur in the Parbati Valley in Himachal Pradesh in India. Temperatures range from 21 to 96°C, the boiling point of water at that altitude. Geological conditions, temperature variations and chemical composition of spring water in the Parbati Valley hydrogeological unit indicate that the deep thermal fluids are of meteoric origin. The maximum temperature acquired by water during its circulation is estimated to come close to 200°C. In order to assess the possibility of extracting geothermal energy, a seismic survey was arranged to locate the hypocentres of microearthquakes associated with the thermal source. A total of eight microearthquake units was set up at an interstation spacing of about 10 km and two months recording were obtained. During this period an average of 2–3 events per day was recorded with S—P interval less than 5 seconds. The data have been analysed with the help of Hypo 71, a Fortran IV computer program designed to determine the hypocentral parameters of earthquakes from seismic data. The results indicate faulting but there is no apparent spatial relationship to surface manifestations of geothermal energy.  相似文献   

12.
利用水文地球化学数据建立温泉水文循环模型,探讨温泉水文地球化学变化与地震的关系,对中强地震短临流体异常判断具有重要的意义。通过对石棉公益海温泉水常量元素、微量元素和氢氧同位素以及锶同位素的测量,探讨了该区域水文地球化学时空变化特征。因此,于2008年10月至2019年9月,共对公益海温泉采集水样206个,并对温泉水中离子组分和浓度,温泉逸出气组分、温泉气体同位素、碳同位素和氢氧同位素含量进行测量。分析结果表明:(1)公益海温泉主要为Na-HCO3·Cl型水,δD、δ18O同位素测值分别为-14.19‰~-14.83‰和-108.67‰~-110.47‰,分布于大气降水线附近,说明温泉水主要源于大气降水;(2)据SiO2地温计计算热储温度约94.12℃,循环深度约4.3 km,表明大气降水入渗地下,在热源加热后,沿着断层和裂隙循环到地表,形成温泉补给;并且,锶同位素和微量元素研究发现,87Sr和86Sr主要来自硅酸盐类矿物,微量元素含量较低,水岩反应程度较弱;(3)通过对研究区进...  相似文献   

13.
 The purpose of this work was to study jointly the volcanic-hydrothermal system of the high-risk volcano La Soufrière, in the southern part of Basse-Terre, and the geothermal area of Bouillante, on its western coast, to derive an all-embracing and coherent conceptual geochemical model that provides the necessary basis for adequate volcanic surveillance and further geothermal exploration. The active andesitic dome of La Soufrière has erupted eight times since 1660, most recently in 1976–1977. All these historic eruptions have been phreatic. High-salinity, Na–Cl geothermal liquids circulate in the Bouillante geothermal reservoir, at temperatures close to 250  °C. These Na–Cl solutions rise toward the surface, undergo boiling and mixing with groundwater and/or seawater, and feed most Na–Cl thermal springs in the central Bouillante area. The Na–Cl thermal springs are surrounded by Na–HCO3 thermal springs and by the Na–Cl thermal spring of Anse à la Barque (a groundwater slightly mixed with seawater), which are all heated through conductive transfer. The two main fumarolic fields of La Soufrière area discharge vapors formed through boiling of hydrothermal aqueous solutions at temperatures of 190–215  °C below the "Ty" fault area and close to 260  °C below the dome summit. The boiling liquid producing the vapors of the Ty fault area has δD and δ18O values relatively similar to those of the Na–Cl liquids of the Bouillante geothermal reservoir, whereas the liquid originating the vapors of the summit fumaroles is strongly enriched in 18O, due to input of magmatic fluids from below. This process is also responsible for the paucity of CH4 in the fumaroles. The thermal features around La Soufrière dome include: (a) Ca–SO4 springs, produced through absorption of hydrothermal vapors in shallow groundwaters; (b) conductively heated, Ca–Na–HCO3 springs; and (c) two Ca–Na–Cl springs produced through mixing of shallow Ca–SO4 waters and deep Na–Cl hydrothermal liquids. The geographical distribution of the different thermal features of La Soufrière area indicates the presence of: (a) a central zone dominated by the ascent of steam, which either discharges at the surface in the fumarolic fields or is absorbed in shallow groundwaters; and (b) an outer zone, where the shallow groundwaters are heated through conduction or addition of Na–Cl liquids coming from hydrothermal aquifer(s). Received: 9 November 1998 / Accepted: 15 July 1999  相似文献   

14.
Palaeofluid-transporting systems, observed as networks of mineral-filled veins in deeply eroded parts of extinct geothermal fields, indicate that hydrofractures commonly supply fluids to geothermal fields. Here we examine well-exposed vein networks that occur at crustal depths of around 1.5 km below the initial surface of the Tertiary lava pile in North Iceland. The veins are located in the damage zone of a major fault zone that dissects basaltic lava flows, the most common host rocks of geothermal fields in Iceland. The lava flows contain numerous weaknesses, particularly columnar (cooling) joints and contacts. For hydrofractures to supply fluids to geothermal fields, the fractures must be able to propagate, and transport fluids, to the surface. We explore hydrofracture pathway formation using boundary-element models of hydrofractures with fluid overpressure varying linearly from 10 MPa at the fracture centre to 0 MPa at the fracture tip (or the fluid front). The hydrofractures propagate through a vertically jointed and horizontally layered pile of lava flows with a general rock-matrix Young’s modulus of 1×1010 Pa and a Poisson’s ratio of 0.25. The joints and contacts between layers are modelled as internal springs, each with a stiffness (‘strength’) of 6 MPa/m. The location and sizes of discontinuities, as well as the location of the hydrofracture tip, vary between the models. The results indicate that tensile stresses generated at the tip of an overpressured hydrofracture can open up horizontal and vertical discontinuities out to a considerable distance from the tip, and that these discontinuities eventually link up to form the hydrofracture pathway. Analytical models indicate that for a hot spring of a given yield associated with a fault, the dimensions of the fluid-transporting part of the fault are likely to be similar for a typical normal fault and a strike-slip fault. Also, a hot spring of yield 180 l/s (the maximum in the low-temperature fields of Iceland) can be supplied through a hydrofracture of aperture 3 mm and trace length 1.2 m. These dimensions are very similar to those of typical veins in the studied networks. Buoyancy, rather than excess pressure in the fluid source, appears to be the primary driving force of hydrofractures in the geothermal fields of Iceland.  相似文献   

15.
The Hakata hot springs area is located in Fukuoka City, which is in the southwestern part of Japan. Gamma-ray and gravity surveys were conducted to understand the relationship between the low-temperature hydrothermal systems and geophysical data of the area. The depth of the reservoir basement, which was derived from gravity data, gradually deepens toward the east; it includes some steep depth gradients in the Hakata hot springs area. High intensities of gamma-rays were detected around these gradients. In addition, higher hot spring temperatures and flow rates can be observed in this area. These results indicate that some part of the level of the basement where the hot springs are concentrated is a part of the Kego Fault and is similar to the fracture zone created by past activities of the fault. Moreover, these steep depth gradients act as a path for hot spring water from the deeper side of the granitic body to the surface.  相似文献   

16.
Application of various chemical geothermometers and mixing models indicate underground temperatures of 260°C, 280°C and 265°C in the Geysir, Hveravellir and Landmannalaugar geothermal fields in Iceland, respectively. Mixing of the hot water with cold water occurs in the upflow zones of all these geothermal systems. Linear relations between chloride, boron and δ18O constitute the main evidence for mixing, which is further substantiated by chloride, silica and sulphate relations in the Geysir and Hveravellir fields.A new carbonate-silica mixing model is proposed which is useful in distinguishing boiled and non-boiled geothermal waters. This model can also be used to estimate underground temperatures using data from warm springs. This model, as well as the chloride-enthalpy model and the Na-Li, and CO2-gas geothermometers, invariably yield similar results as the quartz geothermometer sometimes also does. By contrast, the Na-K and the Na-K-Ca geothermometers yield low values in the case of boiling hot springs, largely due to loss of potassium from solution in the upflow. The results of these geothermometers are unreliable for mixed waters due to leaching subsequent to mixing.  相似文献   

17.
Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220°C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ± 10°C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to 220°C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282°C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 × 107 cal/s.  相似文献   

18.
A geochemical study of thermal and cold springs, stream waters and gas emissions has been carried out in the Mt. Amiata geothermal region.The cold springs and stream waters do not seem to have received significant contribution from hot deep fluids. On the contrary, the thermal springs present complex and not clearly quantifiable interactions with the hot fluids of the main geothermal reservoir.The liquid-dominated systems in the Mt. Amiata area, like most of the high-enthalpy geothermal fields in the world, are characterized by saline, NaCl fluids. The nature of the reservoir rock (carbonatic and anhydritic), and its widespread occurrence in central Italy, favor a regional circulation of “Ca-sulfate” thermal waters, which discharge from its outcrop areas. Waters of this kind, which have been considered recharge waters of the known geothermal fields, dilute, disperse and react with the deep geothermal fluids in the Mt. Amiata area, preventing the use of the main chemical geothermometers for prospecting purposes. The temperatures obtained from the chemical geothermometers vary widely and are generally cooler than temperatures measured in producing wells.Other thermal anomalies in central Italy, apart from those already known, might be masked by the above-mentioned circulation. A better knowledge of deep-fluid chemistry could contribute to the calibration of specific geothermometers for waters from reservoirs in carbonatic rocks.  相似文献   

19.
The Sierra La Primavera volcanic complex consists of late Pleistocene comenditic lava flows and domes. ash-flow tuff, air-fall pumice, and cold caldera-lake sediments. The earliest lavas were erupted about 120,000 years ago, and were followed approximately 95,000 years ago by the eruption of about 20 km3 of magma as ash flows that form the compositionally-zoned Tala Tuff. Collapse of the roof zone of the magma chamber led to the formation of a shallow 11-km-diameter caldera. It soon filled with water, forming a caldera lake in which sediment began to collect. At about the same time, two central domes erupted through the middle of the lake and a “giant pumice horizon”, an important stratigraphic marker, was deposited. Shortly thereafter ring domes erupted along two parallel arcs: one along the northeast portion of the ring fracture, and the other crossing the middle of the lake. All these events occurred during a period of approximately 5,000–10,000 years. Sedimentation continued and a period of volcanic quiescence was marked by the deposition of some 30 m of fine-grained ashy sediments virtually free from pumice lapilli. Approximately 75,000 years ago, a new group of ring domes erupted at the southern margin of the lake. These domes are lapped by only 10–20 m of sediments, as uplift resulting from renewed insurgence of magma brought an end to the lake. This uplift culminated in the eruption, beginning approximately 60,000 years ago, of aphyric lavas along a southern arc. The youngest of these lavas erupted approximately 20,000–30,000 years ago.The four major fault systems in the Sierra La Primavera are related to caldera collapse or to uplift caused by the insurgence of the southern are magma. Steam vents and larga-discharge 65°C hot springs are associated with the faulting. Calculated equilibrium temperatures of the geothermal fluids are 170°C, but temperatures in excess of 240°C have been encountered in an exploratory drill hole.A seismic survey showed attenuation of both S and P waves within the caldera, P waves attenuated more severely than S waves. The greatest attenuation is associated with an area of steam vents, and the rapid lateral variations in attenuation suggest that they are produced by a shallow geothermal system rather than by underlying magma.  相似文献   

20.
Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines.Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors.To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called “reactivation of platform” with large-scale faulting and magmatism.Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then several experimental power stations using thermal water have been set up in Fengshun (Fungshun),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号